
C8.2: Stochastic analysis and PDEs

Solutions to Problem sheet 4

The questions on this sheet are divided into two sections. Those in the first section are compulsory and
should be handed in for marking. Those in the second are extra practice questions and should not be
handed in.

Section 1 (Compulsory)

1. Let r satisfy the stochastic differential equation

drt = −βrtdt+ σ
√
rtdWt,

where {Wt}t≥0 is standard P-Brownian motion and β, σ, r0 > 0.

Suppose that {u(t)}t≥0 satisfies the ordinary differential equation

du

dt
(t) = −βu(t)− σ2

2
u(t)2, u(0) = θ,

for some constant θ > 0. Fix T > 0. For 0 ≤ t ≤ T find the stochastic differential equation
satisfied by

exp (−u(T − t)rt) .

Hence find the moment generating function for rT . Calculate the mean and variance of rT and
P[rT = 0].

It is not hard to check that 0 is an exit boundary for r. Thus rt ≥ 0 for all t ≥ 0.

Applying Ito’s formula to Mt = exp (−u(T − t)rt), we have

dMt = (u′(T − t) + u(T − t)β +
σ2

2
u(T − t)2)rtMtdt− σu(T − t)

√
rtMtdWt .

Using the fact that u satisfies the ODE we have that dMt = −σu(T − t)√rtMtdWt, so that M
is a local martingale. As the solution to the ODE is bounded (since du

dt is negative) and r is
positive we have M ≤ 1. Thus M is a bounded local martingale and hence a martingale. Taking
expectations we have

E [exp(−u(0)rT )] = exp(−u(T )r0).

To find the moment generating function for rT , it thus suffices to solve the ODE for u(T ). As
u(0) = θ, we have

u(T ) =
θe−βT

1 + γθ − γθe−βT
,

where γ = σ2/2β. Then

ψt(θ) := E [exp(−θrT )] = E [exp(−u(0)rT )] = exp
(
− r0θe

−βT

1 + γθ − γθe−βT
)
.
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By differentiating the MGF ψt(θ) we have E[rT ] = r0e
−βT , var(rT ) = r0σ

2e−βT (1 − e−βT )/β.
Note that, for every x ≥ 0,

lim
θ→∞

e−θx =

{
0 if x > 0,

1 if x = 0.

Therefore, by dominated convergence,

P[rT = 0] = lim
θ→∞

E[exp(−θrT )] = exp

(
−r0

2βe−βT

σ2 (1− e−βT )

)
.

2. Use the Feynman-Kac stochastic representation formula to solve

∂F

∂t
(t, x) +

1

2
σ2∂

2F

∂x2
(t, x) = 0,

subject to the terminal value condition

F (T, x) = x4.

Assuming that the Feynman-Kac representation is applicable (which is not immediately clear
since x4 is unbounded), we have F (t, x) = E

[
X4
T

∣∣Xt = x
]
, where Xt = σWt. Using properties of

the normal distribution, this expectation is given by F (t, x) = 3σ4(T − t)2 + 6σ2(T − t)x2 + x4.
One can now readily see that this choice for F is indeed a solution.

3. We can use the Feynman-Kac representation to find the partial differential equation solved by the
transition densities of solutions to stochastic differential equations.

Suppose that
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt. (1)

For any set B let

pB(t, x;T ) , P [XT ∈ B|Xt = x] = E [1B(XT )|Xt = x] .

Use the Feynman-Kac representation (assuming integrability conditions are satisfied) to write
down an equation for

∂pB
∂t

(t, x;T )

Deduce that the transition density of the solution {Xs}s≥0 to the stochastic differential equa-
tion (1) solves

∂p

∂t
(t, x;T, y) +Ap(t, x;T, y) = 0 (2)

p(t, x;T, y) → δy(x) as t→ T,

where A is the generator. Equation (2) is known as the Kolmogorov backward equation (it
operates on the ‘backward in time’ variables (t, x)).

