Sheet 4: Transforms, Wiener-Hopf

Q1 Suppose $f(x)=\mathrm{e}^{|x|}$ for $-\infty<x<\infty$.
(a) If $f(x)=f_{+}(x)+f_{-}(x)$, where $f_{+}(x)=0$ for $x<0$ and $f_{-}(x)=0$ for $x>0$, show that the Fourier transforms of f_{+}and f_{-}are given by

$$
\bar{f}_{+}(k)=\int_{-\infty}^{\infty} f_{+}(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=\frac{\mathrm{i}}{k-\mathrm{i}} \quad \text { for } \quad \operatorname{Im}(k)>1
$$

and

$$
\bar{f}_{-}(k)=\int_{-\infty}^{\infty} f_{-}(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=-\frac{\mathrm{i}}{k+\mathrm{i}} \quad \text { for } \quad \operatorname{Im}(k)<-1
$$

To which parts of the complex k-plane may $\bar{f}_{ \pm}(k)$ be analytically continued?
(b) Use contour integration to evaluate

$$
\frac{1}{2 \pi} \int_{-\infty+\mathrm{i} \alpha}^{\infty+\mathrm{i} \alpha} \bar{f}_{+}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k \quad \text { and } \quad \frac{1}{2 \pi} \int_{-\infty+\mathrm{i} \beta}^{\infty+\mathrm{i} \beta} \bar{f}_{-}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k
$$

for $x<0$ and $x>0$, where $\alpha>1$ and $\beta<-1$.
(c) Over which part of the complex k-plane is it possible to define $\bar{f}(k)$? Sketch a suitable inversion contour Γ for which

$$
f(x)=\frac{1}{2 \pi} \int_{\Gamma} \bar{f}(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} k
$$

Verify this result using contour integration.
Q2 (a) Show that

$$
\begin{equation*}
w(z)=\int_{\Gamma} g(\zeta) \mathrm{e}^{z \zeta} \mathrm{~d} \zeta \tag{*}
\end{equation*}
$$

is a solution of Airy's equation

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}+z w=0
$$

only if $g(\zeta)=A \mathrm{e}^{\zeta^{3} / 3}$ and $\left[g(\zeta) \mathrm{e}^{z \zeta}\right]_{\Gamma}=0$, where A is a constant. Identify two choices for Γ which lead to two independent solutions of the differential equation.
(b) Show that (*) is a solution of Bessel's equation

$$
\frac{\mathrm{d}^{2} w}{\mathrm{~d} z^{2}}+\frac{1}{z} \frac{\mathrm{~d} w}{\mathrm{~d} z}+w=0
$$

only if $g(\zeta)=A /\left(1+\zeta^{2}\right)^{1 / 2}$ and $\left[\left(1+\zeta^{2}\right) g(\zeta) \mathrm{e}^{z \zeta}\right]_{\Gamma}=0$. Identify two choices for Γ which lead to two independent solutions of the differential equation for $\operatorname{Re}(z)>0$.
Q3 Suppose $u(x, y)$ satisfies the mixed boundary value problem

$$
\nabla^{2} u=\frac{\partial u}{\partial x} \quad \text { in } y>0
$$

with

$$
u=\mathrm{e}^{-a x} \quad \text { on } y=0, x>0, \quad \frac{\partial u}{\partial y}=0 \quad \text { on } y=0, x<0,
$$

where $a>0$, and $u \rightarrow 0$ as $x^{2}+y^{2} \rightarrow \infty$. Define

$$
f_{-}(x)=\left\{\begin{array}{ll}
u(x, 0) & x<0, \\
0 & x>0,
\end{array} \quad g_{+}(x)= \begin{cases}0 & x<0 \\
\frac{\partial u}{\partial y}(x, 0) & x>0\end{cases}\right.
$$

Show that the Fourier transforms $\bar{f}_{-}(k)$ and $\bar{g}_{+}(k)$ of $f_{-}(x)$ and $g_{+}(x)$ respectively satisfy

$$
\frac{1}{\left(k^{2}-\mathrm{i} k\right)^{1 / 2}} \bar{g}_{+}(k)+\bar{f}_{-}(k)=-\frac{\mathrm{i}}{k+\mathrm{i} a},
$$

where you should define precisely the branch of the multifunction $\left(k^{2}-\mathrm{i} k\right)^{1 / 2}$. Deduce that

$$
u(x, y)=\frac{1}{2 \pi} \int_{\Gamma} \frac{\mathrm{i}(-\mathrm{i} a-\mathrm{i})^{1 / 2}}{(k+\mathrm{i} a)(k-\mathrm{i})^{1 / 2}} \mathrm{e}^{-y\left(k^{2}-\mathrm{i} k\right)^{1 / 2}-\mathrm{i} k x} \mathrm{~d} k
$$

where you should define precisely the branch of $(k-i)^{1 / 2}$, the appropriate value of $(-i a-i)^{1 / 2}$ and a suitable inversion contour Γ.
[You may assume without proof that $k^{1 / 2} \bar{g}_{+}(k)$ and $k \bar{f}_{-}(k)$ are bounded as $k \rightarrow \infty$.]
Q4 Suppose $u(x, y)$ satisfies partial differential equation $\nabla^{2} u=u$ in $y>0$ subject to the mixed boundary conditions

$$
\frac{\partial u}{\partial y}(x, 0)=0 \quad \text { for } x<0, \quad u(x, 0)=x \quad \text { for } x>0
$$

and $u(x, y) \rightarrow 0$ as $y \rightarrow \infty$. By taking a Fourier transform and using the Wiener-Hopf method, show that

$$
u(x, 0)=\frac{1}{2 \pi} \int_{\Gamma} A(k) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, \quad \text { where } \quad A(k)=-\frac{\mathrm{e}^{-\mathrm{i} \pi / 4}(2+\mathrm{i} k)}{2 k^{2}(k-\mathrm{i})^{1 / 2}}
$$

giving precise definitions of $(k-\mathrm{i})^{1 / 2}$ and the integration contour Γ. [You may assume without proof that the Fourier transforms of $u(x, 0)$ and of $\partial u / \partial y(x, 0)$ satisfy $\bar{u}(k, 0)=O\left(k^{-3 / 2}\right)$ and $\partial \bar{u} / \partial y(k, 0)=O\left(k^{-1 / 2}\right)$ as $k \rightarrow \infty$.]

Verify that (\dagger) gives the correct expression for $u(x, 0)$ when $x>0$.
Show that, for $x<0$,

$$
u(x, 0)=\frac{1}{2 \pi} \int_{1}^{\infty} \frac{(2-t) \mathrm{e}^{t x}}{t^{2} \sqrt{t-1}} \mathrm{~d} t
$$

