C8.2 Stochastic Analysis and PDEs 2018 Q2

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

2. (a) Let X be a diffusion process taking values in \mathbb{R}^d satisfying the stochastic differential equation

$$\mathrm{d}X_t = b(X_t)\,\mathrm{d}t + \sigma(X_t)\,\mathrm{d}W_t;$$

where $b = (b_i)_{i=1}^d, (\sigma_{ij})_{i,j=1}^d$ and $b_i, \sigma_{ij} \colon \mathbb{R} \to \mathbb{R}$ for $1 \le i, j \le d$ are Lipschitz continuous functions of linear growth and W is a *d*-dimensional Brownian motion. Let $a(x) = \sigma(x)\sigma^{\mathrm{T}}(x)$.

- (a) (i) Define
- (1) the martingale problem M(a, b) for X. Definition 3.11

- (a) (i) Define
- (1) the martingale problem M(a, b) for X.
- Definition 3.11
- (2) the martingale problem for the infinitesimal generator A of X. Definition 3.2

(a) (i) Define

(1) the martingale problem M(a, b) for X. Definition 3.11

(2) the martingale problem for the infinitesimal generator A of X. Definition 3.2

(a) (ii) For d = 1, show that a solution to the martingale problem for A is a solution to M(a, b).

Lemma 3.13

(a) (iii) State conditions under which a sequence of discrete time Markov chains X^h with transition kernel $\pi_h(x, dy)$, taking values in a sequence of state spaces $E^h \subset \mathbb{R}^d$, will converge weakly to a diffusion process X satisfying the martingale problem M(a, b), taking values in \mathbb{R}^d as $h \to 0$.

(a) (iii) State conditions under which a sequence of discrete time Markov chains X^h with transition kernel $\pi_h(x, dy)$, taking values in a sequence of state spaces $E^h \subset \mathbb{R}^d$, will converge weakly to a diffusion process X satisfying the martingale problem M(a, b), taking values in \mathbb{R}^d as $h \to 0$.

Theorem 4.12 A: Define $K_h(x, dy) = \frac{1}{h}\pi_h(x, dy)$ and for $x \in E^h$, $1 \le i, j \le d, \epsilon > 0$,

$$\begin{aligned} a_{ij}^{h}(x) &= \int_{|y-x| \le 1} (y_i - x_i)(y_j - x_j) \mathcal{K}_h(x, \mathrm{d}y) \\ b_i^{h}(x) &= \int_{|y-x| \le 1} (y_i - x_i) \mathcal{K}_h(x, \mathrm{d}y) \\ \Delta_{\epsilon}^{h}(x) &= \mathcal{K}_h(x, B^c(x, \epsilon)). \end{aligned}$$

(a) (iii) A: (continued)

Suppose that

(1) for all
$$R > 0$$
, $\epsilon > 0$, and $1 \le i, j \le d$
$$\lim_{h \to 0} \sup_{|x| \le R} |a_{ij}^h(x) - a_{ij}(x)| + |b_i^h(x) - b_i(x)| + \Delta_{\epsilon}^h(x) = 0 ,$$

・ロト・4日ト・4日ト・4日・9000

(a) (iii) A: (continued)

Suppose that

(1) for all
$$R > 0$$
, $\epsilon > 0$, and $1 \le i, j \le d$

$$\lim_{h \to 0} \sup_{|x| \le R} |a_{ij}^h(x) - a_{ij}(x)| + |b_i^h(x) - b_i(x)| + \Delta_{\epsilon}^h(x) = 0,$$
(2) and $X_0^h \to x_0$.

・ロト・4日ト・4日ト・4日・9000

(a) (iii) A: (continued)

Suppose that

(1) for all
$$R > 0$$
, $\epsilon > 0$, and $1 \le i, j \le d$

$$\lim_{h \to 0} \sup_{|x| \le R} |a_{ij}^h(x) - a_{ij}(x)| + |b_i^h(x) - b_i(x)| + \Delta_{\epsilon}^h(x) = 0 ,$$
(2) and $X_0^h \to x_0$.

Then $X^h
ightarrow_{h
ightarrow 0} X$ weakly.

2. (b) A discrete time simple random walk $Y^h = \{Y_n^h : n \in \mathbb{N}\}$ on $E_h = \sqrt{h}\mathbb{Z}^d$ has transition probabilities

$$P(Y_{n+1}^h = x \pm \sqrt{hke_i} \mid Y_n^h = x) = \frac{1}{2d}p(k), \quad \forall x \in E_h,$$

where e_i are unit vectors in the e_i direction and $\{p(k) : k \in \mathbb{Z}_+\}$ is a probability distribution on \mathbb{Z}_+ with mean 1; finite variance

$$\sigma^2 = \sum_{k=0}^{\infty} (k-1)^2 p(k)$$

and finite fourth moment.

