
C5.9 Mathematical Mechanical Biology

Problem Sheet 3: Suggested answers and hints
Derek Moulton

TO BE HANDED IN BY FRIDAY OF WEEK 7: questions 6, 7, 8, 9 from
Module II and questions 1 - 2 from Module III

Module II

Question 6 - Fixed Volume/Pressure Constraint

We are asked to show that for a membrane under fixed pressure, P , or fixed volume, V , the
shape equation, under the small gradient approximation, is given by:

κ44h− γ4h = P. (1)

The idea is that the total energy of the membrane configuration does not only have a
contribution from bending and stretching, as derived in the notes:

ε2 =
1

2

¨
dxdy

[
κ (4h)2 + γ (∇h)2] , (2)

but also a contribution from the work done by pressure, given by:

εP = −PV = −P
ˆ

Ω

dV, (3)

. where the pressure is assumed to be constant and Ω is the integral over the volume of the
membrane. In the case of a fixed volume V = V0, we would add the following contribution
to the energy

−P (

ˆ

Ω

dV − V0), (4)

where the constant P (still a pressure!) is playing the role of a Lagrange multiplier enforcing
the fixed volume. Since V0 is constant both scenarios are identical in the analysis below.

Using the hint from the problem sheet, we introduce the divergence of the position vector,
r = (x, y, h(x, y)), into equation (3):

εP = −P
ˆ

Ω

dV = −P
3

ˆ

Ω

∇ · rdV = −P
3

ˆ

Σ

r · ndS, (5)

where we have used the divergence theorem and are now finding the integral over the area
of the membrane, Σ.

The unit normal vector is given by:

n =
1√

1 + (∇h)2
(−hx,−hy, 1) , (6)
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so evaluating in the Monge parametrization, we find:

εP = · · · = P

3

¨
dxdy {r2 · ∇h− h} , (7)

where r2 = (x, y).
The problem now becomes a matter of minimizing the functional:

εTotal = ε2 + εP =
1

2

¨
dxdy

[
κ (4h)2 + γ (∇h)2]+

P

3

¨
dxdy {r2 · ∇h− h} . (8)

We minimize εP by considering the first variation with respect to h:

δεP =
P

3

¨
dxdy {r2 · ∇ (δh)− δh} , (9)

To remove the ∇ (δh) term, we use the identity ∇ · (r2δh) = (∇ · r2) δh+ r2 · ∇ (δh)... and
the fact that ∇ · r2 = 2 from our previous definition.

To minimize ε2:

δε2 =
1

2

¨
dxdy {2κ4h4 (δh) + 2γ∇h · ∇ (δh)} , (10)

use a similar trick by substituting

∇ · (4h∇ (δh)) = ∇4h · ∇ (δh) +4h4 (δh)

and
∇ · (∇hδh) = 4hδh+∇h · ∇ (δh) ,

and one more identity (remember it’s all just integration by parts!)

∇ · (∇4(h)δh) = 44hδh+∇4h · ∇ (δh) .

Now combine it all and require that δεTotal = 0. You should end with the shape equation:

κ44h− γ4h = P, (11)

as required. Consider: what constraints or boundary conditions are needed?
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Question 7 - Shape Equation over a Step Function

We are asked to find the shape of a membrane that is hanging over a step-edge. To do this,
we work in 1D using the corresponding shape equation derived in lectures:

d4h

dx4
− 1

λ2

d2h

dx2
= 0, (12)

Now think about the correct boundary conditions, and then solving is straightforward...
There are two length scales in the problem: L and λ. Plot the solution for various values

of L and λ. What do you notice about the solution when L� λ? What about when λ� L?
What sort of energy is minimized in both scenarios?
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Question 8 - Pressure and Surface Tension of Cylindrical Vesicles

To begin with, let us consider the generalized energy functional for a membrane under
constant pressure:

ε =

ˆ

Σ

dS
[
γ + 2κ (H −H0)2 + κ̄KG

]
− P
ˆ

Ω

dV, (13)

where Σ is the surface of our membrane and Ω is its associated volume.
When dealing with a cylindrical surface, we find that the mean and Gaussian curvatures

are H = 1
2R

and KG = 0 respectively, where R is our radial coordinate. Where do these
results come from? What are the principal curvatures of a cylinder?

Taking this and the generalization that κ = 1, the energy functional becomes

ε =

ˆ

Σ

dS

[
γ + 2

(
1

2R
−H0

)2
]
− P
ˆ

Ω

dV. (14)

Now, using the parametrization in cylindrical coordinates (R, θ, z), you can exactly evaluate
these integrals...

For consideration: There is something that we are neglecting in our energy functional.
What part of the cylindrical vesicle aren’t we including? What assumption about our vesicle
can we make for the above to hold?

Now, minimise the energy as a function of radius and length...
You should find that the energy minimisation is independent of the length L. Why?
Finally, you can solve for P and γ giving equations of the form P = P (R), γ = γ(R).
As a sample, plotting P for H0 = 0.5 over R ∈ [0, 10] yields the following:
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In general, we find that P (R) has a maximum which occurs when R = 3
4H0

.
Is the possibility of an instability evident by this calculation and/or in the figure? Suppose

that we can control the pressure of this membrane, but we can’t control its radius (i.e. like
blowing up a cylindrical balloon). What happens as we continue to increase the pressure?
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Question 9 - The Sea Urchin

High pressure

Low pressure

Figure 1: The shape of a sea urchin is a balance between a pressure gradient and tension.

