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1 Equations of linear elasticity

1.1 Hooke’s law

Robert Hooke (1678) wrote

“. . . it is. . . evident that the rule or law of nature in every springing body is that the
force or power thereof to restore itself to its natural position is always proportionate
to the distance or space it is removed therefrom, whether it be by rarefaction, or
separation of its parts the one from the other, or by condensation, or crowding of
those parts nearer together.”

Hooke’s observation is exemplified by a simple physics experiment in which a tensile force T is
applied to a spring whose natural length is L. Hooke’s law states that the resulting extension
of the spring is proportional to T : if the new length of the spring is `, then

T = k(`− L), (1.1)

where the constant of proportionality k is called the spring constant.
Hooke devised his law while designing clock springs, but noted that it appears to apply

to all “springy bodies whatsoever, whether metal, wood, stones, baked earths, hair, horns, silk,
bones, sinews, glass and the like.” In a standard experiment to verify Hooke’s law for some
solid material, we would subject a rod, of length L and cross-sectional area A, say, to a tension
T , as shown in Figure 1.1. For most materials, we would again discover that the stretching
of the rod obeys (1.1), for some constant k. Furthermore, it is observed in such experiments
(and intuitively reasonable) that the stiffness k is proportional to the cross-sectional area of
the rod and inversely proportional to the length. Thus we can write (1.1) as(

T

A

)
= E

(
`− L
L

)
, (1.2)

where E is a constant for any given material, known as Young’s modulus. The quantity on
the left-hand side of (1.2), namely the force applied to the rod per unit area, is called the
stress, while the dimensionless quantity (` − L)/L, measuring the extension relative to the
initial length, is called the strain.

Incidentally, a further result of a uniaxial extension test like that shown in Figure 1.1
is that, while stretching along its axis, the bar shrinks in the transverse plane by a factor
proportional to the strain. For example, if we stretch a circular rod with initial radius R,
then the radius r after the tension is applied is found to be given by(

r −R
R

)
= −ν

(
`− L
L

)
, (1.3)

where ν is called Poisson’s ratio and again is constant for any given material. Both E and ν
are well characterised for typical solid materials such as metals, rocks, ceramics and so on.
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Figure 1.1: Schematic of a uniform bar being stretched under a tensile force T .

Hooke’s law works well for most solids, provided the strain does not get too large. There
are various ways in which it can fail. The first is that the relation between stress and strain
may cease to be linear, as can be seen for example by stretching a rubber band. To describe
large strains of such materials, it is necessary to use nonlinear elasticity—see the complemen-
tary course C5.1 Solid Mechanics.

Most materials, however, cease to behave elastically long before the strain is large enough
for nonlinear effects to be important. For example, a brittle material will fracture if it is
subjected to an excessive stress. On the other hand a ductile material will instead start to
deform irreversibly when it exceeds its elastic limit; this behaviour is known as plasticity. We
will show how both of these phenomena can be described mathematically later in the course.

Hooke’s law (1.2) is the simplest example of the all-important constitutive law relating the
applied force to the displacement of a solid body. To generalise this law to a three-dimensional
continuum, we first need to generalise the concepts of strain and stress.

1.2 Lagrangian and Eulerian coordinates

Suppose that a three-dimensional solid starts, at time t = 0, in its reference state, in which no
macroscopic forces exist in the solid or on its boundary. Under the action of any subsequently
applied forces and moments, the solid will be deformed such that, at some later time t,
a “particle” in the solid whose initial position was the point X is displaced to the point
x (X, t). For any such particle, the Lagrangian coordinate X marks its initial positition,
while the Eulerian coordinate x marks its current position. In other words, the Eulerian
coordinate x is fixed in space, while the Lagrangian coordinate X is fixed in the material.

The displacement u(X, t) is defined in the obvious way to be the difference between the
current and initial positions of a particle, that is

u(X, t) = x(X, t)−X. (1.4)

Many basic problems in elasticity amount to determining the displacement field u correspond-
ing to a given system of applied forces.