By the Feynman-Kac representation (subject to the integrability condition)

∂pB
∂t

(t, x;T ) +ApB(t, x;T ) = 0 (3)

pB(T, x;T ) = 1B(x),

2



where

Af(t, x) = µ(t, x)
∂f

∂x
(t, x) +

1

2
σ2(t, x)

∂2f

∂x2
(t, x).

Writing |B| for the Lebesgue measure of the set B, the transition density of the process {Xs}s≥0

is given by

p(t, x;T, y) , lim
B→y

1

|B|
P [XT ∈ B|Xt = x] .

(We are assuming existence of the density). Since the equation (3) is linear, we have proved that
the transition density of the solution {Xs}s≥0 to the stochastic differential equation (1) solves (2)
as required.

We can also obtain an equation acting on the forward variables (T, y). In the above notation,

∂p

∂T
(t, x;T, y) = A∗p(t, x;T, y) (4)

where

A∗f(T, y) = − ∂

∂y
(µ(T, y)f(T, y)) +

1

2

∂2

∂y2

(
σ2(t, Y )f(T, y)

)
.

Heuristic explanation: By the Markov property of the process {Xt}t≥0, for any T > r > t

p(t, x;T, y) =

∫
p(t, x; r, z)p(r, z;T, y)dz.

Differentiating with respect to r and using (2),∫ ∞
−∞

{
∂

∂r
p(t, x; r, z)p(r, z;T, y)− p(t, x; r, z)Ap(r, z;T, y)

}
dz = 0.

Now integrate the second term by parts to obtain∫ ∞
−∞

{
∂

∂r
p(t, x; r, z)−A∗p(t, x; r, z)

}
p(r, z;T, y)dz = 0.

This holds for all T > r, which, if p(r, z;T, y) provides a sufficiently rich class of functions as we
vary T , implies the result.

Equation (4) is the Kolmogorov forward equation of the process {Xs}s≥0.

4. Suppose that {Xt}t≥0 solves

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt,

where {Wt}t≥0 is a P-Brownian motion. For k : R+×R→ R and Φ : R→ R given deterministic
functions, find the partial differential equation satisfied by the function

F (t, x) , E
[

exp

(
−
∫ T

t
k(s,Xs)ds

)
Φ(XT )

∣∣∣∣Xt = x

]
,

for 0 ≤ t ≤ T .

Evidently F (T, x) = Φ(x). By analogy with the proof of the Feynman-Kac representation, it is
tempting to examine the dynamics of

Zs = exp

(
−
∫ s

t
k(u,Xu)du

)
F (s,Xs).
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Notice that if this choice of {Zs}t≤s≤T is a martingale we have that

Zt = F (t, x) = E [ZT |Xt = x] .

Thus the partial differential equation satisfied by F (t, x) is that for which {Zt}0≤t≤T is a mar-
tingale.

Our strategy now is to find the stochastic differential equation satisfied by {Zs}t≤s≤T . We proceed
in two stages. Remember that t is now fixed and we vary s. First notice that

d

(
exp

(
−
∫ s

t
k(u,Xu)du

))
= −k(s,Xs) exp

(
−
∫ s

t
k(u,Xu)du

)
ds

and by Itô’s formula

dF (s,Xs) =
∂F

∂s
(s,Xs)ds+

∂F

∂x
(s,Xs)dXs +

1

2

∂2F

∂x2
(s,Xs)σ

2(s,Xs)ds

=

{
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,Xs)

∂2F

∂x2
(s,Xs)

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs.

Hence

dZs = exp

(
−
∫ s

t
k(u,Xu)du

)
×{{

−k(s,Xs)F (s,Xs) +
∂F

∂s
(s,Xs) + µ(s,Xs)

∂F

∂x
(s,Xs) +

1

2
σ2(s,XS)

∂2F

∂x2

}
ds

+ σ(s,Xs)
∂F

∂x
(s,Xs)dWs

}
.

We can now read off the solution: {Zs}t≤s≤T will be a martingale if F satisfies

∂F

∂s
(s, x) + µ(s, x)

∂F

∂x
(s, x) +

1

2
σ2(s, x)

∂2F

∂x2
(s, x)− k(s, x)F (s, x) = 0.

