Problem Sheet 4: Solutions

1. The two-dimensional stress tensor is

$$
\mathcal{T}=\left(\begin{array}{ll}
\tau_{x x} & \tau_{x y} \\
\tau_{x y} & \tau_{y y}
\end{array}\right) .
$$

The normal stress on a line element with normal \boldsymbol{n} is

$$
N=\boldsymbol{n} \cdot(\mathcal{T} \boldsymbol{n})=(\cos \theta, \sin \theta)\binom{\tau_{x x} \cos \theta+\tau_{x y} \sin \theta}{\tau_{x y} \cos \theta+\tau_{y y} \sin \theta}=\tau_{x x} \cos ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta+\tau_{y y} \sin ^{2} \theta
$$

which can also be written

$$
\begin{equation*}
N=\frac{1}{2}\left(\tau_{x x}+\tau_{y y}\right)+\frac{1}{2}\left(\tau_{x x}-\tau_{y y}\right) \cos 2 \theta+\tau_{x y} \sin 2 \theta . \tag{1}
\end{equation*}
$$

The shear stress is

$$
S=\boldsymbol{t} \cdot(\mathcal{T} \boldsymbol{n})=(-\sin \theta, \cos \theta)\binom{\tau_{x x} \cos \theta+\tau_{x y} \sin \theta}{\tau_{x y} \cos \theta+\tau_{y y} \sin \theta}=\left(\tau_{y y}-\tau_{x x}\right) \sin \theta \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right),
$$

which gives

$$
\begin{equation*}
S=-\frac{1}{2}\left(\tau_{x x}-\tau_{y y}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta \tag{2}
\end{equation*}
$$

The two relationships (1) and (2) defined a circle (the Mohr circle) in the (N, S)-plane that is parametrized by θ. It is easy to see by direct substitution that

$$
S^{2}+\left[N-\frac{1}{2}\left(\tau_{x x}+\tau_{y y}\right)\right]^{2}=\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}
$$

This is a circle radius $\mathcal{R}=\left[\left(\tau_{x x}-\tau_{y y}\right)^{2} / 4+\tau_{x y}^{2}\right]^{1 / 2}$ and centre $\left(\left(\tau_{x x}+\tau_{y y}\right) / 2,0\right)$.
Since a granular material cannot withstand any tensile stress, we need $N \leq 0 \forall \theta$, which in turn requires that

$$
0 \geq-\frac{\tau_{x x}+\tau_{y y}}{2}+\left[\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2}
$$

or

$$
\begin{equation*}
\frac{\left(\tau_{x x}+\tau_{y y}\right)^{2}}{4} \geq \frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}, \tag{3}
\end{equation*}
$$

which is equivalent to $\tau_{x x} \tau_{y y} \geq \tau_{x y}^{2} ; \tau_{x x} \leq 0, \tau_{y y} \leq 0$, so that the stress tensor \mathcal{T}, is negative semi-definite.

The Coulomb condition requires that $|S| \leq-N \tan \phi$ with ϕ the angle of friction and equality when the material yields.

There are then three cases of interest:

(a) $|S|<-N \tan \phi$ for all θ; the material has not yielded anywhere.
(b) For some values of $\theta,|S|>-N \tan \phi$. This is not possible (it violates the Coulomb friction assumption).
(c) There is precisely one value of θ for which $|S|=-N \tan \phi$, so the material yields.

In this last case, trigonometry gives

$$
\sin \phi=\frac{\left[\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2}}{-\frac{\tau_{x x}+\tau_{y y}}{2}}
$$

Rearranging, we find that

$$
\left(\tau_{x x}+\tau_{y y}\right)^{2} \sin ^{2} \phi=\left(\tau_{x x}-\tau_{y y}\right)^{2}+4 \tau_{x y}^{2}
$$

or

$$
0=\left(\tau_{x x}+\tau_{y y}\right)^{2}\left(1-\sin ^{2} \phi\right)+4\left(\tau_{x y}^{2}-\tau_{x x} \tau_{y y}\right)
$$

Finally, we have

$$
\tau_{x x} \tau_{y y}-\tau_{x y}^{2}=\frac{\cos ^{2} \phi}{4}\left(\tau_{x x}+\tau_{y y}\right)^{2}
$$

With no body force, the two-dimensional Navier equation is

$$
\begin{aligned}
& \frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=\rho \frac{\partial^{2} u}{\partial t^{2}} \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}=\rho \frac{\partial^{2} v}{\partial t^{2}}
\end{aligned}
$$