We assume that the solid is a continuum, so that there is a smooth one-to-one relationship
between X and x, i.e. between any particle’s initial position and its current position. This
will be the case provided the Jacobian of the transformation from X to x is bounded away
from zero:

0 <J <∞, where J = det

(
∂xi
∂Xj

)
. (1.5)
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The physical significance of J is that it measures the change in a small volume compared with
its initial volume:

dx1dx2dx3 = J dX1dX2dX3. (1.6)

Thus the material is in a state of net expansion if J > 1 or compression if J < 1.

1.3 Strain

To generalise the concept of strain introduced in §1.1, we consider the deformation of a small
line segment joining two neighbouring particles with initial positions X and X + δX. At
some later time, the solid deforms such that the particles are displaced to x = X + u(X)
and x+ δx = X + δX +u(X + δX) respectively. Thus we can use Taylor’s theorem to show
that the line element δX that joins the two particles is transformed to

δx = δX + u(X + δX, t)− u(X, t) = δX + (δX ·∇)u(X, t) +O
(
|δX|2

)
, (1.7)

where

(δX ·∇) = δX1
∂

∂X1
+ δX2

∂

∂X2
+ δX3

∂

∂X3
= δXk

∂

∂Xk
, (1.8)

using the summation convention here and henceforth. Let L = |δX| and ` = |δx| denote the
initial and current lengths respectively of the line segment. Then, to lowest order in L,

`2 = |δX + (δX ·∇)u(X, t)|2. (1.9)

The change in length of the line element may thus be written in the form

`2 − L2 = 2eij δXiδXj , where eij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

+
∂uk
∂Xi

∂uk
∂Xj

)
. (1.10)

It is clear from (1.10) that the stretch of a line element in the solid is measured by the
dimensionless quantities eij ; indeed, the stretch is zero for all line elements if and only if
eij ≡ 0. It is thus natural to identify eij with the strain.

In this course, we will only consider materials undergoing small deformations, so that the
displacement gradients ∂ui/∂Xj are all small and we can neglect the nonlinear term in (1.10).
In addition, we note that the chain rule relating differentiation with respect to Lagrangian
and Eulerian variables reads

∂

∂Xi
=
∂xk
∂Xi

∂

∂xk
=

∂

∂xi
+
∂uk
∂Xi

∂

∂xk
, (1.11)

so that, to leading order, the derivatives with respect to Eulerian and Lagrangian variables
are equal. Hence we can write the linearised strain as

eij ∼
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
∼ 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (1.12)

Another consequence of the small-strain limit is that we can linearise the Jacobian J to
obtain

J = det

(
∂xi
∂Xj

)
= det

(
δij +

∂ui
∂Xj

)
(1.13)

∼ 1 + Tr

(
∂ui
∂Xj

)
+ · · · ∼ 1 +

∂uk
∂xk

+ · · · . (1.14)
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By conservation of mass, the density ρ of the deformed medium is related to the initial density
ρ0 in the rest state by ρ = ρ0/J . Hence, the fact that J ∼ 1 means that the density is constant
to leading order. The small change in volume is measured by

ekk =
∂uk
∂xk

= divu,

and the material is locally expanding if ekk > 0 or contracting if ekk < 0.
Now let us ask what would have happened if we had calculated the strain using a different

set of coordinate axes. Suppose we define new coordinates x′ = Px, where P is an orthogonal
matrix (satisfying PPT = I) so this just represents a rotation of the axes. Then the strain
calculated with respect to the new coordinates is given by

e′ij =
1

2

(
∂u′i
∂x′j

+
∂u′j
∂x′i

)
, (1.15)

where u′i are the components of u with respect to the transformed axes. Now it is easy to
show using the chain rule that E = (eij) and E ′ = (e′ij) are related by

E ′ = PEPT. (1.16)

Hence the 3 × 3 symmetric array E transforms exactly like a matrix representing a linear
transformation of the vector space R3. Arrays that obey the transformation law (1.16) are
called second-rank Cartesian tensors, and E = (eij) is therefore called the strain tensor.

Almost as important as the fact that E is a tensor is the fact that it can vanish without
u vanishing. More precisely, if we consider a rigid-body translation and rotation

u = c+ ω × x, (1.17)

where the vectors c and orthogonal matrix ω are constant, then E is identically zero. This
result follows directly from substituting (1.17) into (1.12), and confirms our intuition that a
rigid-body motion induces no deformation.

