C5.2 Elasticity & Plasticity

Problem Sheet 3

1. An elastic beam with bending stiffness EI is in equilibrium subject to a compressive force P_0 and shear force N_0 applied at its ends, where it is clamped parallel to the *x*-axis. Show that, if the beam makes an angle $\theta(s)$ with the *x*-axis, where *s* is arc-length, the shear force *N* and bending moment *M* at any point satisfy

$$N = N_0 \cos \theta + P_0 \sin \theta,$$
 $\frac{\mathrm{d}M}{\mathrm{d}s} - N = 0.$

Assuming the constitutive relation $M = -EId\theta/ds$, obtain the Euler strut equation

$$EI\frac{\mathrm{d}^2\theta}{\mathrm{d}s^2} + P_0\sin\theta + N_0\cos\theta = 0.$$

(a) When the applied shear force is zero, obtain the dimensionless model

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}\xi^2} + \pi^2 \lambda \sin\theta = 0, \qquad \qquad \theta(0) = \theta(1) = 0,$$

where the dimensionless variable ξ and parameter λ are to be defined.

- (b) Assuming $|\theta| \ll 1$, show that nontrivial solutions $\theta = A \sin(n\pi\xi)$ exist when $\lambda = n^2$, where n is a positive integer.
- (c) Now suppose that λ is close to one of the critical values so that $\lambda = n^2 + \varepsilon \lambda_1$, where $0 < \varepsilon \ll 1$. Show that solutions of the form

$$\theta = \varepsilon^{1/2} \left\{ A_0 \sin(n\pi\xi) + \varepsilon \Theta_1 + O\left(\varepsilon^2\right) \right\}$$

exist provided the leading-order amplitude A_0 satisfies

$$A_0\left(A_0^2 - \frac{8\lambda_1}{n^2}\right) = 0.$$

Plot the resulting response diagram.

(d) Now suppose there is a *small* applied shear force N_0 , so that

$$\frac{\mathrm{d}^2\theta}{\mathrm{d}\xi^2} + \pi^2\lambda\sin\theta + \varepsilon^{3/2}F\cos\theta = 0.$$

Define F in terms of N_0 . Repeat the analysis of part (c) with n = 1 to show that A_0 now satisfies

$$A_0\left(A_0^2 - 8\lambda_1\right) = \frac{32F}{\pi^3}.$$

Sketch the response diagram. Assuming that F > 0, show that a negative amplitude A_0 is possible only if the forcing parameter λ_1 exceeds $3F^{2/3}/2^{1/3}\pi^2$.

- 2. (a) An elastic string is stretched to a uniform tension T over a nearly flat obstacle z = f(x). If a transverse body force p(x) per unit length is applied, show that the transverse displacement z = w(x) satisfies $Td^2w/dx^2 = p(x)$ in the non-contact set and w = f in the contact set, with continuity of w and dw/dx on the boundary between them.
 - (b) Show that the above model is not complete by finding *three* solutions when f(x) = -7/500, $p(x)/T = x^2 4/75$ and w = 0 at $x = \pm 1$.
 - (c) Which solution from part (b) satisfies the *complementarity conditions*

$$(w-f)\left(p-T\frac{\mathrm{d}^2 w}{\mathrm{d}x^2}\right) = 0, \qquad w-f \ge 0, \qquad p-T\frac{\mathrm{d}^2 w}{\mathrm{d}x^2} \ge 0? \quad (*)$$

Interpret these conditions physically.

3. It may be shown that (*) is equivalent to the variational inequality

$$T\int_{-1}^{1} \frac{\mathrm{d}w}{\mathrm{d}x} \left(\frac{\mathrm{d}v}{\mathrm{d}x} - \frac{\mathrm{d}w}{\mathrm{d}x}\right) \,\mathrm{d}x \ge \int_{-1}^{1} p(w-v) \,\mathrm{d}x \quad \text{for all} \quad v \ge f. \tag{\dagger}$$

Now we will show that (†) is equivalent to minimising the net strain and potential energy over all displacements that do not interpenetrate the obstacle.

