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Problem Sheet 4: Solutions
Derek Moulton

DUE ON FRIDAY OF WEEK 0 Trinity Term: questions 3 - 8 from Module III

Module III

Question 3 - Axon pulling.

The force balance reads
∂n3

∂S
+ f3 = 0 (1)

and the constitutive relation is
n3 = EA(α− 1) (2)

where α = ∂s/∂S. Since f3 = −k(s(S)− S), we can take an S derivative of (1) and use (2)
to get

∂2n3

∂S2
+
∂f3
∂S

=
∂2n3

∂S2
− k(α− 1) =

∂2n3

∂S2
− k

EA
n3 = 0. (3)

Due to the applied pulling tension, one boundary condition is

n3 = σ at S = L.

At S = 0, s = 0 and thus f3 = 0, which implies the other boundary condition is
∂n3

∂S
= 0 at S = 0.

Solving, we get

n3 =
σ cosh(S/a)

cosh(L/a)
. (4)

Note that the tension is an increasing function of arclength, taking maximum value at
the pulling end S = L.

If the growth stretch γ is known, the evolution of a material point initially at position S0

is given by

S(S0, t) =

ˆ S0

0

γdS0. (5)

Thus, for a general growth law of the form
∂γ

∂t
= γg(n3). (6)

we can write

∂tS(S0, t) =

ˆ S0

0

(∂tγ)dS0

=

ˆ S0

0

γg(n3)dS0

=

ˆ S

0

g(n3(S))dS. (7)
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Therefore, taking g = k̂(n3 − σ∗)H(n3 − σ∗) and inserting the explicit form (4) for the
tension, the equation for the velocity is

V = ∂tS = k̂H(S − S∗)
ˆ S

S∗

(
σL

cosh(S/a)

cosh(L/a)
− σ∗

)
dS

= k̂H(S − S∗)
[
σ∗(S∗ − S) + aσL

sinh(S/a)− sinh(S∗/a)

cosh(L/a)

]
, (8)

where S∗ = a arccosh( σ
∗

σL
cosh L

a
).
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Question 4 - Gravitropism plus autotropism.

Similarly to the purely gravitropism case in the notes, the kinematics of the stem is described
by

∂x

∂s
= sinφ (9)

∂y

∂s
= cosφ (10)

∂φ

∂s
= u2 (11)

∂u2

∂t
= −β sinφ− νu2 (12)

In the limit of small φ (nearly vertical), we expand sinφ ≈ φ, cosφ ≈ 1, which leads to the
single equation for x(s, t):

xsst = −βxs − νxss. (13)

This can be integrated once with s:

xst + βx+ νxs = c(t), (14)

and the function c(t) is determined from the boundary conditions

x(0) = 0, φ(0) = φ0 ⇒ xs(0, t) = φ0 ⇒ xst(0, t) = 0

from which we conclude c = νφ0 is a constant.
In completing the system for x, we also have initial condition x(s, 0) = φ0s, which comes

from an initially straight configuration, u2(s, 0) = 0.
To solve the full nonlinear system, the simplest method is to integrate the system in space

for a given curvature u2, and then update the curvature by discretising (12), i.e.

u2(s, t+ ∆t) = u2(s, t)−∆t(β sinφ(s, t)− νu2(s, t)).

A sample Mathematica code, Tropism.nb is available on the course website.

3



SOLUTIONS - TUTORS/TAs ONLY C5.9 Mathematical Mechanical Biology

Question 5 - Growing rod with diffusion.

The tricky aspect of this problem is being clear on the different configurations, in particular
the fact that the diffusion takes place in the current configuration.
(a) We are given that the growth rate is proportional to growth stretch and nutrient con-
centration. This suggests

∂γ

∂t
= Kγu

where K > 0 is a constant.
(b) The problem is symmetric with respect to the origin, so the solution for u is even and we
only look at the solution for s ≥ 0 (solutions for s > 0 or for both s < 0 and s > 0 are equally
valid). Since diffusion is fast compared to growth, the nutrient is always in equilibrium, and
thus satisfies

uss = Q/D,

which has solution
u = Qs2 + C1s+ C2.