1.4 Stress

Consider a small surface element, whose area and unit normal are dS and n respectively,
contained within the deformed medium. Suppose the material on (say) the side into which n
points exerts a force df on the element; by Newton’s third law, the material on the other side
will also exert a force equal to −df . In the expectation that the force should be proportional
to the area dS, we write

df = σ dS, (1.18)

where σ is called the traction or stress acting on the element.
First consider a surface element whose normal points in the x1-direction, and denote the

stress acting on such an element by τ 1 = (τ11, τ21, τ31)
T. By doing the same for elements

with normals in the x2- and x3-directions, we generate three vectors τ j (j = 1, 2, 3), each
representing the stress acting on an element normal to the xj-direction. In total, therefore,
we obtain nine scalars τij (i, j = 1, 2, 3), where τij is the i-component of τ j , that is

τ j = τijei, (1.19)
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Figure 1.2: A tetrahedron; Si is the area of the face orthogonal to the xi-axis.

where ei is the unit vector in the xi-direction.
The scalars τij may be used to determine the stress on an arbitrary surface element

by considering the tetrahedron shown in figure 1.2. Here Si denotes the area of the face
orthogonal to the xi-axis. The fourth face has area S =

√
S2
1 + S2

2 + S2
3 ; in fact if this face

has unit normal n as shown, with components (ni), then it is an elementary exercise in
trigonometry to show that Si = Sni.

The outward normal to the face with area S1 is in the negative x1-direction and the force
on this face is thus −S1τ 1. Similar expressions hold for the faces with areas S2 and S3. Hence,
if the stress on the fourth face is denoted by σ, then the total force on the tetrahedron is

f = Sσ − Sjτ j . (1.20)

When we substitute for Sj and τ j , we find that the components of f are given by

fi = S (σi − τijnj) . (1.21)

Now we shrink the tetrahedron to zero. Since the area S scales with `2, where ` is a
typical edge length, while the volume is proportional to `3, if we apply Newton’s second law
and insist that the acceleration be finite, we see that f/S must tend to zero as `→ 0. Hence
we deduce an expression for σ:

σi = τijnj , or σ = T n. (1.22)

This important result enables us to find the stress on any surface element in terms of the 9
quantities (τij) = T .

Now let us follow §1.3 and ask what happens to τij when we rotate the axes by an
orthogonal matrix P . If we define τ ′ij to be the x′i-component of stress on a surface element
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Figure 1.3: The forces acting on a small two-dimensional element.

whose normal points in the x′j-direction, where x′ = Px, then it is straightforward to show
that

T ′ = PT PT. (1.23)

Thus T , like E , is a second-rank tensor, called the Cauchy stress tensor.

We can make one further observation about τ by considering the angular momentum of
the small two-dimensional solid element shown in Figure 1.3. The net anticlockwise moment
acting about the centre of mass G is (per unit length in the x3-direction)

2 (τ21δx2)
δx1
2
− 2 (τ12δx1)

δx2
2
,

where τ21 and τ12 are evaluated at G to lowest order. By letting the rectangle shrink to zero
and insisting that the angular acceleration be finite, we deduce that τ12 = τ21. This argument
can be generalised to three dimensions and it shows that

τij ≡ τji (1.24)

for all i and j, i.e. that T , like E , is a symmetric tensor.

1.5 Conservation of momentum

Now we derive the basic governing equation of solid mechanics by applying Newton’s second
law to the material an arbitrary volume V :

d

dt

∫∫∫
V

∂ui
∂t

ρdV =

∫∫∫
V
giρ dV +

∫∫
∂V
τijnj dS. (1.25)

The terms in (1.25) represent successively the rate of change of the momentum in V , the force
due to an external body force g, such as gravity, and the traction exerted on the boundary
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of V , whose unit normal is n. We differentiate under the integral (using the fact that the
density ρ is approximately constant) and apply the divergence theorem on the final term to
obtain ∫∫∫

V

∂2ui
∂t2

ρdV =

∫∫∫
giρ dV +

∫∫∫
V

∂τij
∂xj

dV. (1.26)

