C8.2 Stochastic Analysis and PDEs 2017 Q2

2.(a) Let b and σ be continuous functions on $\mathbb R$ and define $a=\sigma^2$.

Define what it means for a one-dimensional diffusion process X on $(\Omega, \mathcal{F}, (\mathcal{F}_t)_t, \mathbb{P})$ with generator

$$Af(x) = b(x)\frac{\partial f}{\partial x} + \frac{1}{2}a(x)\frac{\partial^2 f}{\partial x^2}$$

to satisfy

(i) the martingale problem for the operator A with initial point x;

Definition 3.2

(ii) the martingale problem M(a, b).

Definition 3.11

(b) Now assume that there is a constant δ such that $a(x) > \delta > 0$. Show that, if the diffusion process X on the probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t), \mathbb{P})$, satisfies M(a,b), then X is a weak solution to the stochastic differential equation

$$X_t = X_0 + \int_0^t b(X_u) du + \int_0^t \sigma(X_u) dB_u,$$

where B is a Brownian motion.

Theorem 3.12

(c) Now assume that there is a unique (in law) weak solution \boldsymbol{X} to the stochastic differential equation

$$X_t = X_0 + \int_0^t \kappa(\theta - X_u) du + \int_0^t \sigma \sqrt{X_u} dB_u, \qquad (1)$$

where κ, θ, σ are strictly positive constants and B is a Brownian motion.

Give an integral expression for the scale function and give the density of the speed measure for this process.

(c) A: (Scale function)

Solution 1: From Definition 6.1, the scale function is given by

$$S(x) = \int_{x_0}^{x} e^{-\int_{y_0}^{y} 2\kappa(\theta-z)/(\sigma^2 z) dz} dy = \int_{x_0}^{x} \left(\frac{y}{y_0}\right)^{-2\kappa\theta/\sigma^2} e^{2\kappa(y-y_0)/\sigma^2} dy$$

where $x_0, y_0 > 0$ are arbitrary positive real numbers.

(c) A: (Scale function)

Solution 1: From Definition 6.1, the scale function is given by

$$S(x) = \int_{x_0}^x e^{-\int_{y_0}^y 2\kappa(\theta-z)/(\sigma^2z) dz} dy = \int_{x_0}^x \left(\frac{y}{y_0}\right)^{-2\kappa\theta/\sigma^2} e^{2\kappa(y-y_0)/\sigma^2} dy$$

where $x_0, y_0 > 0$ are arbitrary positive real numbers.

Solution 2: The scale function satisfies $\kappa(\theta-x)S'(x)+\frac{1}{2}\sigma^2xS''(x)=0$. Denoting u(x)=S'(x),

$$\frac{u'(x)}{u(x)} = -\frac{2\kappa}{\sigma^2} \left(\frac{\theta}{x} - 1\right) \Longrightarrow \log u(x) = -\frac{2\kappa\theta}{\sigma^2} \log x + \frac{2\kappa}{\sigma^2} x + C_0.$$

Therefore $S'(x) = u(x) = e^{C_0} x^{-2\kappa\theta/\sigma^2} e^{2\kappa x/\sigma^2}$, hence

$$S(x) = \int_{x_0}^{x} e^{C_0} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy.$$

(c) A: (Speed density)

By definition,

$$m(x) = \frac{1}{S'(x)\sigma^2 x} = \frac{1}{\sigma^2 x} e^{C_0} x^{2\kappa\theta/\sigma^2} e^{-2\kappa x/\sigma^2}.$$

(d) For the diffusion X satisfying

$$X_t = X_0 + \int_0^t \kappa(\theta - X_u) du + \int_0^t \sigma \sqrt{X_u} dB_u, \qquad (2)$$

let $T_0 = \inf\{t \ge 0 : X_t = 0\}.$

By considering the exit probability from the interval (ϵ,b) as $\epsilon \to 0$ determine conditions on the parameters for which the process cannot reach the origin in that $P^x(T_0 < \infty) = 0$ for all x > 0.

(d) A: Let $T_a = \inf\{t \geq 0 : X_t = a\}$. Then

$$\mathbb{P}^{x}[T_{\epsilon} < T_{b}] = \frac{S(b) - S(x)}{S(b) - S(\epsilon)} = \frac{\int_{x}^{b} y^{-2\kappa\theta/\sigma^{2}} e^{2\kappa y/\sigma^{2}} dy}{\int_{\epsilon}^{b} y^{-2\kappa\theta/\sigma^{2}} e^{2\kappa y/\sigma^{2}} dy}.$$

(d) A: Let $T_a = \inf\{t \geq 0 : X_t = a\}$. Then

$$\mathbb{P}^{\mathsf{x}}[T_{\epsilon} < T_b] = \frac{S(b) - S(x)}{S(b) - S(\epsilon)} = \frac{\int_{x}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy}{\int_{\epsilon}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy}.$$

We have $\int_{\epsilon}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy \to_{\epsilon \to 0} \infty$ if and only if $2\kappa\theta/\sigma^2 \ge 1$.

(d) A: Let $T_a = \inf\{t \geq 0 : X_t = a\}$. Then

$$\mathbb{P}^{\mathsf{x}}[T_{\epsilon} < T_b] = \frac{S(b) - S(\mathsf{x})}{S(b) - S(\epsilon)} = \frac{\int_{\mathsf{x}}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy}{\int_{\epsilon}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy}.$$

We have $\int_{\epsilon}^{b} y^{-2\kappa\theta/\sigma^2} e^{2\kappa y/\sigma^2} dy \to_{\epsilon\to 0} \infty$ if and only if $2\kappa\theta/\sigma^2 \ge 1$.

Therefore
$$\mathbb{P}^x[T_0 < T_b] = \lim_{\epsilon \to 0} \mathbb{P}^x[T_\epsilon < T_b] = 0$$
 if and only if $2\kappa \theta \ge \sigma^2$.

Therefore
$$\mathbb{P}^x[T_0<\infty]=\mathbb{P}^x[\cup_{b=1}^\infty\{T_0< T_b\}]=0$$
 if and only if $2\kappa\theta\geq\sigma^2$.