C5.2 Elasticity & Plasticity Hilary Term 2020

Problem Sheet 3

1. An elastic beam with bending stiffness EI is in equilibrium subject to a compressive force P_0 and shear force N_0 applied at its ends, where it is clamped parallel to the x-axis. Show that, if the beam makes an angle $\theta(s)$ with the x-axis, where s is arc-length, the shear force N and bending moment M at any point satisfy

$$
N = N_0 \cos \theta + P_0 \sin \theta, \qquad \frac{\mathrm{d}M}{\mathrm{d}s} - N = 0.
$$

Assuming the constitutive relation $M = -E I d\theta/ds$, obtain the Euler strut equation

$$
EI\frac{\mathrm{d}^2\theta}{\mathrm{d}s^2} + P_0\sin\theta + N_0\cos\theta = 0.
$$

(a) When the applied shear force is zero, obtain the dimensionless model

$$
\frac{d^2\theta}{d\xi^2} + \pi^2 \lambda \sin \theta = 0, \qquad \theta(0) = \theta(1) = 0,
$$

where the dimensionless variable ξ and parameter λ are to be defined.

- (b) Assuming $|\theta| \ll 1$, show that nontrivial solutions $\theta = A \sin(n\pi \xi)$ exist when $\lambda = n^2$, where *n* is a positive integer.
- (c) Now suppose that λ is close to one of the critical values so that $\lambda = n^2 + \varepsilon \lambda_1$, where $0 < \varepsilon \ll 1$. Show that solutions of the form

$$
\theta = \varepsilon^{1/2} \left\{ A_0 \sin(n\pi\xi) + \varepsilon \Theta_1 + O\left(\varepsilon^2\right) \right\}
$$

exist provided the leading-order amplitude A_0 satisfies

$$
A_0 \left(A_0^2 - \frac{8\lambda_1}{n^2} \right) = 0.
$$

Plot the resulting response diagram.

(d) Now suppose there is a *small* applied shear force N_0 , so that

$$
\frac{\mathrm{d}^2\theta}{\mathrm{d}\xi^2} + \pi^2 \lambda \sin \theta + \varepsilon^{3/2} F \cos \theta = 0.
$$

Define F in terms of N_0 . Repeat the analysis of part (c) with $n = 1$ to show that A_0 now satisfies

$$
A_0 \left(A_0^2 - 8\lambda_1 \right) = \frac{32F}{\pi^3}.
$$

Sketch the response diagram. Assuming that $F > 0$, show that a negative amplitude A_0 is possible only if the forcing parameter λ_1 exceeds $3F^{2/3}/2^{1/3}\pi^2$.

- 2. (a) An elastic string is stretched to a uniform tension T over a nearly flat obstacle $z = f(x)$. If a transverse body force $p(x)$ per unit length is applied, show that the transverse displacement $z = w(x)$ satisfies $T d^2 w/dx^2 = p(x)$ in the noncontact set and $w = f$ in the contact set, with continuity of w and dw/dx on the boundary between them.
	- (b) Show that the above model is not complete by finding three solutions when $f(x) = -7/500, p(x)/T = x^2 - 4/75$ and $w = 0$ at $x = \pm 1$.
	- (c) Which solution from part (b) satisfies the complementarity conditions

$$
(w-f)\left(p - T\frac{d^2w}{dx^2}\right) = 0, \qquad w - f \geqslant 0, \qquad p - T\frac{d^2w}{dx^2} \geqslant 0
$$
 (*)

Interpret these conditions physically.

3. It may be shown that (∗) is equivalent to the variational inequality

$$
T\int_{-1}^{1} \frac{\mathrm{d}w}{\mathrm{d}x} \left(\frac{\mathrm{d}v}{\mathrm{d}x} - \frac{\mathrm{d}w}{\mathrm{d}x} \right) \mathrm{d}x \geqslant \int_{-1}^{1} p(w - v) \mathrm{d}x \quad \text{for all} \quad v \geqslant f. \tag{†}
$$

Now we will show that $(†)$ is equivalent to minimising the net strain and potential energy over all displacements that do not interpenetrate the obstacle.

