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3.(a) Let D(0, r) be the ball of radius r about the origin in R2. Let B be a

Brownian motion in R2 and consider the sequence of stopping times

de�ned by T0 = 0 and for all k ≥ 1

Sk = inf{t > Tk−1 : Bt ∈ D(0, r)},
Tk = inf{t > Sk : Bt /∈ D(0, 2r)}.

(i) Show that E0T1 <∞ and hence that the random variables Tk are �nite

almost surely.



(a)(i) A: Since B1 − B0 is a Gaussian random variable, for all x ∈ R2

P[|B1 − B0| ≤ 4r | B0 = x ] = q < 1 .

Hence,

Px [T1 > n] ≤ Px [∩nk=1
{|Bk − Bk−1| ≤ 4r}]

=
n∏

k=1

Px [|Bk − Bk−1| ≤ 4r ] (independence of increments)

= qn .

Therefore

Ex [T1] =

∫ ∞
0

Px [T1 > r ] dr ≤
∞∑
n=0

Px [T1 > n] <∞ .
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(a)(i) A: (continued) To show Tk <∞ a.s. for all k ≥ 1, recall that for

τr = inf{t ≥ 0 : |Bt | = r} and r ≤ |x | ≤ R

Px [τr < τR ] =
logR − log |x |
logR − log r

.

Therefore Px [τr <∞] = limR→∞ Px [τr < τR ] = 1 for all x ∈ R2.

By the strong Markov property, P[Sk <∞ | BTk−1
] = 1, and by the

previous part P[Tk <∞ | BSk ] = 1.
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(a)(ii) Show that the random variables∫ Tk

Sk

ID(0,r)(Bt) dt

are i.i.d. and positive.

A: The random variables
∫ Tk

Sk
ID(0,r)(Bt) dt are

clearly positive (i.e. non-negative),

independent by strong Markov property,

identically distributed by rotation invariance.
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(a)(iii) Let U be a bounded domain in R2 and let x ∈ R2. Show that the

occupation time of the set U is in�nite in that∫ ∞
0

IU(Bt) dt =∞, Px − a.s.

A: We can �nd x ∈ U and r > 0 such that D(x , r) ⊂ U. By translation

invariance, we can assume x = 0.

The random variables
∫ Tk

Sk
ID(0,r)(Bt) dt are i.i.d. and non-negative by (ii).

Moreover,
∫ Tk

Sk
ID(0,r)(Bt) dt is not a.s. zero, hence

E[

∫ Tk

Sk

ID(0,r)(Bt) dt] > 0 .
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(a)(iii) A: (continued) Therefore, by the strong law of large numbers

lim
N→∞

1

N

N∑
k=1

∫ Tk

Sk

ID(0,r)(Bt) dt > 0 .

Thus, a.s.
∑∞

k=1

∫ Tk

Sk
ID(0,r)(Bt) dt =∞ and

∫ ∞
0

IU(Bt) dt ≥
∞∑
k=1

∫ Tk

Sk

ID(0,r)(Bt) dt =∞ .
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(b) Let u : R+ × R2 → R satisfy the partial di�erential equation (PDE)

∂u

∂t
=

1

2
∆u + g(t, x)u, x ∈ R2,

u(x , 0) = u0(x), ∀x ∈ R2,

where u0 is a bounded integrable function from R2 to R and

g : [0,∞)× R2 → R is a bounded integrable function.

Prove that if there is a solution u to the PDE, which is bounded on

compact time intervals, then it can be expressed in terms of Brownian

motion as

u(t, x) = Ex

(
exp(

∫ t

0

g(t − s,Xs) ds)u0(Xt)

)
.

Theorem 7.25



(c) Let v : R+ × R2 → R satisfy the PDE

∂v

∂t
=

1

2
∆v − αx · ∇v + g(x)v + h(x), x ∈ R2,

v(x , 0) = v0(x), ∀x ∈ R2,

where g , h, v0 are bounded integrable functions from R2 to R and α is a

constant.

(i) Derive a representation for v(t, x) in terms of a suitable di�usion

process X .



(c)(i) A: For Brownian motion W : [0,∞)→ R2, consider the solution to

dXs = −αXs ds + dWs .

For t ≥ 0 �xed and 0 ≤ s ≤ t de�ne

Mt
s = v(t − s,Xs)e

∫ s
0
g(Xu) du +

∫ s

0

h(Xr )e
∫ r
0
g(Xu) du dr .

By Itô's formula, denoting Ys = e
∫ s
0
g(Xu) du,

dMt
s = Ys

(
− ∂v

∂s
(t − s,Xs) ds +

2∑
i=1

∂v

∂xi
(t − s,Xs) dX i

s

+
1

2

2∑
i ,j=1

∂2v

∂xi∂xj
(t − s,Xs) d〈X i ,X j〉s

+ v(t − s,Xs)g(Xs) ds + h(Xs) ds
)
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(c)(i) A: (continued) Since v solves the given PDE,

dMt
s = Ys

2∑
i=1

∂v

∂x
(t − s,Xs) dW i

s .

Thus s 7→ Mt
s is a local martingale for s ∈ [0, t).

We may suppose that E[
∫ t
0
| ∂v∂xi (t − s,Xs)|2] <∞.

Therefore Mt
s is bounded in L2 and thus converges to a limit a.s. and in L1

as s → t.

Hence, by continuity of v ,

v(t, x) = E[Mt
0 | X0 = x ] = E[Mt

t | X0 = x ]

= E
[
v0(Xt)e

∫ t
0
g(Xu) du +

∫ t

0

h(Xr )e
∫ r
0
g(Xu)du dr | X0 = x

]
.
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(c)(ii) Let Ct =
∫ t
0
ID(0,1)(Xs)ds and let θ ≥ 0. Find a PDE for

L(t, x) = Ex (exp(−θCt)), the Laplace transform of the occupation time of

the unit ball in R2 up to time t by the di�usion process X .

A: Take g = −θID(0,1), h = 0, and v0 = 1.

By part (ii), the solution to

∂v

∂t
=

1

2
∆v − αx · ∇v +−θID(0,1)(x)v , x ∈ R2,

v(x , 0) = 1, ∀x ∈ R2,

is given by

v(t, x) = E
[

exp
(
− θ

∫ t

0

ID(0,1)(Xs) ds
)]

= L(t, x) .

Therefore L(t, x) solves the same PDE as v .
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