One boundary condition is u = U at s = l. The other boundary condition depends on the
total length. Since the concentration cannot go below 0, there is a critical length l∗ beyond
which the nutrient will be zero over some region near the middle. For l < l∗, the second
constant is set by the behaviour at the origin where we have us = 0, that is C1 = 0, which
gives

u1 =
Q

2D
(s2 − l2) + U.

The critical length is the value of l such that u1|(s=0) = 0, that is l∗ =
√

2UD/Q, which
defines the penetration length.

For l > l∗, setting u = 0 and us = 0 (since there can be no flux at the point where the
concentration vanishes) at the point s = a leads to

u2 =

{
0, s < a,
Q
2D

(s− a)2 s > a,
(15)

where a is determined from u = U at s = l, giving

a = l − l∗.

Profiles for the nutrient concentration are shown in the Figure below.
(c) The current length is obtained from γ via

s =

ˆ s

0

γdS0.

Thus, the length evolves according to

∂ts =

ˆ s

0

∂tγ dS0 =

ˆ s

0

KγudS0 =

ˆ s

0

Ku(σ) dσ.

In particular, the length satisfies

∂tl =

ˆ l

0

Ku(σ) dσ.
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In the case l < l∗, we have

∂tl = K

ˆ l

0

Q

2D
(σ2 − l2) + U dσ

which can be integrated to give

∂tl = −KQ
3D

l3 +KUl.

In the asymptotic limit l� l∗, the l3 term is small and we get the approximate solution

l(t) ∼ L0 exp(KUt).

In the case l > l∗, we have

∂tl =
KQ

2D

ˆ l

a

(σ − a)2 dσ,

from which we get

∂tl =
KQ

2D
(l − a)3 =

2KU

3
l∗.

Thus,

l(t) = l∗ +
2KU

3
l∗(t− t∗),

where t∗ is the time at which l = l∗ (which we are not asked to work out here).
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Question 6 - Buckling of an infinite planar rod on foundation.

The full system of equations is

∂x

∂S
= α cos θ,

∂y

∂S
= α sin θ, (16)

∂F

∂S
+ f = 0,

∂G

∂S
+ g = 0, (17)

EI
∂2θ

∂S2
+ αG cos θ − αF sin θ = 0. (18)

Here, f and g are the x and y components of the foundation force

f =
h(∆)

γ∆
[(x− S/γ)ex + (y − y0)ey] .

Taking y0 = 0 and expanding h(∆) ≈ h(0) + h′(0)∆ = −Ek∆ (as in the lecture notes), we
can write

f = −Ek
γ

(x− S/γ), g = −Ek
γ
y.

These equations are supplemented by the constitutive law for tension

F cos θ +G sin θ = EA(α− 1),

where A is the cross sectional area. We use this last relationship to express α in terms of
F,G and θ in the equations above.

The first observation is that for γ > 1, there is a flat compressed solution, i.e. for which
θ = y = 0, and λ = αγ = 1, which implies α = 1/γ. This gives:

x(0) = S/γ, y(0) = θ(0) = G(0) = 0, F (0) = EA
1− γ
γ

. (19)

To find the critical value of γ where a bifurcation first occurs, we expand our 5 variables
in power series x = x(0) + εx(1) + O(ε2), y = y(0) + εy(1) + O(ε2), etc.

Notice that α expands as

α =
1

γ
+ ε

1

EA
F (1) + O(ε2).

Thus, since cos θ = 1 + O(ε2), and sin θ = εθ(1) + O(ε3), we get

dx(1)

dS
=
F (1)

EA
,
dF (1)

dS
=
Ek

γ
x(1),

which has solution x(1) = F (1) = 0. (One could also construct an exponential solution, but
this is inconsistent with the physical problem, as could be seen by considering imposing
boundary conditions on a finite domain, e.g. x(0) = 0, x(L) = L.)

