C5.2 Elasticity & Plasticity Hilary Term 2019

Problem Sheet 4: Solutions

1. The two-dimensional stress tensor is
7— | Tzx Tay
Toy  Tyy
The normal stress on a line element with normal n is

Tz COS 0 4 Ty sin 6
Ty COS 0 + Ty Sin 6

N =n-(Tn) = (cosf,sinb) (

) = Ty COS> 0-+27,, sin 0 cos 0+, sin? 6,

which can also be written

N = 3 (Tux + Tyy) + 5 (Tow — Tyy) €08 20 + T4y sin 26. (1)

The shear stress is

Tz COS 0 + Ty sin 0
Tay COS 0 + T, sIn 0

S =1t(Tn)=(—sinb,cosb) (

) = (Tyy—Tux) $in 0 cos O+, (cos® O —sin® 0),

which gives

S = —5(Tyw — Tyy) sin 26 + 7, cos 26. (2)

1
2
The two relationships (1) and (2) defined a circle (the Mohr circle) in the (V, S)-plane
that is parametrized by 6. It is easy to see by direct substitution that

S? + [N — %(Tm + 7'yy)}2 = i(TM —Ty)? + rﬁy.

1/

This is a circle radius R = [(Tae — 7yy)2/4 + 72, ? and centre ((Tww + 7yy)/2,0).

Since a granular material cannot withstand any tensile stress, we need N < 0 V6,
which in turn requires that

Tex T T 1/2
0> —Tyy + [i(Tm — Ty + Tiy}
or 9
(T:c:r: + Tyy) > %1(7_“: o Tyy)2 + 7_m2y7 (3)

4

which is equivalent to 7,,7,, > Twzy; Tex < 0, Tyy < 0, so that the stress tensor 7T, is
negative semi-definite.



The Coulomb condition requires that |S| < —N tan ¢ with ¢ the angle of friction and
equality when the material yields.

There are then three cases of interest:
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(a) |S| < —N tan ¢ for all 6; the material has not yielded anywhere.

(b) For some values of 6, |S| > —Ntan¢. This is not possible (it violates the
Coulomb friction assumption).

(c) There is precisely one value of 6 for which |S| = —N tan ¢, so the material yields.

In this last case, trigonometry gives
1/2
[i(Tm - Tyy)2 + Ta?y:|
. Tox+Tyy
2

sin ¢ =

Rearranging, we find that
(Tea + Tyy)2 sin® ¢ = (Tu0 — 7—yy)z + 4Tw2y

or
0= (Tux + Tyy)2(1 — sin® ¢) + 4(T§y — TuaTyy)-

Finally, we have

2
coS
ToaTyy = Toy = 4 gb(Tm + 7).
With no body force, the two-dimensional Navier equation is
OTow 0Ty O%u
or oy o
OTay | O1yy 0%

or oy o



As in lectures, we assume that any motion (including plastic flow) is slow enough that
the acceleration terms may be neglected. We then introduce an Airy stress function
A(z,y) such that 7., = 9*A4/0y?, 1, = 0*A/02?, 1, = —0*A/Dxdy, and hence the
Navier equation is automatically satisfied.

Substituting the stress components associated with the stress function into (3), we
find that

cos? 9?AR2A 92A N\
¢ 2 2= - ( ) } (4)

\V4 =
4 (V2A) 0x? Oy? 0xdy
as required.
To show that this equation is hyperbolic, we let
_0PA _0PA - 9?A
P=%2 17 oy?’ ~ 0zdy

so that symmetry of mixed partial derivatives gives

dr  Op Or 0q

dr 9y’ dy dx
The condition (4) may be written

cos? ¢
4

(p+q)* =pg—r1?,

and, differentiating with respect to x and y we find

8p dq op COSQ¢(p+ 2 (8}9 8q>

ot k-
9 TPor oy T 2 oz " Ox

and

G5 +tpo- —2ro- = T

Op dq dq cos2gb( +q) dp | Oq
oy Pay “or 2 PTV\5, " gy

respectively.

This can be written as a system of linear equations in (9Op/0x, dq/0z)T and (Op/dy, dq/0y)T,
which has characteristics A = dy/dx where \ satisfies

—or — . cos? cos” @ . __ cos qb
det( r—A [q (p+q)} A [pQ (P+Q)]> _o (5)
q—c°s¢(p+Q) p—COST‘p(erQ)Jr?M

which can be expanded out to give

0= 52+ )| N2 A - e (p 4 g) =0,



The discriminant is A = 72 — |p — < ¢(p +q) ] [q — oo d)(p + ¢)?|, which simplifies

to A =12 —pg+ —COS; 2(p4q)? — COS s 9 (p + ¢)%. However, since we know that pg—r2 =
cos® ¢(p + q)?/4 from (4) we can therefore write

sin?(2¢)

A =0 (p+ (1 - cos§) =

(p+4q)* > 0.

Hence, the PDE is hyperbolic, as required.

Finally, we can note that the gradients of the characteristics are

—2r 4+ Al/2

\ = .
2q — (p + q) cos? ¢

. In antiplane strain at equilibrium, we have u = w(z,y)k and V?w = 0. In plane
polars (r,0) Laplace’s equation becomes

Pw 10w 1 0%w
2 pr— —_—— —_—— —
0=Vw= r2+r 7a—i—7ﬂ2 92—0.

