
Sheet 2: Free surface flows

Q1 Inviscid irrotational fluid flows steadily in the domain Ω shown in figure 1, between a rigid wall
ABC consisting of two semi-infinite straight line segments meeting at right angles, and a free surface
A′C ′.
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Figure 1: A jet climbing a wall.

The fluid layer has thickness 1 and velocity (1, 0) far upstream, at AA′. The boundary value problem
for the complex potential w(z) = φ+ iψ is that w(z) is holomorphic in Ω, with

ψ = 0 on ABC, ψ = 1, |w′| = 1 on A′C ′,

where w′(z) = u − iv is the complex velocity. In addition, take the reference point for φ so that
w = 0 at B.

(a) Show that flow domain in the potential plane (w) is a strip, while in the hodograph plane (w′)
it is a quarter of the unit circle.

(b) Show that the map to a half plane is

ζ = eπw =

(
(w′)2 − 1

(w′)2 + 1

)2

.

(c) Parametrise the free surface A′C ′ by w′ = e−iθ, where 0 ≤ θ ≤ π/2. Show that

ζ = − tan2 θ,
dz

dθ
=

1

w′
dw

dζ

dζ

dθ
=

2

π
(cosec θ + isec θ) on A′ C ′.

(d) Find parametric equations for the free surface from the real and imaginary parts of dz/dθ.
Check that it looks as it should.

Q2 A two-dimensional jet of inviscid irrotational fluid, of thickness 2h∞ and moving to the right with
speed 1, enters a semi-infinite rectangular cavity with walls at y = ±1 and x = L, as shown in
figure 2; the y axis is tangent to the free surface.

The boundary value problem for the complex potential w(z) = φ+ iψ for the upper half of the flow
(within the strip 0 < y < 1, −∞ < x < L) is that w(z) is holomorphic in the fluid region, with

ψ = 0 on ABCDE, ψ = h∞, |w′| = 1 on A′E′,

where w′(z) = u − iv is the complex velocity. In addition, take the reference point for φ so that
w = 0 at C.

(a) Show that the potential and hodograph planes are as in figure 3.
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(a) Sketch the flow domain in the potential and hodograph planes.
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Figure 2: A jet entering a box.

(b) Now consider the case L = ∞, with stagnant fluid far inside the cavity.

(i) Show that B, C and D coincide at the origin in the hodograph plane, and that the flow
domain is the whole interior of the semicircle shown in figure 3.

(ii) Show that

dw

dz
=

1 − eπw/2h∞

1 + eπw/2h∞
= −tanh

πw

4h∞
.

Find w satisfying w = ih∞ at z = i/2, the tip of the air finger shown in figure 2.

(iii) Show that the free surface for this flow, w = φ+ ih∞, −∞ < φ < ∞, satisfies

e−πx/2h∞ cos
π(y − 1

2)

2h∞
= 1.

Finally, show that the condition y → ±h∞ as x → −∞ is only consistent with this equation
if h∞ = 1

4 , so that the finger occupies half of the cavity, and that the free surface is the
same shape as that in the teapot flow of lectures (but the fluid is outside it, not inside).

A

A′ h∞
E′

B D
E

E′E B u

C

D AA′
1−1

C

−v

φ

ψ

Figure 3: Potential and hodograph planes for the flow of Q2(a).

Q3 Voluntary question: Consider potential flow with a free surface (and no gravity) over a horizontal
base along the x axis, with a thin vertical obstacle along the y axis from z = 0 to z = i. Construct
the flow domain in the potential and hodograph planes. Show that a logarithmic transformation
maps the latter onto a polygonal domain, and write down the Schwarz–Christoffel transformation
to map this latter onto a half-plane.

Hint The tricky point in this question — apart from its awful arithmetic — is that there are two
points of inflexion in the free surface. If you can work out what happens at such a point in the
hodograph plane, you will crack the problem. Note that the velocity at the tip of the barrier is
infinite.

Figure 2: A jet entering a box.

(b) Now consider the case L =∞, with stagnant fluid far inside the cavity.

(i) Show that B, C and D coincide at the origin in the hodograph plane, so that the flow
domain is the whole interior of the semicircle in the lower half plane.

(ii) Show that

dw

dz
=

1− eπw/2h∞

1 + eπw/2h∞
= −tanh

πw

4h∞
.

Find w satisfying w = ih∞ at z = i/2, the tip of the air finger shown in figure 2.

(iii) Show that the free surface for this flow, w = φ+ ih∞, −∞ < φ <∞, satisfies

e−πx/2h∞ cos

(
π(y − 1

2)

2h∞

)
= 1,

and show that y → ±h∞ as x → −∞ is only consistent if h∞ takes a particular value,
which you should find.

Q3 (a) The harmonic moments of a domain D(t) are defined by

Mn(t) =

∫∫

D(t)
zn dxdy, n = 0, 1, 2, . . . ,

where z = x+ iy. What are the physical significance of M0(t) and M1(t)?

If the boundary ∂D(t) has outward normal velocity Vn, show (e.g. using Reynolds’ Transport
Theorem; see Part A Fluids & Waves) that

dMn

dt
=

∮

∂D
znVn ds.

(b) Use Green’s Theorem on a region R ⊂ R2 to show that
∫∫

R

∂G

∂z
(z, z) dx dy =

1

2i

∮

∂R
G(z, z) dz

for any sufficiently smooth function G(z, z). Deduce that

Mn(t) =
1

2i

∮

∂D
znz dz.

(c) The domain D(t) is a saturated region of a porous medium, in which flow is driven by a point
source of strength Q at z = 0. The potential φ(x, y, t) satisfies Laplace’s equation in D(t),
with φ ∼ (Q/2π) log r at the origin (where r2 = x2 + y2), together with φ = 0, ∂φ/∂n = Vn
on ∂D(t).

Use Green’s Second Identity on D(t) with a small circle around z = 0 removed to show that

dM0

dt
= Q,

dMn

dt
= 0, n > 0.



(d) The map z = F (ζ, t) maps the unit disc |ζ| < 1 onto D(t), with F (0, t) = 0. Show that

Mn(t) =
1

2i

∮

|ζ|=1
F (ζ, t)nF (ζ, t)

∂F

∂ζ
dζ.

Now suppose that F (ζ, t) is a polynomial of degree m, with coefficients aj(t), j = 1 . . .m.
Making use of the fact that ζ = 1/ζ on |ζ| = 1, show that Mn(t) = 0 for n ≥ m.

Hence find the nonzero moments for the quadratic map F (ζ, t) = a1(t)ζ + a2(t)ζ
2, and

crosscheck with the solution of the differential equations given in lectures.

Find formulae forM0 andMm−1 for a general polynomial of degreem with complex coefficients.

[Green’s Theorem states that for any (suitably smooth) scalar functions P (x, y) and Q(x, y) and
region R ⊂ R2 with (suitably smooth) boundary ∂R,

∫∫

R

(
∂P

∂x
+
∂Q

∂y

)
dxdy =

∮

∂R
(P dy −Qdx) .

A corollary is Green’s Second Identity:

∫∫

R

(
u∇2v − v∇2u

)
dxdy =

∮

∂R

(
u
∂v

∂n
− v ∂u

∂n

)
ds,

again for suitably smooth u(x, y) and v(x, y).]


