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2. (a) Let X be a di�usion process taking values in Rd satisfying the

stochastic di�erential equation

dXt = b(Xt) dt + σ(Xt) dWt ;

where b = (bi )
d
i=1
, (σij)

d
i ,j=1

and bi , σij : R→ R for 1 ≤ i , j ≤ d are

Lipschitz continuous functions of linear growth and W is a d-dimensional

Brownian motion. Let a(x) = σ(x)σT(x).



(a) (i) De�ne

(1) the martingale problem M(a, b) for X .

De�nition 3.11

(2) the martingale problem for the in�nitesimal generator A of X .

De�nition 3.2

(a) (ii) For d = 1, show that a solution to the martingale problem for A is

a solution to M(a, b).

Lemma 3.13
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(a) (iii) State conditions under which a sequence of discrete time Markov

chains X h with transition kernel πh(x , dy), taking values in a sequence of

state spaces Eh ⊂ Rd , will converge weakly to a di�usion process X
satisfying the martingale problem M(a, b), taking values in Rd as h→ 0.

Theorem 4.12 A: De�ne Kh(x , dy) = 1

hπh(x , dy) and for x ∈ Eh,

1 ≤ i , j ≤ d , ε > 0,

ahij(x) =

∫
|y−x |≤1

(yi − xi )(yj − xj)Kh(x , dy)

bhi (x) =

∫
|y−x |≤1

(yi − xi )Kh(x , dy)

∆h
ε (x) = Kh(x ,Bc(x , ε)).
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(a) (iii) A: (continued)

Suppose that

(1) for all R > 0, ε > 0, and 1 ≤ i , j ≤ d

lim
h→0

sup
|x |≤R

|ahij(x)− aij(x)|+ |bhi (x)− bi (x)|+ ∆h
ε (x) = 0 ,

(2) and X h
0
→ x0.

Then X h →h→0 X weakly.
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2. (b) A discrete time simple random walk Y h = {Y h
n : n ∈ N} on

Eh =
√
hZd has transition probabilities

P(Y h
n+1 = x ±

√
hkei |Y h

n = x) =
1

2d
p(k), ∀x ∈ Eh,

where ei are unit vectors in the ei direction and {p(k) : k ∈ Z+} is a
probability distribution on Z+ with mean 1; �nite variance

σ2 =
∞∑
k=0

(k − 1)2p(k)

and �nite fourth moment.

Show that Y h will converge weakly to a suitable constant time change of

Brownian motion in Rd .



(b) A: Let Z be random variable on Z+ with law p. Then Y h is the

symmetric random walk on
√
hZd with step size ∼

√
hZ .

In the notation of (a)(iii)

bhi (x) = 0 by symmetry

ahij(x) = 0 if i 6= j by symmetry

ahii (x) =
1

h

1

d
E[(
√
hZ )21Z≤1/

√
h] =

1

h

1

d

1/
√
h∑

k=0

(
√
hk)2p(k)

→h→0

1

d
(σ2 + 1)

∆h
ε (x) =

1

h
P[
√
hZ > ε] ≤ 1

h
h2ε−4E[Z 4]→h→0 0.

Applying (a)(iii), Y h
t →h→0

√
1

d (σ2 + 1)Bt ∼ B 1

d
(σ2+1)t .
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(c) Now take d = 1 and consider a random walk in which

P(Y h
n+1 = x +

√
h |Y h

n = x) =
1

2
(1 + µhα),

P(Y h
n+1 = x −

√
h |Y h

n = x) =
1

2
(1− µhα),

where µ, α are positive constants.

(i) Let α = 1/2. Show that the limiting process is a Brownian motion with

drift.



(c)(i) A: In the notation of (a)(iii), since α = 1

2
,

bh(x) =
1

h

(√
h
1

2

(
1 + µ

√
h
)
−
√
h
1

2

(
1− µ

√
h
))

= µ

and

ah(x) =
1

h

(
h
1

2

(
1 + µ

√
h
)

+ h
1

2

(
1− µ

√
h
))

= 1

Finally, ∆h
ε (x) = 0 if

√
h < ε.

Applying (a)(iii), X h
t →h→0 µt + Bt .
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(c)(ii) Discuss any possible limiting processes obtained as we let h→ 0 for

the cases:

(i) α < 1/2;
(ii) α > 1/2.

A: We now have

bh(x) =
1

h

(√
h
(1
2

+ µhα
)
−
√
h
(1
2
− µhα

))
= µhα−

1

2 .

As before, ah(x) = 1 and ∆h
ε (x) = 0 if

√
h < ε.

Therefore, if

(ii) α > 1/2, then bh(x)→ 0, thus X h
t → Bt

(i) α < 1/2, then bh(x)→∞ and thus X h will not converge. However

h1/2−αX h
t → µt, uniform motion to the right.
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