(a) Show that, if

$$U[w] = \int_{-1}^{1} \left(\frac{T}{2} \left(\frac{\mathrm{d}w}{\mathrm{d}x} \right)^2 + pw \right) \,\mathrm{d}x,$$

then

$$U[w] - U[v] = \int_{-1}^{1} p(w - v) \, \mathrm{d}x - T \int_{-1}^{1} \frac{\mathrm{d}w}{\mathrm{d}x} \left(\frac{\mathrm{d}v}{\mathrm{d}x} - \frac{\mathrm{d}w}{\mathrm{d}x}\right) \, \mathrm{d}x - \frac{T}{2} \int_{-1}^{1} \left(\frac{\mathrm{d}w}{\mathrm{d}x} - \frac{\mathrm{d}v}{\mathrm{d}x}\right)^2 \, \mathrm{d}x$$

and deduce that, if w satisfies (\dagger), then it minimises U.

(b) Note that, if v_1 and v_2 belong to the set $\{v : v \ge f \text{ on } (-1,1)\}$, then so does $\alpha v_1 + (1-\alpha)v_2$ for $0 < \alpha < 1$ [this means that the set is convex]. Show that if w minimises U, then

$$U[w] \leqslant U\left[\alpha v + (1-\alpha)w\right]$$

for all $v \ge f$. Expand this inequality for small α to obtain (†).

4. A thin elliptical Mode III crack, whose boundary $\partial \Omega$ is given by

$$\frac{x^2}{c^2\cosh^2\varepsilon} + \frac{y^2}{c^2\sinh^2\varepsilon} = 1,$$

is subject to an antiplane strain displacement field $\boldsymbol{u} = (0, 0, w(x, y))^{\mathrm{T}}$.

(a) If a shear stress $\tau_{yz} = \sigma$ is applied in the far field, justify the conditions

$$\frac{\partial w}{\partial n} = 0 \quad \text{on } \partial\Omega, \qquad \qquad w \sim \frac{\sigma y}{\mu} \quad \text{as } x^2 + y^2 \to \infty.$$

(b) Show that the Joukowsky transformation

$$x + iy = z = \frac{c}{2}\left(\zeta + \frac{1}{\zeta}\right)$$

conformally maps the region $|\zeta| > e^{\varepsilon}$ ($\varepsilon > 0$) onto the outside of the crack. What happens as $\varepsilon \to 0$? What is the inverse map from z to ζ ?

(c) Introducing polar coordinates (r, θ) such that $\zeta = re^{i\theta}$, show that w satisfies the conditions

$$\frac{\partial w}{\partial r} = 0$$
 on $r = e^{\varepsilon}$, $w \sim \frac{c\sigma}{2\mu} r \sin \theta$ as $r \to \infty$.

Hence obtain the solution

$$w = \frac{c\sigma}{2\mu} \operatorname{Im}\left\{\zeta - \frac{\mathrm{e}^{2\varepsilon}}{\zeta}\right\}.$$

(d) In the limit $\varepsilon \to 0$, deduce that

$$w = \frac{\sigma}{\mu} \operatorname{Im} \left\{ \sqrt{z^2 - c^2} \right\},\tag{\ddagger}$$

and carefully define the square root.

5. If the displacement in antiplane strain is given by $w(x,y) = \text{Im}\{f(z)\}$, where z = x + iy, show that the corresponding stress components are

$$\tau_{xz} = \mu \operatorname{Im} \left\{ f'(z) \right\}, \qquad \qquad \tau_{yz} = \mu \operatorname{Re} \left\{ f'(z) \right\}$$

Hence show that the stress components ahead of the crack, on y = 0, x > c, due to the displacement field (‡), are given by

$$\tau_{xz} = 0, \qquad \qquad \tau_{yz} = \frac{\sigma x}{\sqrt{x^2 - c^2}}.$$

Suppose that the crack tip propagates when the stress intensity factor

$$K_{\rm III} = \sqrt{2\pi} \lim_{x \downarrow c} \left\{ \tau_{yz}(x,0) \sqrt{x-c} \right\}$$

exceeds a critical value K_{\star} . Deduce that the crack will grow if the applied shear stress exceeds $K_{\star}/\sqrt{\pi c}$.