As in lectures, we assume that any motion (including plastic flow) is slow enough that the acceleration terms may be neglected. We then introduce an Airy stress function $\mathcal{A}(x, y)$ such that $\tau_{x x}=\partial^{2} \mathcal{A} / \partial y^{2}, \tau_{y y}=\partial^{2} \mathcal{A} / \partial x^{2}, \tau_{x y}=-\partial^{2} \mathcal{A} / \partial x \partial y$, and hence the Navier equation is automatically satisfied.
Substituting the stress components associated with the stress function into (3), we find that

$$
\begin{equation*}
\frac{\cos ^{2} \phi}{4}\left(\nabla^{2} \mathcal{A}\right)^{2}=\frac{\partial^{2} \mathcal{A}}{\partial x^{2}} \frac{\partial^{2} \mathcal{A}}{\partial y^{2}}-\left(\frac{\partial^{2} \mathcal{A}}{\partial x \partial y}\right)^{2} \tag{4}
\end{equation*}
$$

as required.
To show that this equation is hyperbolic, we let

$$
p=\frac{\partial^{2} \mathcal{A}}{\partial x^{2}}, \quad q=\frac{\partial^{2} \mathcal{A}}{\partial y^{2}}, \quad r=\frac{\partial^{2} \mathcal{A}}{\partial x \partial y}
$$

so that symmetry of mixed partial derivatives gives

$$
\frac{\partial r}{\partial x}=\frac{\partial p}{\partial y}, \quad \frac{\partial r}{\partial y}=\frac{\partial q}{\partial x}
$$

The condition (4) may be written

$$
\frac{\cos ^{2} \phi}{4}(p+q)^{2}=p q-r^{2}
$$

and, differentiating with respect to x and y we find

$$
q \frac{\partial p}{\partial x}+p \frac{\partial q}{\partial x}-2 r \frac{\partial p}{\partial y}=\frac{\cos ^{2} \phi}{2}(p+q)\left(\frac{\partial p}{\partial x}+\frac{\partial q}{\partial x}\right)
$$

and

$$
q \frac{\partial p}{\partial y}+p \frac{\partial q}{\partial y}-2 r \frac{\partial q}{\partial x}=\frac{\cos ^{2} \phi}{2}(p+q)\left(\frac{\partial p}{\partial y}+\frac{\partial q}{\partial y}\right)
$$

respectively.
This can be written as a system of linear equations in $(\partial p / \partial x, \partial q / \partial x)^{T}$ and $(\partial p / \partial y, \partial q / \partial y)^{T}$, which has characteristics $\lambda=\mathrm{d} y / \mathrm{d} x$ where λ satisfies

$$
\operatorname{det}\left(\begin{array}{cc}
-2 r-\lambda\left[q-\frac{\cos ^{2} \phi}{2}(p+q)\right] & -\lambda\left[p-\frac{\cos ^{2} \phi}{2}(p+q)\right] \tag{5}\\
q-\frac{\cos ^{2} \phi}{2}(p+q) & p-\frac{\cos ^{2} \phi}{2}(p+q)+2 \lambda r
\end{array}\right)=0,
$$

which can be expanded out to give

$$
\left[q-\frac{\cos ^{2} \phi}{2}(p+q)\right] \lambda^{2}+2 r \lambda+p-\frac{\cos ^{2} \phi}{2}(p+q)=0 .
$$

The discriminant is $\Delta=r^{2}-\left[p-\frac{\cos ^{2} \phi}{2}(p+q)^{2}\right]\left[q-\frac{\cos ^{2} \phi}{2}(p+q)^{2}\right]$, which simplifies to $\Delta=r^{2}-p q+\frac{\cos ^{2} \phi}{2}(p+q)^{2}-\frac{\cos ^{4} \phi}{4}(p+q)^{2}$. However, since we know that $p q-r^{2}=$ $\cos ^{2} \phi(p+q)^{2} / 4$ from (4) we can therefore write

$$
\Delta=\frac{\cos ^{2} \phi}{4}(p+q)^{2}\left(1-\cos ^{2} \phi\right)=\frac{\sin ^{2}(2 \phi)}{16}(p+q)^{2}>0
$$

Hence, the PDE is hyperbolic, as required.
Finally, we can note that the gradients of the characteristics are

$$
\lambda=\frac{-2 r \pm \Delta^{1 / 2}}{2 q-(p+q) \cos ^{2} \phi}
$$

2. In antiplane strain at equilibrium, we have $\boldsymbol{u}=w(x, y) \boldsymbol{k}$ and $\nabla^{2} w=0$. In plane polars (r, θ) Laplace's equation becomes

$$
0=\nabla^{2} w=\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} w}{\partial \theta^{2}}=0
$$