Assuming each integrand is continuous, and using the fact that V is arbitrary, we arrive at
Cauchy’s momentum equation:

ρ
∂2ui
∂t2

= ρgi +
∂τij
∂xj

. (1.27)

This may alternatively be written in vector form by adopting the following notation for
the divergence of a tensor: we define the ith component of ∇ · T to be

(∇ · T )i =
∂τji
∂xj

. (1.28)

Since T is symmetric, we may thus write Cauchy’s equation as

ρ
∂2u

∂t2
= ρg + ∇ · T . (1.29)

1.6 The constitutive relation

We can now generalise Hooke’s law by postulating a linear relationship between the stress and
strain tensors. This is consistent with our previous assumption that the strain components
are small enough that we can linearise the strain tensor E and also set ∂/∂Xi ∼ ∂/∂xi.
Assuming that the stress is initially zero in the undeformed material, we are apparently led
to the problem of defining 81 material parameters Cijk` (i, j, k, ` = 1, 2, 3) such that

τij = Cijk`ek`. (1.30)

The symmetry of τij and eij only enables us to reduce the number of unknowns to 36.
This can be reduced to a more manageable number by assuming that the solid is isotropic,
by which we mean that it behaves the same way in all directions. It can be shown that this is
sufficient to reduce the specification of Cijk` to just two scalar quantities λ and µ, such that

τij = λ (ekk) δij + 2µeij . (1.31)

The material parameters λ and µ are known as the Lamé constants, and µ is also called the
shear modulus. They are well characterised for everyday solid materials like metals, rocks
and so on. They both have the dimensions of pressure and they measure a solid’s ability to
withstand deformation: λ and µ take large values for “hard” materials like steel or diamond,
and lower values for “soft” materials like rubber.

Now we substitute our linear constitutive relation (1.31) into the momentum equation
(1.27) and replace X with x to obtain the Navier equation:

ρ
∂2u

∂t2
= ρg + (λ+ µ) grad divu+ µ∇2u. (1.32)

for the displacement vector u(x, t). It may alternatively be written as

ρ
∂2u

∂t2
= ρg + (λ+ 2µ) grad divu− µ curl curlu, (1.33)
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Figure 1.4: Schematic of a small pill-box-shaped region at the boundary between two elastic
solids.

by using the vector identity

“del squared equals grad div minus curl curl.” (1.34)

1.7 Boundary conditions

Suppose that we wish to solve (1.32) for u(x, t) when t is positive and x lies in some prescribed
domain D. In elastostatic problems, in which the left-hand side of (1.32) is zero, the Navier
system is, roughly speaking, a generalisation of a scalar elliptic equation. By analogy, it seems
appropriate to specify three scalar conditions on u everywhere on the boundary ∂D. In most
physical problems, we specify either the displacement u or the traction T n everywhere on
the boundary.

In addition, there are some situations in which the traction is specified on some parts
of the boundary and the displacement on others, for example in contact problems and in
fracture. Another common generalisation occurs when two solids with different elastic moduli
are bonded together across a common boundary ∂D, as shown in Figure 1.4. Then the
displacement vectors are the same on either side of ∂D and, by balancing the stresses on the
small pill-box-shaped region shown in Figure 1.4, we see that

T (1)n = T (2)n. (1.35)

Thus there are six continuity conditions across such a boundary.
For elastodynamic problems, we may anticipate that (1.32) admits wave-like solutions. It

may, therefore, be viewed as a generalisation of a scalar wave equation, such as the familiar
equation

%
∂2w

∂t2
= T

∂2w

∂x2
(1.36)

which describes small transverse waves on a string with tension T and line density %. We
therefore expect to prescribe Cauchy data for the initial displacement u and velocity ∂u/∂t
at t = 0, as well as elliptic boundary conditions such as those described above.