We thus reduce the problem to a set of 3 linear equations

dy(1)

dS
=
θ(1)

γ
,

dG(1)

dS
= Ek

y(1)

γ
, (20)

γ2EI
d2θ(1)

dS2
+ EA(γ − 1)θ(1) + γG(1) = 0. (21)
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And taking two derivates across the third equation leads to a single fourth order differential
equation for θ(1)

d4θ(1)

dS4
+ 2a

d2θ(1)

dS2
+ b2θ(1) = 0, (22)

where

a =
A(γ − 1)

2Iγ2
, b =

√
k

Iγ3
, (23)

We now look for solutions of the form θ(1) ∼ eiωS, which gives the quartic equation

ω4 + 2aω2 + b2 = 0

from which we obtain the 4 roots

ω2
1 = a+

√
a2 − b2, ω2

2 = a−
√
a2 − b2. (24)

For non-damped oscillations to exist we require a ≥ b. The condition a = b thus gives the
first bifurcation condition for oscillatory modes on an infinite domain. Explicitly, it reads

A2(γ − 1)2 − 4Ikγ = 0. (25)

For a rod with circular cross section of radius r, we have A = πr2, I = πr4/4, and thus
solving for γ gives

γ = 1 +
k

2π
+

√
k(k + 4π)

2π
.
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Question 7 - The growing cuboid.

Since the block is isotropic and there is no load applied in the directions perpendicular to
growth, we have α1 = α2 =: α, which together with the incompressibility condition detA = 1
implies α3 = 1/α2. The rigid boundary condition along the e3-axis gives λ3 = 1, from which
we conclude α3 = γ, i.e. α = γ.

The Cauchy equations for the Cauchy tensor T = diag(t1, t2, t3) are identically satisfied
since the deformation is homogeneous. The constitutive equation, T = A∂W/∂A − pI
simplifies in component form to

t1 = αW1(α, α, α
−2)− p (26)

t2 = αW2(α, α, α
−2)− p (27)

t3 = α−2W3(α, α, α
−2)− p (28)

where Wi = ∂αi
W . Since t1 and t2 are constant and vanish at the boundary, these must be

identically zero. Thus we can solve for the homeostatic pressure, giving

p = αW2(α, α, α
−2).

Thus the stress generated during growth is

t3 =
1

γ2
W3(γ, γ, γ

−2)− γW2(γ, γ, γ
−2).

(Here we have used the fact that α = γ in the deformation.) Now introduce the auxiliary
function Ŵ (γ) = W (γ, γ, γ−2). Taking a derivative with chain rule gives

Ŵ ′(γ) = W1 +W2 −
2

γ3
W3.

Since W1 = W2 it follows that

γŴ ′(γ) = 2(γW1 −
2

γ2
W3),

and we obtain
t3 = −γ

2
Ŵ ′(γ)

as desired.
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Question 8 - Growing cylindrical tube.

The deformation gradient tensor, expressed in cylindrical coordinates, is F = diag(r′(R0), r/R0, ζ).
The elastic strain tensor is A = diag(αr, αθ, αz), and the growth tensor for the symmetric
growth is G = diag(γr, γθ, γz). Here γr corresponds to radial growth, γθ to circumferen-
tial growth and γz to axial growth – each of these may be constant or functions of R0,
but we assume that they are input to the problem. This, along with the assumption that
the tube remains cylindrical through the deformation, implies that the elastic stretches, i.e.
components of A, can also be functions of R0, but not θ. Since F = AG, we have

αr =
r′

γr
, αθ =

r

R0γθ
, αz =

ζ

γz
. (29)

Material incompressibility implies detA=1, that is αrαθαz = 1 which implies

rdr =
R0g(R0)

ζ
dR0, (30)

that is

r2 = a2 +
2

ζ

ˆ R0

A0

g(ρ)ρdρ (31)

where g(R0) = detG = γrγθγz.
The equilibrium conditions are given by the non-vanishing equation for the divergence of

the Cauchy stress:
dtr
dr

+
1

r
(tr − tθ) = 0, (32)

and the application of the boundary conditions. The radial inflation pressure P gives the
boundary condition

tr =

{
0, r = b,

−P r = a,

from which we obtain ˆ b

a

tθ − tr
r

dr = P,

while the axial load condition is

2π

ˆ b

a

tzr dr dθ = N.