Show that Y^h will converge weakly to a suitable constant time change of Brownian motion in \mathbb{R}^d .

In the notation of (a)(iii)

 $b_i^h(x) = 0$ by symmetry

In the notation of (a)(iii)

$$b_i^h(x) = 0$$
 by symmetry
 $a_{ij}^h(x) = 0$ if $i \neq j$ by symmetry

$$b_i^h(x) = 0 \quad \text{by symmetry}$$

$$a_{ij}^h(x) = 0 \quad \text{if } i \neq j \text{ by symmetry}$$

$$a_{ii}^h(x) = \frac{1}{h} \frac{1}{d} \mathbb{E}[(\sqrt{h}Z)^2 \mathbf{1}_{Z \leq 1/\sqrt{h}}] = \frac{1}{h} \frac{1}{d} \sum_{k=0}^{1/\sqrt{h}} (\sqrt{h}k)^2 p(k)$$

$$\rightarrow_{h \to 0} \frac{1}{d} (\sigma^2 + 1)$$

$$\begin{split} b_i^h(x) &= 0 \quad \text{by symmetry} \\ a_{ij}^h(x) &= 0 \quad \text{if } i \neq j \text{ by symmetry} \\ a_{ii}^h(x) &= \frac{1}{h} \frac{1}{d} \mathbb{E}[(\sqrt{h}Z)^2 \mathbf{1}_{Z \leq 1/\sqrt{h}}] = \frac{1}{h} \frac{1}{d} \sum_{k=0}^{1/\sqrt{h}} (\sqrt{h}k)^2 p(k) \\ &\rightarrow_{h \to 0} \frac{1}{d} (\sigma^2 + 1) \\ \Delta_{\epsilon}^h(x) &= \frac{1}{h} \mathbb{P}[\sqrt{h}Z > \epsilon] \end{split}$$

$$b_i^h(x) = 0 \quad \text{by symmetry}$$

$$a_{ij}^h(x) = 0 \quad \text{if } i \neq j \text{ by symmetry}$$

$$a_{ii}^h(x) = \frac{1}{h} \frac{1}{d} \mathbb{E}[(\sqrt{h}Z)^2 \mathbf{1}_{Z \leq 1/\sqrt{h}}] = \frac{1}{h} \frac{1}{d} \sum_{k=0}^{1/\sqrt{h}} (\sqrt{h}k)^2 \rho(k)$$

$$\rightarrow_{h \to 0} \frac{1}{d} (\sigma^2 + 1)$$

$$\Delta_{\epsilon}^h(x) = \frac{1}{h} \mathbb{P}[\sqrt{h}Z > \epsilon] \leq \frac{1}{h} h^2 \epsilon^{-4} \mathbb{E}[Z^4] \rightarrow_{h \to 0} 0.$$

$$b_i^h(x) = 0 \quad \text{by symmetry}$$

$$a_{ij}^h(x) = 0 \quad \text{if } i \neq j \text{ by symmetry}$$

$$a_{ii}^h(x) = \frac{1}{h} \frac{1}{d} \mathbb{E}[(\sqrt{hZ})^2 \mathbf{1}_{Z \leq 1/\sqrt{h}}] = \frac{1}{h} \frac{1}{d} \sum_{k=0}^{1/\sqrt{h}} (\sqrt{hk})^2 p(k)$$

$$\rightarrow_{h \to 0} \frac{1}{d} (\sigma^2 + 1)$$

$$\Delta_{\epsilon}^h(x) = \frac{1}{h} \mathbb{P}[\sqrt{hZ} > \epsilon] \leq \frac{1}{h} h^2 \epsilon^{-4} \mathbb{E}[Z^4] \rightarrow_{h \to 0} 0.$$

Applying (a)(iii), $Y_t^h \rightarrow_{h \rightarrow 0} \sqrt{\frac{1}{d}(\sigma^2 + 1)}B_t \sim B_{\frac{1}{d}(\sigma^2 + 1)t}$.