5. Let B be a Brownian motion in R and consider At =
∫ t

0 I{Bu>0}du, the amount of time that
Brownian motion spends in the positive half line up to time t. Let F (t, x) = E(exp(−θAt)|B0 = x),
the Laplace transform of At given that the Brownian motion starts from x. By setting r(t, Bt) =
−θI{Bt>0} (in the Feynman-Kac formula in the notes) and Ψ = 1 and using a time reversed
version of the Feynman-Kac formula, show the PDE satisfied by F , is

∂F

∂t
=

{
1
2
∂2F
∂x2
− θF x > 0, t > 0

1
2
∂2F
∂x2

x ≤ 0, t > 0.

specifying the initial conditions and, carefully, the continuity conditions at 0. By taking Laplace
transforms, F̂ (λ, x) =

∫∞
0 exp(−λt)F (t, x)dt and solving the resulting ODE, show that

F̂ (λ, 0) =
1√

λ
√
λ+ θ

. (5)
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From this we can derive Levy’s arcsine law,

P (At ≤ s|X0 = 0) =

∫ s

0

1

π
√
u(t− u)

du =
2

π
arcsin(

√
s

t
), 0 ≤ s ≤ t.

To see this compute the Laplace transform of the arcsine law by suitably integrating to show that
the transform is as given in (5).

Let

At =

∫ t

0
IBu>0du,

and

F (t, x) = E
[
e−θAt |B0 = x

]
= E

[
e−θ

∫ t
0 IBu>0du|B0 = x

]
.

Now suppose f satisfies the following PDE for some function r,

∂f

∂t
(t, x) =

1

2

∂2f

∂x2
(t, x) + r(x)f(t, x), (t, x) ∈ (0,∞)× R

with initial condition
f(0, x) = Ψ(x).

This is a heat equation with dissipation, and the Feynman-Kac formula gives that

f(t, x) = E
[

exp
(
−
∫ t

0
r(Bu)du

)
Ψ(Bt)|B0 = x.

]
Hence for our function F given by

F (t, x) = E
[

exp
(
− θ

∫ t

0
IBu>0du

)
Ψ(Bt)|B0 = x

]
the PDE is, for t > 0,

∂F

∂t
=

{
1
2
∂2F
∂x2
− θF, for x > 0

1
2
∂2F
∂x2

, for x ≤ 0

with F (0, x) = 1 and continuity at 0, in that F (t, 0+) = F (t, 0−) and ∂F
∂x (t, 0+) = ∂F

∂x (t, 0−).
(Strictly speaking, in the lectures we only considered F ∈ C2 and we had to know a priori that a

solution to the given PDE exists; here ∂F
∂t −

1
2
∂2F
∂x2

will have a discontinuity at x = 0 and it is not
immediately clear that a solution to the PDE exists. We can rest assured that these technical
points do not cause any fundamental problems.) Now consider the Laplace transform

F̂ (λ, x) =

∫ ∞
0

e−λtF (t, x)dt.

Then, denoting F̂ ′′(λ, x) the second derivative in x of F̂ (λ, x),

λF̂ (λ, x)− F (0, x) =

{
1
2 F̂
′′(λ, x)− θF̂ (λ, x) for x > 0

1
2 F̂
′′(λ, x), for x ≤ 0
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i.e. F̂ ′′(λ, x)− 2λF̂ (λ, x)− 2θF̂ (λ, x) + 2 = 0, x > 0

and F̂ ′′(λ, x)− 2λF̂ (λ, x) + 2 = 0, x ≤ 0.

Solving these ODEs, for x ≤ 0,

F̂ (λ, x) = A1e
√

2λx +B1e
−
√

2λx +
1

λ
,

and for x > 0,

F̂ (λ, x) = A2e
√

2(λ+θ)x +B2e
−
√

2(λ+θ)x +
1

λ+ θ
.

