
C8.2 Stochastic Analysis and PDEs

2017 Q1



1.(a)(i) De�ne what it means for {Pt ; t ≥ 0}, a family of bounded

operators on a Banach space C , to be a strongly continuous contraction

semi-group.

De�nition 2.9

(ii) Let At =
1

t (Pt − I ) for t > 0. Use this to de�ne A, the in�nitesimal

generator of the semi-group, and its domain D(A).

Proposition 2.14: D(A) = {z ∈ C : limt→∞ Atz exits} and
Az = limt→0 Atz .

(iii) Show that, for all f ∈ D(A),

d

dt
Pt f = APt f .

Second part of the proof of Proposition 2.14.
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(b) Let {Rλ;λ > 0} be the resolvent for the semi-group {Pt ; t ≥ 0}, where
Rλf =

∫∞
0

e−λtPt f dt for f ∈ C .

(i) Show that λRλ = EPτ where τ is an exponentially distributed random

variable with parameter λ.

A: Using the density of the law of τ

E[Pτ f ] =
∫ ∞
0

λe−λtPt f dt = λRλf

(ii) Show that λRλ is a contraction on C .

A: Using part (i), for any f ∈ C

‖λRλf ‖ = ‖E[Pτ f ]‖ ≤ E[‖Pτ f ‖]
≤ ‖f ‖ (Pt is contraction ∀t ≥ 0).
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(b)(iii) Show that λRλ → I as λ→∞.

A: For every f ∈ C ,

λRλf =

∫ ∞
0

λe−λtPt f dt =

∫ ∞
0

e−sPs/λf ds .

For every s ≥ 0, by strong continuity of Pt

lim
λ→∞

Ps/λf = f .

Therefore, by the dominated convergence theorem

lim
λ→∞

λRλf =

∫ ∞
0

e−s f ds = f .
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(c)(i) Using the de�nition of the in�nitesimal generator and the fact that

Pt and Rλ commute, show that

(λ− A)Rλf = f , ∀f ∈ D(A).

First part of proof of Corollary 2.17.



(c)(i) Using the de�nition of the in�nitesimal generator and the fact that

Pt and Rλ commute, show that

(λ− A)Rλf = f , ∀f ∈ D(A).

First part of proof of Corollary 2.17.



(c)(ii) Hence show that, for all f ∈ D(A),

λ(λRλ − I )f → Af ,

as λ→∞.

A: By a change of variable as in part (b)(iii)

λ(λRλf − f ) =

∫ ∞
0

λe−s(Ps/λf − f ) ds =

∫ ∞
0

e−ss
λ

s
(Ps/λf − f ) ds .

Denote H(s, λ) = λ
s (Ps/λf − f ). Since f ∈ D(A), for every s > 0

lim
λ→∞

H(s, λ) = Af .
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(c)(ii) A: (continued) There exists ε > 0 such that for all t ∈ (0, ε)

1

t
‖Pt f − f ‖ ≤ ‖Af ‖+ 1 .

Then

for s/λ ∈ (0, ε), ‖H(s, λ)‖ ≤ ‖Af ‖+ 1.

For s/λ ≥ ε, Pt is a contraction, ‖H(s, λ)‖ ≤ ε−12‖f ‖.

Hence, for all s, λ > 0

H(s, λ) ≤ ε−12‖f ‖+ ‖Af ‖+ 1 .

Thus by dominated convergence,

lim
λ→∞

λ(λRλf − f ) =

∫ ∞
0

e−ssAf ds = Af .
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