Hence $w(r, \theta)=b \theta /(2 \pi)$ is a possible solution.
From the lecture notes, the stress components in antiplane strain (expressed in polar coordinates) all vanish except

$$
\tau_{r z}=\mu \frac{\partial w}{\partial r}, \quad \tau_{\theta z}=\frac{\mu}{r} \frac{\partial w}{\partial \theta}
$$

Here the only nonzero stress is

$$
\tau_{\theta z}=\frac{\mu b}{2 \pi r} .
$$

Note that this stress is singular as $r \rightarrow 0$, where θ is not well-defined in any case.
This displacement could be realized by cutting a cylinder along a ray from the axis, then shifting one face up a distance b and welding/gluing the two face back together.

[Note: After this 'cut-and-weld' operation, the cylinder would be in a state of selfstress: $\tau_{\theta z} \neq 0$ despite no external forces being imposed on the boundary.
The compatibility condition in antiplane strain comes from $\partial^{2} w / \partial x \partial y=\partial^{2} w / \partial y \partial x$ which immediately leads to

$$
\frac{\partial \tau_{y z}}{\partial x}=\frac{\partial \tau_{x z}}{\partial y}
$$

Here

$$
\tau_{x z}=-\frac{\mu b}{2 \pi} \frac{y}{x^{2}+y^{2}}, \quad \tau_{y z}=\frac{\mu b}{2 \pi} \frac{x}{x^{2}+y^{2}},
$$

which satisfies the compatibility condition except at $(x, y)=(0,0)$, where the stresses are not defined.

In fact, it can be shown that

$$
\frac{\partial \tau_{y z}}{\partial x}-\frac{\partial \tau_{x z}}{\partial y}=\mu b \delta(x) \delta(y)
$$

where $\delta(x)$ is the usual Dirac δ-function. As a result, this displacement field corresponds to a line of incompatibility along the z-axis.]
3. From Q. 1, the shear stress on a line element with normal $\boldsymbol{n}=(\cos \theta, \sin \theta, 0)^{T}$ is

$$
\begin{aligned}
F & =-\frac{1}{2}\left(\tau_{x x}-\tau_{y y}\right) \sin (2 \theta)+\tau_{x y} \cos (2 \theta) \\
& =\left[\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2} \sin (2 \theta-\alpha)
\end{aligned}
$$

for some α. Hence the maximum is

$$
\max _{\theta}|F|=\left[\frac{1}{4}\left(\tau_{x x}-\tau_{y y}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2} \leq \tau_{Y}
$$

under the Tresca condition, with equality when the material is yielding.

The equality (at yielding) can be rearranged to give

$$
\left(\tau_{x x}-\tau_{y y}\right)^{2}+4 \tau_{x y}^{2}=4 \tau_{Y}^{2}
$$

When inertia and gravity are negligible, the 2-D Navier equations

$$
\begin{aligned}
& \frac{\partial \tau_{x x}}{\partial x}+\frac{\partial \tau_{x y}}{\partial y}=0 \\
& \frac{\partial \tau_{x y}}{\partial x}+\frac{\partial \tau_{y y}}{\partial y}=0
\end{aligned}
$$

imply the existence of an Airy stress function \mathcal{A} such that $\tau_{x x}=\partial^{2} \mathcal{A} / \partial y^{2}, \tau_{y y}=$ $\partial^{2} \mathcal{A} / \partial x^{2}, \tau_{x y}=-\partial^{2} \mathcal{A} / \partial x \partial y$. The Tresca condition (at yield) then immediately gives

$$
\left(\nabla^{2} \mathcal{A}\right)^{2}+4\left[\left(\frac{\partial^{2} \mathcal{A}}{\partial x \partial y}\right)^{2}-\frac{\partial^{2} \mathcal{A}}{\partial x^{2}} \frac{\partial^{2} \mathcal{A}}{\partial y^{2}}\right]=4 \tau_{Y}^{2}
$$

as required.
To show that this equation is hyperbolic, we first let

$$
p=\frac{\partial^{2} \mathcal{A}}{\partial x^{2}}, \quad q=\frac{\partial^{2} \mathcal{A}}{\partial y^{2}}, \quad r=\frac{\partial^{2} \mathcal{A}}{\partial x \partial y}
$$

so that symmetry of mixed partial derivatives gives

$$
\frac{\partial r}{\partial x}=\frac{\partial p}{\partial y}, \quad \frac{\partial r}{\partial y}=\frac{\partial q}{\partial x}
$$

while the Tresca yielding condition may be written

$$
(p-q)^{2}+4 r^{2}=4 \tau_{Y}^{2}
$$

Differentiating with respect to x and y we find that

$$
\begin{aligned}
& 0=2(p-q)\left(\frac{\partial p}{\partial x}-\frac{\partial q}{\partial x}\right)+8 r \frac{\partial p}{\partial y} \\
& 0=2(p-q)\left(\frac{\partial p}{\partial y}-\frac{\partial q}{\partial y}\right)+8 r \frac{\partial q}{\partial x}
\end{aligned}
$$