To determine A1, B1, A2, B2, observe that

F (t, x)→

{
e−θt as x→∞
1, as x→ −∞,

hence

F̂ (λ, x)→

{
1

λ+θ as x→∞
1
λ , as x→ −∞.

Also by the continuity condition F (t, 0+) = F (t, 0−) and ∂F
∂x (t, 0+) = ∂F

∂x (t, 0−) we get

F̂ (λ, 0+) = F̂ (λ, 0−)

and
F̂ ′(λ, 0−) = F̂ ′(λ, 0+).

Therefore
x→ −∞ ⇒ B1 = 0,

x→∞ ⇒ A2 = 0 and

A1 +
1

λ
= B2 +

1

λ+ θ
⇒ A1 = B2 +

1

λ+ θ
− 1

λ
√

2λA1 = −
√

2(λ+ θ)B2.

Finally
√

2λ

(
B2 −

θ

λ(λ+ θ)

)
= −

√
2(λ+ θ)B2(√

λ+
√

(λ+ θ)
)
B2 =

θ√
λ(λ+ θ)

B2 =
θ√

λ(λ+ θ)(
√
λ+

√
(λ+ θ))
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F̂ (λ, 0) =
θ

√
λ(λ+ θ)

(√
λ+

√
(λ+ θ)

) +
1

λ+ θ

=
1

λ+ θ

[
θ + λ+

√
λ(λ+ θ)

λ+
√
λ(λ+ θ)

]

=
1

λ+ θ

[
θ(λ−

√
λ(λ+ θ)) + λ2 − (λ2 + λθ)

−λθ

]
=

1√
λ(λ+ θ)

,

as required.

To show that this is the Laplace transform for the arcsin law, consider the random variable Yt
with

P(Yt ∈ ds) =
ds

π
√
s(t− s)

, 0 < s < t

so Ee−θYt =

∫ t

0
e−θs

ds

π
√
s(t− s)

= F (t, 0)

F̂ (λ, 0) =

∫ ∞
0

∫ t

0
e−λt−θs

ds

π
√
s(t− s)

dsdt

=

∫ ∞
s=0

∫ ∞
s

e−λt−θs
ds

π
√
s(t− s)

dtds

(u = t− s) =

∫ ∞
0

∫ ∞
0

e−λu−(θ+λ)s 1

π
√
s
√
u
duds

=
1

π

∫ ∞
0

e−λu√
u
du

∫ ∞
0

e−(θ+λ)s

√
s

ds

Using the substitution a =
√

2u, then u = a2

2 and du = ada, we have∫ ∞
0

e−λu√
πu
du =

1√
λ
.

In the same way we have ∫ ∞
0

e−(θ+λ)s

√
πs

ds =
1√
θ + λ

,

and hence

F̂ (λ, 0) =
1√

λ
√
θ + λ

.

Thus as the Laplace transform of A is given by this expression we must have

P(At ∈ ds) =
ds

π
√
s
√
t− s

.

Section 2 (Extra practice questions, not for hand-in)
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A. Consider a three dimensional Brownian motion started at the origin and stopped at the first time
it exists the unit sphere. Fix 0 < r < 1. In which of the annuli

A[a] = {x ∈ R3 : a− r ≤ |x| ≤ a} for a ∈ [r, 1]

is the expected occupation time maximal?

Denoting by U the unit ball and T = inf{t > 0 : Bt ∈ ∂U}, recall that

E0

{∫ T

0
1A[a](Bs) ds

}
=

∫
A[a]

GU (0, y) dy ,

where GU (x, y) = G(x, y) −
∫
∂U G(z, y)µ(x, dz) is the Green’s function of U , µ(x, dz) = P[BT ∈

dz] = 1−|x|2
|x−z|3π(dz) is the Harmonic measure and π is the uniform measure on ∂U , and G(x, y) is

the potential kernel given by
G(x, y) = C|x− y|−1

with constant C =
Γ( 3

2
−1)

2π3/2 . Recall further that∫
∂U

1− |x|2

|x− z|3
G(z, y)π(dz) = C

|y|
|x|y|2 − y|

.