Hence w(r,0) = b/(27) is a possible solution.
From the lecture notes, the stress components in antiplane strain (expressed in polar
coordinates) all vanish except
ow pow
= | — T, =
For ™= o0

Here the only nonzero stress is

.

To .
= 2nr

Note that this stress is singular as r — 0, where # is not well-defined in any case.

This displacement could be realized by cutting a cylinder along a ray from the axis,
then shifting one face up a distance b and welding/gluing the two face back together.



[Note: After this ‘cut-and-weld’ operation, the cylinder would be in a state of self-
stress: 7y, # 0 despite no external forces being imposed on the boundary.

The compatibility condition in antiplane strain comes from 9*w/0xdy = &*w/dydx

which immediately leads to
0Ty 0Ty,

or Oy
Here
pboy po x

Tez = a_ 9 . o Tyz = - "5 5>
21 a2 + 12 v 2m 2 + 12

which satisfies the compatibility condition except at (z,y) = (0,0), where the stresses
are not defined.

In fact, it can be shown that

O7y: _ 0Tz

o Oy = pbo(x)d(y)

where §(x) is the usual Dirac d-function. As a result, this displacement field corre-
sponds to a line of incompatibility along the z-axis.]

. From Q. 1, the shear stress on a line element with normal nn = (cos 6, sin 0, 0)7 is
F = —3(Tow — Tyy) 8in(20) + 7, cos(26)
= [§(re0 = ) + 72, ] sin(26 — )
for some . Hence the maximum is
"

2
max |F| = [i(’/’zx - Tyy)z + sz <71y

under the Tresca condition, with equality when the material is yielding.



The equality (at yielding) can be rearranged to give

(Taw — Tyy)? + 472, = 477

When inertia and gravity are negligible, the 2-D Navier equations

OTpw  OTay

=0
ox oy
OTey  OTyy 0
Ox oy
imply the existence of an Airy stress function A such that 7., = 0%2A4/0y?, 7,, =
O*A)0x?, Ty = —0*A/Oxdy. The Tresca condition (at yield) then immediately
gives

( 92A )2 9?AR2A

2 1\2 _TATAL 2
(VA +4 0x0y 0x? 8y2] Ay

as required.
To show that this equation is hyperbolic, we first let

PA a2
P="5s2 q_ayQ’ -~ 0x0y

so that symmetry of mixed partial derivatives gives

or  Op Or @

dr Oy Oy O
while the Tresca yielding condition may be written
(p—q)? +4r? = 47y,

Differentiating with respect to x and y we find that

Writing this as a linear system, we find that the system has characteristics dy/dz = A
where ( ) ( )
dr + Xqg —p Ap—q )
det =0, 6
< p—q q—p—4Ar ©)
which gives that
(P =N —4rA—(p—q) =0,

6



which has solution
A=(p—q ! [27“ +\4r2+ (p — q)Q] }
However, from the original PDE, we know that 472 + (p — ¢)? = 472, so that

_2r £ 27y
p—q

A

Since these solutions are real, the original problem is hyperbolic, with characteristics

02A
T dr | 92A _ 224

Ox2 Oy?

. Recall (e.g. from Sheet 1, Question 5) that the displacement in an unyielded circular
bar is u = Q(—yz,22,0)T, which corresponds to non-zero stress components 7,., =
—pfdy and 7,, = pfQdx. The applied torque is given by

M = / / (27y — YTe.) dady = pQ / / (2% + o?) dady
D D

where, here, the cross-section D is the circle 22 + 3? < a®.

Use polar coordinates (r,6) to show that
27 a 4 9
M—MQ/ /rz-rdrde—ﬂa'u .
o Jo 2

The Tresca condition states that 77, + 7., < 73 where 7y is the yield stress. Here,
this becomes

Q%2 + ) < 7y,
or puQdr < Ty
This is first violated at r = a when
0=0,=2.
[a
For € > €., there must be a plastic region near the boundary of the bar, denoted
s<r<a.

In r < s, the bar is still elastic and we have the same solution as before: in r < s,
Tpe = —pfdy and 7, = pfdx.



At the free boundary, r = s, we must have that the yield criterion is satisfied, i.e.

Ty

1

T§Z+Ty22: c = s =1y = 5=

or s/a = Q./2. (Note that s starts at a« when © = Q. and decreases towards the
centre of the bar as ( increases.)

In the plastic region s < r < a, the Tresca condition becomes an equality: 72, +7’52 =
72 to be solved along with the Navier equation

0Ty, 0Ty,

Ox oy =0.

To solve this, we introduce a stress function ¢(z,y) such that 7,, = 0¢/0y, 7,. =
—0¢/0x so that the Tresca condition becomes

Vo[ = 1y.
Since ¢ is only defined up to a constant (this domain is simply connected), we can

choose ¢ =0 on r = a.

We then seek an axisymmetric solution, ¢ = ¢(r), so that d¢/dr = £7y. To choose
the sign, we note that in r < s d¢/dr = —ufdr < 0; hence, continuity of d¢/dr across
r = s shows that we require d¢/dr < 0. We find that

¢=1y(a—r)

and hence

o N £ 00} Yy

or  r ' Oy  r
We therefore have that

TV TV
Tee = ———, T,.=—= in s<r<a
r r

so that the applied torque

2 a
M = // (xTy, — YTyy) dady = 271'/ puSur? e dr + 27T/ Tyr -1 dr
D 0 .

3
2M :l< —&>, for Q> Q..

radty 3 Q3

or
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