1.8 Energy

We can obtain an energy equation from (1.27) by taking the dot product with ∂u/∂t and
integrating over an arbitrary volume V :∫∫∫

V
ρ
∂2ui
∂t2

∂ui
∂t

dV =

∫∫∫
V
ρgi

∂ui
∂t

dV +

∫∫∫
V

∂τij
∂xj

∂ui
∂t

dV. (1.37)
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The final term may be rearranged, using the divergence theorem, to∫∫∫
V

∂τij
∂xj

∂ui
∂t

dV =

∫∫
∂V

∂ui
∂t

τijnj dS −
∫∫∫

V
τij
∂eij
∂t

dV. (1.38)

Hence (1.37) may be written in the form

d

dt

{∫∫∫
V

1

2
ρ

∣∣∣∣∂u∂t
∣∣∣∣2 dV +

∫∫∫
V
W dV

}
=

∫∫∫
V
ρgi

∂ui
∂t

dV +

∫∫
∂V

∂ui
∂t

τijnj dS, (1.39)

where W is a scalar function of the strain components that is chosen to satisfy

∂W
∂eij

= τij . (1.40)

With τij given by (1.31), we can integrate (1.40) to determine W up to an arbitrary constant
as

W =
1

2
τijeij =

1

2
λ (ekk)

2 + µ (eijeij) . (1.41)

Here the summation convention is invoked such that (ekk)
2 = (Tr E)2, while (eijeij) = Tr

(
E2
)
.

The first term in braces in (1.39) is the net kinetic energy in V , while the terms on the
right-hand side represent the rate at which work is done by the external body force g and
the tractions on ∂V respectively. In the absence of other energy sources resulting from, say,
chemical or thermal effects, we can interpret equation (1.39) as a statement of conservation
of energy. The difference between the rate of working and the rate of change of kinetic energy
is the rate at which elastic energy is stored in the material as it deforms. Therefore, W is
called the strain energy density, and is analogous to the energy stored in a stretched spring.
The net conservation of energy implied by (1.39) reflects the fact that the Navier equation is
not dissipative.

On physical grounds, we expect W to be a positive-definite function of the strain com-
ponents, whose unique global minimum is attained when eij ≡ 0. We can easily see from
(1.41) that this is true if λ and µ are positive, but in fact it is only necessary to have µ and
(λ+2µ/3) both positive. If these requirements are met, then it can be shown that the Navier
equation is well posed when suitable boundary and initial data are imposed. The full proof
of this is difficult, but we can quite easily prove the simpler result that the solution of the
steady Navier equation subject to a given boundary displacement, if it exists, is unique.

Suppose, then, that there exist two solutions u(1) and u(2) of the partial differential
equation

∇ · T + ρg = 0 (1.42)

in some elastic body B, both of which satisfy the boundary conditions

u = ub(x) on ∂B. (1.43)

Now define u = u(1)−u(2), the difference, so that u satisfies the homogeneous problem (1.42)
and (1.43) with g = ub = 0.

We take the dot product of (1.42) with u, integrate over B and use the divergence theorem
to obtain ∫∫

∂B
u · (T n) dS =

∫∫∫
B
eijτij dV = 2

∫∫∫
B
W dV, (1.44)
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where W is given by (1.41). The left-hand side of (1.44) is zero by the boundary conditions,
while the integrand W on the right-hand side is non-negative and must, therefore, be zero. It
follows that the strain tensor eij is identically zero in D, and the displacement can therefore
only be a rigid-body motion (i.e. a uniform translation and rotation). Since u is zero on ∂B,
we deduce that it must be zero everywhere and, hence, that u(1) ≡ u(2).

We can also useW to pose the steady Navier equation as a variational problem as follows.
We can write the net elastic and gravitational potential energy in an elastic body B in the
form

U [u] =

∫∫∫
B

{
W(eij)− ρg · u

}
dV. (1.45)

The calculus of variations leads to the conclusion that the displacement field u which min-
imises the functional U [u] must satisfy the steady Navier equation. Hence, instead of trying
to solve the partial differential equation (1.42), we could instead try to find the function u
that minimises U [u], and this idea forms the basis of the finite element method for solving
(1.42) numerically.

1.9 Coordinate systems

It is often useful to employ coordinate systems particularly chosen to fit the geometry of the
problem being considered. Here we state the main useful results for Cartesian, cylindrical
polar and spherical polar coordinates.

Cartesian coordinates

First we write out in full the results derived thus far using the usual Cartesian coordi-
nates (x, y, z). To avoid the use of suffices, we will denote the displacement components
by u = (u, v, w)T. It is also conventional to label the stress components by {τxx, τxy, . . .}
rather than {τ11, τ12, . . .}, and similarly for the strain components.