(a) Show that, if

$$
U[w] = \int_{-1}^{1} \left(\frac{T}{2} \left(\frac{\mathrm{d}w}{\mathrm{d}x}\right)^2 + pw\right) \mathrm{d}x,
$$

then

$$
U[w] - U[v] = \int_{-1}^{1} p(w - v) dx - T \int_{-1}^{1} \frac{dw}{dx} \left(\frac{dv}{dx} - \frac{dw}{dx}\right) dx - \frac{T}{2} \int_{-1}^{1} \left(\frac{dw}{dx} - \frac{dv}{dx}\right)^{2} dx
$$

and deduce that, if w satisfies $(†)$, then it minimises U.

(b) Note that, if v_1 and v_2 belong to the set $\{v : v \geq f \text{ on } (-1,1)\}\)$, then so does $\alpha v_1 + (1 - \alpha)v_2$ for $0 < \alpha < 1$ [this means that the set is convex]. Show that if w minimises U , then

$$
U[w] \leq U[\alpha v + (1 - \alpha)w]
$$

for all $v \ge f$. Expand this inequality for small α to obtain (†).

4. A thin elliptical Mode III crack, whose boundary $\partial\Omega$ is given by

$$
\frac{x^2}{c^2 \cosh^2 \varepsilon} + \frac{y^2}{c^2 \sinh^2 \varepsilon} = 1,
$$

is subject to an antiplane strain displacement field $\boldsymbol{u} = (0,0,w(x,y))$ ^T.

(a) If a shear stress $\tau_{yz} = \sigma$ is applied in the far field, justify the conditions

$$
\frac{\partial w}{\partial n} = 0 \quad \text{on } \partial \Omega, \qquad w \sim \frac{\sigma y}{\mu} \quad \text{as } x^2 + y^2 \to \infty.
$$

(b) Show that the Joukowsky transformation

$$
x + iy = z = \frac{c}{2} \left(\zeta + \frac{1}{\zeta} \right)
$$

conformally maps the region $|\zeta| > e^{\varepsilon}$ ($\varepsilon > 0$) onto the outside of the crack. What happens as $\varepsilon \to 0$? What is the inverse map from z to ζ ?

(c) Introducing polar coordinates (r, θ) such that $\zeta = re^{i\theta}$, show that w satisfies the conditions

$$
\frac{\partial w}{\partial r} = 0 \quad \text{on } r = e^{\varepsilon}, \qquad w \sim \frac{c\sigma}{2\mu} r \sin \theta \quad \text{as } r \to \infty.
$$

Hence obtain the solution

$$
w = \frac{c\sigma}{2\mu} \operatorname{Im} \left\{ \zeta - \frac{e^{2\varepsilon}}{\zeta} \right\}.
$$

(d) In the limit $\varepsilon \to 0$, deduce that

$$
w = -\frac{\sigma}{\mu} \operatorname{Im} \left\{ \sqrt{z^2 - c^2} \right\},\tag{1}
$$

and carefully define the square root.

5. If the displacement in antiplane strain is given by $w(x, y) = \text{Im} \{f(z)\}\text{, where}$ $z = x + iy$, show that the corresponding stress components are

$$
\tau_{xz} = \mu \operatorname{Im} \left\{ f'(z) \right\}, \qquad \qquad \tau_{yz} = \mu \operatorname{Re} \left\{ f'(z) \right\}.
$$

Hence show that the stress components ahead of the crack, on $y = 0$, $x > c$, due to the displacement field (‡), are given by

$$
\tau_{xz} = 0, \qquad \qquad \tau_{yz} = \frac{\sigma x}{\sqrt{x^2 - c^2}}.
$$

Suppose that the crack tip propagates when the stress intensity factor

$$
K_{\rm III} = \sqrt{2\pi} \lim_{x \downarrow c} \left\{ \tau_{yz}(x,0) \sqrt{x - c} \right\}
$$

exceeds a critical value K_{\star} . Deduce that the crack will grow if the applied shear stress exceeds $K_{\star}/\sqrt{\pi c}$.