The difficulty is that the bounds of the integrals a and b are not known – these must be
determined through the deformation! It is therefore simpler to reformulate these integrals
in the initial configuration. To do this we use (30) to convert to an integral over R0. If we
define

τ(R0; ζ, a) :=

ˆ R0

A0

tθ − tr
ζ r2(R̃0)

g(R̃0)R̃0dR̃0, (33)

φ(R0; ζ, a) := 2π

ˆ R0

A0

tz
ζ
g(R̃0)R̃0dR̃0, (34)
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then the two equations to find ζ and a as a function of P and N are

τ(B0; ζ, a) = P, (35)
φ(B0; ζ, a) = N, (36)

where r(R0) is given by (31).
We now turn to the constitutive law

tr = αr
∂W

∂αr
− p, tθ = αθ

∂W

∂αθ
− p, tz = αz

∂W

∂αz
− p. (37)

These enable us to write the stress components in terms of the elastic components, since W
is a given function of the αi, and the αi in turn can be expressed in terms of the unknowns
a and ζ. The problem is they also contain the unknown hydrostatic pressure p, so the trick
is to eliminate p from the integrals in τ and φ.

Considering τ first: clearly, we can write

tθ − tr = αθ
∂W

∂αθ
− αr

∂W

∂αr
;

then, combining this with the relationships

αr =
R0γθγz
r(R0)ζ

, αθ =
r(R0)

R0γθ
, αz =

ζ

γz
, (38)

the integrand of (33) is well defined with the only unknowns being the constants a and ζ.
(Keep in mind that we are imagining that the growth functions γi are given, therefore r(R0)
is known except for the constants a and ζ.)

In terms of expressing tz only in terms of a and ζ in the integrand for φ, one approach is
to note that the radial stress is obtained as the indefinite integral

tr(R0) = −P + τ(R0; ζ, a), (39)

Since this expression does not involve p, we can then eliminate p between tr and tz, to give

tz = tr − αr
∂W

∂αr
+ αz

∂W

∂αz
.

In principle, one could complete the calculation this way, but in practice it is very messy, as
the integral for φ involves the indefinite integral τ(R0; ζ, a) in the integrand!

A much better approach is as follows: Due to the incompressibility, detA = 1, we can
write

αr = α−1z α−1θ .

Then, defining

Ŵ (αθ, αz) = W (
1

αzαθ
, αθ, αz),

we can compute
∂Ŵ

∂αθ
= − 1

α2
θαz

∂W

∂αr
+
∂W

∂αθ
,
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and thus

αθ
∂Ŵ

∂αθ
= −αr

∂W

∂αr
+ αθ

∂W

∂αθ
.

Therefore, we can write

tθ − tr = αθ
∂Ŵ

∂αθ
.

Similarly,

tz − tr = αz
∂Ŵ

∂αz
.

Now, the big trick is to write
ˆ b

a

tzr dr =

ˆ b

a

r(tz − tr) + rtr dr.

The first term can be replaced by rαz
∂Ŵ
∂αz

, while we can integrate by parts on the second
term and use (32):

ˆ b

a

rtr dr =
r2

2
tr

∣∣∣∣b
a

−
ˆ b

a

r2

2

tθ − tr
r

dr =
Pa2

2
− 1

2

ˆ b

a

r(tθ − tr) dr.

Bringing it together, the axial load condition becomes

π

ˆ b

a

(2αz
∂Ŵ

∂αz
− αθ

∂Ŵ

∂αθ
)r dr = N − Pa2.

Converting to reference variables, the function φ is updated to

φ(R0, A0; ζ, a) =
π

ζ

ˆ R0

A0

(2αz
∂Ŵ

∂αz
− αθ

∂Ŵ

∂αθ
)g(R0)R0 dR0,

and the two conditions to solve for a and ζ are updated to

τ(B0; ζ, a) = P, (40)
φ(B0; ζ, a) = N − Pa2. (41)
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