Writing this as a linear system, we find that the system has characteristics $\mathrm{d} y / \mathrm{d} x=\lambda$ where

$$
\operatorname{det}\left(\begin{array}{cc}
4 r+\lambda(q-p) & \lambda(p-q) \tag{6}\\
p-q & q-p-4 \lambda r
\end{array}\right)=0
$$

which gives that

$$
(p-q) \lambda^{2}-4 r \lambda-(p-q)=0
$$

which has solution

$$
\lambda=(p-q)^{-1}\left[2 r \pm \sqrt{4 r^{2}+(p-q)^{2}}\right] .
$$

However, from the original PDE, we know that $4 r^{2}+(p-q)^{2}=4 \tau_{Y}^{2}$, so that

$$
\lambda=\frac{2 r \pm 2 \tau_{Y}}{p-q}
$$

Since these solutions are real, the original problem is hyperbolic, with characteristics

$$
\lambda=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2\left(\frac{\partial^{2} \mathcal{A}}{\partial x \partial y} \pm \tau_{Y}\right)}{\frac{\partial^{2} \mathcal{A}}{\partial x^{2}}-\frac{\partial^{2} \mathcal{A}}{\partial y^{2}}} .
$$

4. Recall (e.g. from Sheet 1, Question 5) that the displacement in an unyielded circular bar is $\boldsymbol{u}=\Omega(-y z, x z, 0)^{T}$, which corresponds to non-zero stress components $\tau_{x z}=$ $-\mu \Omega y$ and $\tau_{y z}=\mu \Omega x$. The applied torque is given by

$$
M=\iint_{D}\left(x \tau_{y z}-y \tau_{x z}\right) \mathrm{d} x \mathrm{~d} y=\mu \Omega \iint_{D}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

where, here, the cross-section D is the circle $x^{2}+y^{2}<a^{2}$.
Use polar coordinates (r, θ) to show that

$$
M=\mu \Omega \int_{0}^{2 \pi} \int_{0}^{a} r^{2} \cdot r \mathrm{~d} r \mathrm{~d} \theta=\frac{\pi a^{4} \mu \Omega}{2} .
$$

The Tresca condition states that $\tau_{x z}^{2}+\tau_{y z}^{2} \leq \tau_{Y}^{2}$ where τ_{Y} is the yield stress. Here, this becomes

$$
\mu^{2} \Omega^{2}\left(x^{2}+y^{2}\right) \leq \tau_{Y}^{2}
$$

or $\mu \Omega r \leq \tau_{Y}$.
This is first violated at $r=a$ when

$$
\Omega=\Omega_{c}=\frac{\tau_{Y}}{\mu a} .
$$

For $\Omega>\Omega_{c}$, there must be a plastic region near the boundary of the bar, denoted $s<r<a$.

In $r<s$, the bar is still elastic and we have the same solution as before: in $r<s$, $\tau_{x z}=-\mu \Omega y$ and $\tau_{y z}=\mu \Omega x$.

At the free boundary, $r=s$, we must have that the yield criterion is satisfied, i.e.

$$
\tau_{x z}^{2}+\tau_{y z}^{2}=\tau_{Y}^{2} \Longrightarrow \mu \Omega s=\tau_{Y} \Longrightarrow s=\frac{\tau_{Y}}{\mu \Omega}
$$

or $s / a=\Omega_{c} / \Omega$. (Note that s starts at a when $\Omega=\Omega_{c}$ and decreases towards the centre of the bar as Ω increases.)
In the plastic region $s<r<a$, the Tresca condition becomes an equality: $\tau_{x z}^{2}+\tau_{y z}^{2}=$ τ_{Y}^{2} to be solved along with the Navier equation

$$
\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}=0
$$

To solve this, we introduce a stress function $\phi(x, y)$ such that $\tau_{x z}=\partial \phi / \partial y, \tau_{y z}=$ $-\partial \phi / \partial x$ so that the Tresca condition becomes