It follows that ∫
A[a]

GU (0, y) dy =

∫
A[a]

(C|y|−1 − C) dy .

We can do the calculation in polar coordinates:∫
A[a]

(C|y|−1 − C) dy = C4π

∫ a

a−r

(1

r
− 1
)
r2 dr

= C4π
(a2

2
− a3

3
− (a− r)2

2
+

(a− r)3

3

)
= C4π

(
r(a− a2) + r2(a− 1/2)− r3/3

)
.

We note that this is maximal if r(1 − 2a) + r2 = 0 i.e. exactly if a = (1 + r)/2, if the annulus
is in the middle. Note that the expected occupation time in the inner ball a = r and the outer
annulus a = 1 are the same.

B. Suppose that v(t, x) solves

∂v

∂t
(t, x) +

1

2
σ2x2 ∂

2v

∂x2
(t, x)− rv(t, x) = 0, 0 ≤ t ≤ T.

Show that for any constant θ,

vθ(t, x) ,
x

θ
v

(
t,
θ2

x

)
is another solution.

Probabilistically, the point is that for a geometric Brownian motion {Xt}0≤t≤T , dependence of
XT on Xt is only as a multiplier.
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C. Suppose that for 0 ≤ s ≤ T ,

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs, Xt = x,

where {Ws}t≤s≤T is a P-Brownian motion, and let k,Φ : R→ R be given deterministic functions.
Find the partial differential equation satisfied by

F (t, x) = E [Φ(XT )|Xt = x] +

∫ T

t
E [k(Xs)|Xt = x] ds.

Using the same reasoning as question 4 we apply Itô’s formula to F (s,Xs) +
∫ s
t k(Xu)du and

integrate with respect to s over [t, T ] to see that

∂F

∂t
+ µ

∂F

∂x
+

1

2
σ2∂

2F

∂x2
+ k = 0,

and F (T, x) = Φ(x).

D. In the Vasicek model, the interest rate {rt}t≥0 is assumed to be a solution of the stochastic
differential equation

drt = (b− art)dt+ σdWt,

where, as usual, {Wt}t≥0 is standard P-Brownian motion.

Find the Kolmogorov backward and forward differential equations satisfied by the probability den-
sity function of the process. What is the distribution of rt as t→∞?

∂p(t, T ;x, y)

∂t
= −1

2
σ2 ∂

2p

∂x2
− (b− ax)

∂p

∂x
.

∂p(t, T ;x, y)

∂T
=

1

2
σ2 ∂

2p

∂y2
− ∂

∂y
((b− ay)p) .

Consider ut = eatrt.
dut = beatdt+ σeatdWt.

Integrating and substituting back gives

rt = e−atr0 + e−at
∫ t

0
beasds+

∫ t

0
σe−a(t−s)dWs.

Thus rt is normally distributed with mean e−atr0 + b
a(1 − e−at) and variance σ2

2a (1 − e−2at). As
t→∞, rt tends to a normally distributed random variable with mean b/a and variance σ2/2a.

E. The process usually known as Geometric Brownian motion solves the s.d.e.

dSt = µStdt+ σStdWt.

Find the forward and backward Kolmogorov equations for geometric Brownian motion and show
that the transition density for the process is the lognormal density given by

p(t, x;T, y) =
1

σy
√

2π(T − t)
exp

(
−
(
log(y/x)−

(
µ− 1

2σ
2
)

(T − t)
)2

2σ2(T − t)

)
.
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Substituting in our formula for the forward equation we obtain

∂p

∂T
(t, x;T, y) =

1

2

∂2

∂y2

(
y2p(t, x;T, y)

)
− µ ∂

∂y
(yp(t, x;T, y)) ,

and the backward equation is

∂p

∂t
(t, x;T, y) = −1

2
σ2x2 ∂

2p

∂x2
(t, x;T, y)− µx∂p

∂x
(t, x;T, y).

It is enough to check that the lognormal density solves one of the Kolmogorov equations.
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