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2. (a) Let X be a diffusion process taking values in R satisfying the
stochastic differential equation

where b= (b;){_, (0;)f;_; and bj,0: R = R for 1 <i,j < d are

Lipschitz continuous functions of linear growth and W is a d-dimensional
Brownian motion. Let a(x) = o(x)o " (x).



(a) (i) Define
(1) the martingale problem M(a, b) for X.
Definition 3.11
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(2) the martingale problem for the infinitesimal generator A of X.

Definition 3.2



(a) (i) Define
(1) the martingale problem M(a, b) for X.
Definition 3.11

(2) the martingale problem for the infinitesimal generator A of X.

Definition 3.2

(a) (ii) For d =1, show that a solution to the martingale problem for A is
a solution to M(a, b).

Lemma 3.13



(a) (iii) State conditions under which a sequence of discrete time Markov
chains X" with transition kernel 7p,(x, dy), taking values in a sequence of
state spaces E" ¢ RY, will converge weakly to a diffusion process X

satisfying the martingale problem M(a, b), taking values in RY as h — 0.



(a) (iii) State conditions under which a sequence of discrete time Markov
chains X" with transition kernel 7p,(x, dy), taking values in a sequence of
state spaces E" ¢ RY, will converge weakly to a diffusion process X

satisfying the martingale problem M(a, b), taking values in RY as h — 0.

Theorem 4.12 A: Define Kj(x,dy) = £mn(x,dy) and for x € E",
1<i,j<d e>0,

h = i — X i — Xj X
00 = [ = )Kie )

hiyy — Kl x
bi(x) = /ym(y, K, dy)

Af(x) = Kp(x, B(x,¢)).



(a) (iii) A: (continued)
Suppose that
(1) forall R>0,e>0,and1<i,j<d

lim sup |aji(x) — 2;i(x)| + |6 (x) = bi(x)| + Al(x) =0,
—Y|x|<R
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lim sup |aji(x) — 2;i(x)| + |6 (x) = bi(x)| + Al(x) =0,
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(2) and XJ — xo.



(a) (iii) A: (continued)
Suppose that
(1) forall R>0,e>0,and1<i,j<d

lim sup |aji(x) — a;(x)| + b} (x) -
h—0 |x|<R

(2) and XJ — xo.

Then X" —4_0 X weakly.

bi(x)| + Al(x) =

0,



2. (b) A discrete time simple random walk Y" = {Y)/: n c N} on
E, = VhZ9 has transition probabilities

P(Yn+1 =Xx=* \/>kel ‘ Yh = X) (k), Vx € Ep,

2d

where e; are unit vectors in the e; direction and {p(k): k € Z,} is a
probability distribution on Z, with mean 1; finite variance

= Z(k _
k=0

and finite fourth moment.

Show that Y will converge weakly to a suitable constant time change of
Brownian motion in RY.



(b) A: Let Z be random variable on Z with law p. Then Y is the
symmetric random walk on v/hZ? with step size ~ vVhZ.
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(b) A: Let Z be random variable on Z with law p. Then Y is the
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Alx) = TPIVAZ >
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(b) A: Let Z be random variable on Z with law p. Then Y is the
symmetric random walk on v/hZ? with step size ~ vVhZ.

In the notation of (a)(iii)

bi(x) =0 by symmetry

1

aU(x) =0 if i #j by symmetry

Ma

A) = 3 ZE(VAZP 1,0y 5] = za
k=0

1
—h—0 3(0'2 +1)

Ah(x) = fp[f Z>d< h2 ~4E[Z%] —p_0 0.

Applying (a)(iii), Y/ —h—0 /(02 +1)Be ~ Bi(2 ).



(c) Now take d =1 and consider a random walk in which

1
P(Yiq =x+Vh| Y] =x)= 5(1+Mha)7

1
P(Vfis == VA Y} = x) = 30— ),

where p, a are positive constants.

(i) Let & = 1/2. Show that the limiting process is a Brownian motion with
drift.



(c)(i) A: In the notation of (a)(iii), since o = %

o10) = (VA (1 E) VB 1)) =



(c)(i) A: In the notation of (a)(iii), since a = 3,
9~ H(VRL(1 4 98) - R R) -

and

a(x) = %(h%(l —|—u\fh> + h%(l — ,m/ﬁ)) =1



(c)(i) A: In the notation of (a)(iii), since o = %

bh(x) = E(\/EE<1 +u\/ﬁ) - x/E%(l - uﬁ)) -

h 2

and

a(x) = %(h%(l —|—u\fh> + h%(l — ,m/ﬁ)) =1

Finally, Af(x) =0if Vh <e.



(c)(i) A: In the notation of (a)(iii), since o = %

bh(x) = E(\/EE<1 +u\/ﬁ) - x/E%(l - mfh)) -

h 2

and

a(x) = %(h%(l —|—u\fh> + h%(l — ,m/ﬁ)) =1

Finally, Af(x) =0if Vh <e.

Applying (a)(iii), X' =0 pt + B:.



(c)(ii) Discuss any possible limiting processes obtained as we let h — 0 for
the cases:

(i) a<1/2;

(i) a > 1/2.
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A: We now have

(ﬁ(— + uh“) - \/E(1 - Mh“)) — bt
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the cases:
(i) a<1/2;
(i) a > 1/2.

A: We now have

)= (VRS ) Vi3 - )) =t

As before, a"(x) =1 and A?(x) = 0if Vh < e.

Therefore, if
(i) a > 1/2, then b"(x) — 0, thus X/ — B;



(c)(ii) Discuss any possible limiting processes obtained as we let h — 0 for
the cases:

(i) a<1/2;

(i) a > 1/2.

A: We now have

)= (VRS ) Vi3 - )) =t

As before, a"(x) =1 and A?(x) = 0if Vh < e.

Therefore, if
(i) a > 1/2, then b"(x) — 0, thus X/ — B;

(i) @ < 1/2, then b"(x) — oo and thus X" will not converge. However
hY/2=a X — put, uniform motion to the right.