The linear constitutive relation (1.31) gives

τxx = (λ+ 2µ)exx + λeyy + λezz, τxy = 2µexy,

τyy = λexx + (λ+ 2µ)eyy + λezz, τxz = 2µexz, (1.46)

τzz = λexx + λeyy + (λ+ 2µ)ezz, τyz = 2µeyz,

where

exx =
∂u

∂x
, 2exy =

∂u

∂y
+
∂v

∂x
,

eyy =
∂v

∂y
, 2eyz =

∂v

∂z
+
∂w

∂x
, (1.47)

ezz =
∂w

∂z
, 2exz =

∂u

∂z
+
∂w

∂x
,
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and the three components of Cauchy’s momentum equation are

ρ
∂2u

∂t2
= ρgx +

∂τxx
∂x

+
∂τxy
∂y

+
∂τxz
∂z

,

ρ
∂2v

∂t2
= ρgy +

∂τxy
∂x

+
∂τyy
∂y

+
∂τyz
∂z

, (1.48)

ρ
∂2w

∂t2
= ρgz +

∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

,

where the body force is g = (gx, gy, gz)
T. In terms of the displacements, the Navier equation

reads (assuming that λ and µ are constant)

ρ
∂2u

∂t2
= ρgx + (λ+ µ)

∂

∂x
(∇ · u) + µ∇2u,

ρ
∂2v

∂t2
= ρgy + (λ+ µ)

∂

∂y
(∇ · u) + µ∇2v, (1.49)

ρ
∂2w

∂t2
= ρgz + (λ+ µ)

∂

∂z
(∇ · u) + µ∇2w.

Cylindrical polar coordinates

We define the cylindrical polar coordinates (r, θ, z) in the usual way and denote the displace-
ments in the r-, θ- and z-directions by ur, uθ and uz respectively. The stress components are
denoted by τij where now i and j are equal to either r, θ or z and, as in §1.4, τij is defined
to be the i-component of stress on a surface element whose normal points in the j-direction.
The constitutive relation (1.31) applies directly to this coordinate system, so that

τrr = (λ+ 2µ)err + λeθθ + λezz, τrθ = 2µerθ,

τθθ = λerr + (λ+ 2µ)eθθ + λezz, τrz = 2µerz, (1.50)

τzz = λerr + λeθθ + (λ+ 2µ)ezz, τθz = 2µeθz,

where the strain components are now given by

err =
∂ur
∂r

, 2erθ =
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r
,

eθθ =
1

r

(
∂uθ
∂θ

+ ur

)
, 2erz =

∂ur
∂z

+
∂uz
∂r

, (1.51)

ezz =
∂uz
∂z

, 2eθz =
∂uθ
∂z

+
1

r

∂uz
∂θ

.

The three components of Cauchy’s momentum equation (1.27) read

ρ
∂2ur
∂t2

= ρgr +
1

r

∂

∂r
(rτrr) +

1

r

∂τrθ
∂θ

+
∂τrz
∂z
− τθθ

r
,

ρ
∂2uθ
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where the body force is g = grer + gθeθ + gzez. Written out in terms of displacements, these
become
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(1.54)

are the divergence of u and the Laplacian of ui respectively expressed in cylindrical polars.

Spherical polar coordinates

The spherical polar coordinates (r, θ, φ) are defined in the usual way, such that the position
vector of any point is given by

r(r, θ, φ) =

r sin θ cosφ
r sin θ sinφ
r cos θ

 . (1.55)

Again, we apply the constitutive relation (1.31) to obtain

τrr = (λ+ 2µ)err + λeθθ + λeφφ, τrθ = 2µerθ,

τθθ = λerr + (λ+ 2µ)eθθ + λeφφ, τrφ = 2µerφ, (1.56)

τφφ = λerr + λeθθ + (λ+ 2µ)eφφ, τθφ = 2µeθφ.

The linearised strain components are now given by
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Cauchy’s equation of motion leads to the three equations
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where the body force is g = grer+gθeθ+gφeφ. In terms of displacements, the Navier equation
reads
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(1.60)


