Sheet 1: Conformal mapping, Schwarz–Christoffel, boundary value problems

- Q1 (a) Find the image of the common part of the discs |z 1| < 1 and |z + i| < 1 under the mapping $\zeta = 1/z$.
 - (b) Find the image of the strip $-\frac{\pi}{2} < x < \frac{\pi}{2}$ under the map $\zeta = \sin z$.
 - (c) Find the image of the strip $-\pi < y < \pi$ under the map $\zeta = z + e^z$. [*Hint: Where are the critical points of the map*?]
- Q2 (a) D is the region exterior to the two circles |z-1| = 1 and |z+1| = 1. Find a conformal mapping from D to the exterior of the unit circle.
 [*Hint: First apply an inversion with respect to the origin (z → 1/z), then rotate and scale so*

[Hint: First apply an inversion with respect to the origin $(z \mapsto 1/z)$, then rotate and scale so as to use the exponential function to get to a half plane, from where use Möbius.]

- (b) Find a conformal map from the unit disc |z| < 1 onto the strip $-\frac{\pi}{2} < \eta < \frac{\pi}{2}$, taking the origin to the origin, 1 to $\xi = +\infty$, -1 to $\xi = -\infty$. (Thus, the upper half of the unit circle maps to $\eta = \frac{\pi}{2}$ and the lower half to $\eta = -\frac{\pi}{2}$.)
- (c) Find a conformal map of the quarter-disc 0 < |z| < 1, $0 < \arg z < \frac{\pi}{2}$ to the upper half-plane $\eta > 0$, taking 0 to 0, 1 to 1, and i to ∞ .
- Q3 Write down, as an integral, the Schwarz–Christoffel map from a half-plane to a rectangle, with the vertices being the images of the points $z = \pm 1$ and $z = \pm a$, where a > 1 is real. Explain why a cannot be specified arbitrarily, but is determined by the aspect ratio of the rectangle.
- Q4 The domain D consists of the upper half-plane with a solid wall along the real axis. The segment of the imaginary axis from z = 0 to z = i is also impermeable to fluid. Find the complex potential for inviscid incompressible irrotational flow in D with velocity $(U_1, 0)$ at infinity.
- Q5 The domain D consists of the right-hand half plane x > 0 with the circle |z a| = b, 0 < b < a, and its interior removed. Find the temperature u(x, y) in steady heat flow if u = 0 on the y axis, u = 1 on |z a| = b, and $u \to 0$ at infinity.

[*Hint:* Show that the mapping $\zeta = (z-\alpha)/(z+\alpha)$, with α real and positive, takes D onto an annular region with the imaginary axis mapping to $|\zeta| = 1$ and show that, if $\alpha^2 = a^2 - b^2$, then the image of D is a concentric circular annulus.]

- Q6 (a) Carefully define a branch of the function $\cosh^{-1}(Z)$ that is holomorphic in the upper half-plane. What is $\cosh^{-1}(0)$? What is the derivative of $\cosh^{-1}(Z)$?
 - (b) Show that the Schwarz–Christoffel map from the upper half-plane to the exterior of the halfstrip $0 < x < \infty$, -1 < y < 1 has the form

$$z = A + C\left(Z\sqrt{Z^2 - 1} - \cosh^{-1}Z\right),$$

and find the constants A and C.

[*Hint:* Map $Z = \pm 1$ to the finite corners of the domain, and $Z = \infty$ to the vertex at $x = \infty$.]

(c) Hence find the complex potential w(z) for potential flow past this obstacle with a uniform stream $(U_1, 0)$ at infinity.

[Hint: Bearing in mind the behaviour of the mapping at infinity, think carefully about the potential in the Z plane: it is not 'constant $\times Z$.']