
C5.2 Elasticity & Plasticity Hilary Term 2020

Problem Sheet 2

1. In plane strain, show that a smooth single-valued displacement can exist only if the
the strain components exx, exy and eyy satisfy the compatibility condition
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Reformulate this relation in terms of the stress components τxx, τxy and τyy.

How many compatibility conditions do you think there are in three dimensions?

2. In the absence of a body force, the steady Navier equation takes the form
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in plane polar coordinates. Show that these are satisfied identically by introducing
an Airy stress function A such that
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[These may alternatively be obtained by transforming the Cartesian relationships us-

ing the chain rule.]

3. In plane strain, the two-dimensional stress tensor takes the form
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with respect to principal axes, where τ1 and τ2 of are the principal stresses. Show
that, if the axes are rotated through an angle θ, then T is transformed to
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Deduce that the maximum shear stress is S = |τ1 − τ2|/2.

Show that, with respect to arbitrary axes, S is given by
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(τxx − τyy)
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[The Tresca yield criterion states that a solid material will fail if S exceeds some

critical yield stress τY .]



4. A gun barrel occupies the region a < r < b in plane polar coordinates. A uniform
pressure P is applied to the inner surface r = a while the outer surface r = b is
traction-free. Assume that the displacement is purely radial, so that u = ur(r)er.
By solving the Navier equation in polar coordinates, obtain the solution
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and hence show that the maximum shear stress defined in Question 3 is given by
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Deduce that the barrel will explode if
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where τY is the Tresca yield stress.

5. Seek harmonic wave solutions u = aei(k·x−ωt) (real part assumed) of the dynamic
Navier equation.

Show that there exists a unique scalar A and vector B such that a = Ak +B × k

and k ·B = 0.

Deduce that either B = 0, ρω2 = (λ+ 2µ) |k|2 or A = 0, ρω2 = µ |k|2.

Show that the wave-speeds cp =
√

(λ+ 2µ)/ρ and cs =
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µ/ρ satisfy cp > cs.

6. An elastic medium occupies the half-space y < 0 and the surface y = 0 is stress-free.

If the displacement is two-dimensional, with u =
(
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)T

, obtain the
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Show that a Rayleigh wave can propagate close to the surface, with
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where κ2
p = k2 − ω2/c2p and κ2

s = k2 − ω2/c2s. What restriction on the propagation
speed c = ω/k will ensure that κp and κs are both real (and positive)?

Deduce that the propagation c satisfies the equation
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and confirm graphically that this has only one real root in the range 0 < c < cs.



7. A uniform beam of line density ̺ and length L lying along the x-axis under a tension T
undergoes a small transverse displacement w(x, t)k. Derive the governing equations
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where M is the clockwise bending moment exerted on each cross-section of the beam
and the gravitational acceleration is g = −gk.

Use an exact solution of the steady Navier equation to justify the constitutive relation

M = −EI
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where E is Young’s modulus and I is the moment of inertia of the cross-section about
the y-axis.

If gravity is negligible and no transverse force is applied at the ends, which are
clamped horizontally, justify the boundary conditions ∂w/∂x = ∂3w/∂x3 = 0 at
x = 0 and x = L. Show that the natural frequencies ω of the beam are given by
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and deduce that the beam is unstable if T < −π2EI/L2.


