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2. Let E be a complete separable metric space and write C (E ) for the
bounded, continuous, real-valued functions on E with the supremum norm.

(a) What does it mean to say that an operator A on C (E ) is a Markov

generator?

De�nition 2.18 for Markov pregenerator, De�nition 2.30 for Markov

generator



(b) Let A be a Markov generator and let x ∈ E . What does it mean to say

that a probability measure P solves the martingale problem for A with

initial point x?

De�nition 3.2: A probability measure P on D[0,∞) solves the martingale

problem for A with initial point x if

1. P[{X ∈ D : X0 = x}] = 1, and

2. for all f ∈ D(A)

f (Xt)−
∫ t

0

Af (Xs) ds

is a (local) martingale relative to P and the canonical �ltration {Ft , t ≥ 0}
generated by the projections.



(c) Suppose that A is a Markov generator and let Px be the law of the

unique Feller process corresponding to A started from x . Show that Px

solves the martingale problem for A with initial point x .

First half of the proof of Theorem 3.3



(d) Consider the [−1, 1]-valued di�usion {Xt}t≥0 with in�nitesimal

generator

Af (x) =
1

2
(1− x2)f ′′(x),

when restricted to an appropriate subset of the twice continuously

di�erentiable functions on [−1, 1]. By considering the martingale problem

with suitable functions,

(i) show that X∞ = limt→∞ Xt exists and �nd its expectation;

A: By part (c), Xt solves the martingale problem for A. Hence, for every
f ∈ D(A), f (Xt)−

∫ t
0
Af (Xs) ds is a local martingale.

Choose f (x) = x . Then Af (x) = 0, hence Xt is a bounded local

martingale, and thus limt→∞ Xt = X∞ exists a.s. and

Ex [X∞] = Ex [X0] = x .
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(d) (ii) show that P[X∞ ∈ {−1, 1}] = 1 and for x ∈ (−1, 1) �nd
P[X∞ = 1|X0 = x ].

A: Choose f (x) = 1− x2. Then Af (x) = −(1− x2), and so

Yt = 1− X 2

t +

∫ t

0

(1− X 2

s ) ds

is a positive local martingale.

Therefore, for a reducing sequence of stopping times (Tn)n≥1, and
0 ≤ s ≤ t

E[Yt | Fs ] = E[ lim
n→∞

Yt∧Tn | Fs ]

≤ lim inf
n→∞

E[Yt∧Tn | Fs ] (Fatou's lemma)

= lim inf
n→∞

Ys∧Tn

= Ys =⇒ Y is positive supermartinagle.
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By Doob's �rst martingale convergence theorem, limt→∞ Yt = Y∞ exists

a.s. and is �nite.

Since limt→∞ 1− X 2
t = 1− X 2

∞ by part (i)

Y∞ = 1− X 2

∞ +

∫ ∞
0

(1− X 2

s ) ds .

The fact that Y∞ <∞ implies that X∞ ∈ {−1, 1}.

Finally,

x = Ex [X∞]

= Px [X∞ = 1]− Px [X∞ = −1]
= Px [X∞ = 1]− (1− Px [X∞ = 1]) .

Hence Px [X∞ = 1] = 1+x
2

.
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