The assumptions in the problem are that pressure P = ρgz and that the tensions ts and
tφ are equal. Consider what this implies in the force balance equations:

d
ds

(rts) = r′(s)tφ, (15)
P = tsκs + tφκφ (16)

The boundary conditions are θ(0) = 0, r(0) = 0, z(0) = 2b, but due to the singularity
in θ′ we we need to expand this to define at s = ε. To do this, we use a ‘backwards’ Taylor
expansion, e.g.

r(0) = r(ε)− r′(ε)ε+O(ε2), . . .

Solutions for two different values of a are shown in the figure below. We see that for small
a, the shape is very squamous, while for large a it is nearly spherical, though much smaller
in size.

Figure 2:
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Module III

Question 1 - 1D Growing Rod in Gravity

We consider a vertical rod of constant density ρ in a gravitational field with strength g, and
which follows the growth law:

∂γ

∂t
= κγ (σ − σ?) . (17)

We first work out the stress that is created by the gravitational body force:

∂σ

∂S
= −ρg =⇒ σ = −ρgS, (18)

where we have used the boundary condition that no stress acts on the top-most end of our
rod (i.e. at S = 0). Why is the above differential equation with respect to S and not s or
S0?

Next, since γ is the growth stretch of our rod, we can relate the reference configuration
and the unstressed growth configuration by:

γ =
∂S

∂S0

=⇒ S =

S0ˆ

0

γdS0. (19)

Now differentiate this with respect to time and substituting the growth law and the form of
σ, and convert to the grown configuration dS. Integrating the result gives:

∂S

∂t
= −κ

[
ρgS2

2
+ σ?S

]
, (20)

which is a separable differential equation that can be solved and rearranged for S, giving

S(S0, t) =
−σ?β(S0)e−κσ

?t

ρg
2
β(S0)e−κσ?t − 1

, (21)

where β(S0) := S0

σ?+
ρgS0

2

to simplify the expression. In particular, the total grown reference

length is L(t) = S(L0, t), where L0 is the initial length, i.e. S0 ∈ [0, L0].
Now, turn to the constitutive relation, σ = E (α− 1), noting that α = ∂s/∂S:

σ = −ρgS = E

(
∂s

∂S
− 1

)
=⇒ s = −ρgS

2

2E
+ S, (22)

where we have used that s = 0 corresponds to S = 0. Thus we have an expression for s(S0, t)
and the total length satisfies l(t) = s(L0, t).

Taking t→∞ (and noting σ∗ < 0) then yields

l∞ ∼ −
ρg

2E

(
−2σ?

ρg

)2

− 2σ?

ρg
= −2σ?

ρg

(
1 +

σ?

E

)
, (23)

which is the required result.
Is this a realistic model?
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Question 2 - The Revenge of the 1D Growing Rod in Gravity

Here we consider a new growth law:

∂γ

∂t
= κγ (σ − σ?)H (S − (L−R))H (σ − σ?) , (24)

which confines growth to a region, R, at the bottom of the rod and also imposes that growth
only acts when the stress exceeds the homeostatic stress (i.e. when the rod is in tension
relative to the homeostatic compressive stress σ∗ < 0). Furthermore, the homeostatic stress
and the region of size R satisfy the inequality L−R < −σ?

ρg
, where L is the reference length

of the growing rod.
Following similar steps as in the previous problem, we get

∂L

∂t
= −κ

L̂

0

(ρgS − ρgS?)H (S − (L−R))H (σ − σ?) dS, (25)

where S? is the S coordinate associated with σ?.
Now consider the Heaviside functions, keeping in mind that the stress σ is a monotonically

decreasing function of S. The integral simplifies to

∂L

∂t
= −κρg

S?ˆ

L−R

(S − S?) dS. (26)

(Can you see why?)
Now integrate, separate variables, and integrate again to get

− 1

(L−R− S?)
+

1

(L0 −R− S?)
=
κρg

2
t, (27)

which can be solved for L(t).
Lastly, we can obtain an expression for the current length l(t) (following both growth and

loading) by integrating

α =
ds

dS
from S = 0 to L(t) and using the constitutive relation

σ = E(α− 1).

This leads to the relation:

l = L− ρgL2

2E
, (28)

in a similar manner as in the previous question.
The full expression for the current length is quite messy:

l =
1 + (R + S?)

(
1

L0−R−S? −
κρg
2
t
)

1
L0−R−S? −

κρg
2
t

− ρg

2E

1 + (R + S?)
(

1
L0−R−S? −

κρg
2
t
)

1
L0−R−S? −

κρg
2
t

2

, (29)
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however, considering the limit of t→∞, we find that:

l∞ ∼ (R + S?)− ρg

2E
(R + S?)2 = R− σ?

ρg
− ρg

2E

(
R− σ?

ρg

)2

. (30)
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