(c) Now take d = 1 and consider a random walk in which

$$P(Y_{n+1}^{h} = x + \sqrt{h} | Y_{n}^{h} = x) = \frac{1}{2}(1 + \mu h^{\alpha}),$$
$$P(Y_{n+1}^{h} = x - \sqrt{h} | Y_{n}^{h} = x) = \frac{1}{2}(1 - \mu h^{\alpha}),$$

where μ, α are positive constants.

(i) Let $\alpha = 1/2$. Show that the limiting process is a Brownian motion with drift.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \frac{1}{2} \left(1 + \mu \sqrt{h} \right) - \sqrt{h} \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = \mu$$

・ロト < 団ト < 巨ト < 巨ト 三 のへで

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \frac{1}{2} \left(1 + \mu \sqrt{h} \right) - \sqrt{h} \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = \mu$$

and

$$a^h(x)=rac{1}{h}\Big(hrac{1}{2}\Big(1+\mu\sqrt{h}\Big)+hrac{1}{2}\Big(1-\mu\sqrt{h}\Big)\Big)=1$$

・ロト・4日ト・4日ト・4日・9000

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \frac{1}{2} \left(1 + \mu \sqrt{h} \right) - \sqrt{h} \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = \mu$$

and

$$a^{h}(x) = \frac{1}{h} \left(h \frac{1}{2} \left(1 + \mu \sqrt{h} \right) + h \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = 1$$

$$(x) = 0 \text{ if } \sqrt{h} < \epsilon$$

Finally, $\Delta_{\epsilon}^{h}(x) = 0$ if $\sqrt{h} < \epsilon$.

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \frac{1}{2} \left(1 + \mu \sqrt{h} \right) - \sqrt{h} \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = \mu$$

and

$$a^{h}(x) = \frac{1}{h} \left(h \frac{1}{2} \left(1 + \mu \sqrt{h} \right) + h \frac{1}{2} \left(1 - \mu \sqrt{h} \right) \right) = 1$$

Finally, $\Delta^{h}_{\epsilon}(x) = 0$ if $\sqrt{h} < \epsilon$.

▲□▶▲□▶▲□▶▲□▶ ■ のへで

Applying (a)(iii), $X_t^h \rightarrow_{h \rightarrow 0} \mu t + B_t$.

(i) $\alpha < 1/2$; (ii) $\alpha > 1/2$.

(i) $\alpha < 1/2$; (ii) $\alpha > 1/2$.

A: We now have

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \left(\frac{1}{2} + \mu h^{\alpha} \right) - \sqrt{h} \left(\frac{1}{2} - \mu h^{\alpha} \right) \right) = \mu h^{\alpha - \frac{1}{2}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- (i) $\alpha < 1/2$; (ii) $\alpha > 1/2$.
- A: We now have

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \left(\frac{1}{2} + \mu h^{\alpha} \right) - \sqrt{h} \left(\frac{1}{2} - \mu h^{\alpha} \right) \right) = \mu h^{\alpha - \frac{1}{2}}.$$

As before, $a^h(x) = 1$ and $\Delta^h_{\epsilon}(x) = 0$ if $\sqrt{h} < \epsilon$.

- (i) $\alpha < 1/2$; (ii) $\alpha > 1/2$.
- A: We now have

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \left(\frac{1}{2} + \mu h^{\alpha} \right) - \sqrt{h} \left(\frac{1}{2} - \mu h^{\alpha} \right) \right) = \mu h^{\alpha - \frac{1}{2}}.$$

As before, $a^h(x) = 1$ and $\Delta^h_{\epsilon}(x) = 0$ if $\sqrt{h} < \epsilon$.

Therefore, if

(ii) lpha>1/2, then $b^h(x)
ightarrow 0$, thus $X^h_t
ightarrow B_t$

- (i) $\alpha < 1/2$; (ii) $\alpha > 1/2$.
- A: We now have

$$b^{h}(x) = \frac{1}{h} \left(\sqrt{h} \left(\frac{1}{2} + \mu h^{\alpha} \right) - \sqrt{h} \left(\frac{1}{2} - \mu h^{\alpha} \right) \right) = \mu h^{\alpha - \frac{1}{2}}$$

As before, $a^h(x) = 1$ and $\Delta^h_{\epsilon}(x) = 0$ if $\sqrt{h} < \epsilon$.

Therefore, if

(ii)
$$lpha>1/2$$
, then $b^h(x) o 0$, thus $X^h_t o B_t$

(i) $\alpha < 1/2$, then $b^h(x) \to \infty$ and thus X^h will not converge. However $h^{1/2-\alpha}X_t^h \to \mu t$, uniform motion to the right.