$$
|\nabla \phi|=\tau_{Y}
$$

Since ϕ is only defined up to a constant (this domain is simply connected), we can choose $\phi=0$ on $r=a$.
We then seek an axisymmetric solution, $\phi=\phi(r)$, so that $\mathrm{d} \phi / \mathrm{d} r= \pm \tau_{Y}$. To choose the sign, we note that in $r<s \mathrm{~d} \phi / \mathrm{d} r=-\mu \Omega r<0$; hence, continuity of $\mathrm{d} \phi / \mathrm{d} r$ across $r=s$ shows that we require $\mathrm{d} \phi / \mathrm{d} r<0$. We find that

$$
\phi=\tau_{Y}(a-r)
$$

and hence

$$
\frac{\partial \phi}{\partial x}=-\frac{\tau_{Y} x}{r}, \quad \frac{\partial \phi}{\partial y}=-\frac{\tau_{Y} y}{r} .
$$

We therefore have that

$$
\tau_{x z}=-\frac{\tau_{Y} x}{r}, \quad \tau_{y z}=\frac{\tau_{Y} x}{r} \quad \text { in } \quad s<r<a
$$

so that the applied torque

$$
M=\iint_{D}\left(x \tau_{y z}-y \tau_{x z}\right) \mathrm{d} x \mathrm{~d} y=2 \pi \int_{0}^{2} \mu \Omega r^{2} \cdot r \mathrm{~d} r+2 \pi \int_{s}^{a} \tau_{Y} r \cdot r \mathrm{~d} r
$$

or

$$
\frac{2 M}{\pi a^{3} \tau_{Y}}=\frac{1}{3}\left(4-\frac{\Omega_{c}^{3}}{\Omega^{3}}\right), \quad \text { for } \quad \Omega>\Omega_{c}
$$

[Note that the elastic solution obtained for $\Omega \leqslant \Omega_{c}$ can be written as

$$
\frac{2 M}{\pi a^{3} \tau_{y}}=\frac{2}{\pi a^{3} \tau_{y}} \cdot \frac{\pi a^{4} \mu \Omega}{2}=\frac{a_{\mu} \Omega}{\tau_{y}}=\frac{\Omega}{\Omega_{c}} .
$$

So he have $\frac{2 M}{\pi a^{3} \tau_{y}}= \begin{cases}\Omega / \Omega_{c} & \Omega \leqslant \Omega_{c} \\ \frac{1}{3}\left(4-\frac{\Omega_{c}^{3}}{\Omega^{3}}\right) & \Omega>\Omega_{1}\end{cases}$

The bar becomes easier to twist after it has yielded, and fails completely at a finite torque $\frac{2 m}{\pi a^{3} \tau_{y}}=\frac{4}{3}$]

When $\Omega=\Omega_{M}$, we have $S=S_{m}=\frac{a \Omega_{c}}{\Omega_{m}}$
and $\tau_{x z}= \begin{cases}-\mu \Omega_{m y} & r<s_{M} \\ \frac{-\tau_{y} y}{r} & r>s_{m}\end{cases}$

$$
\tau_{y z}=\left\{\begin{array}{cc}
\mu \Omega_{m} x & r<s_{m} \\
\frac{\tau_{y} x}{r} & r>\operatorname{sim}
\end{array}\right.
$$

Devote the subsequent this by $\tilde{\Omega}<0$ so $\Omega=\Omega_{a}+\tilde{\Omega}$. We assume the addition response is purely elastic, so gives rise to an additional shes

$$
\tilde{\tau}_{x t}=-\mu \tilde{\Omega}_{y} \quad \tilde{\tau}_{y z}=\mu \tilde{\Omega}_{x}
$$

Just add these to the initial shes wen $\hat{\Omega}=0$ to get

$$
\begin{aligned}
& \tau_{x z}= \begin{cases}-\mu \ln y-\mu \hat{\Omega y} & r<S_{m} \\
-\frac{\tau_{y} y}{r}-\mu \tilde{\Omega}_{y} & r>S_{m}\end{cases} \\
& \tau_{y z}= \begin{cases}\mu \operatorname{lam}_{x}+\mu \tilde{\Omega}_{x} & r<S_{m} \\
\frac{\tau_{y} x}{r}+\mu \tilde{\Omega}_{x} & r>S_{m}\end{cases}
\end{aligned}
$$

A simple reanargenent gives

$$
\begin{aligned}
& \tau_{x z}= \begin{cases}-\mu \Omega_{y} & r<S_{m} \\
\mu\left(\Omega_{m}-\Omega\right) y-\mu \Omega_{m} S_{m} \frac{y}{r} & r>S_{m}\end{cases} \\
& \tau_{y z}= \begin{cases}\mu \Omega_{x} & r<S_{m} \\
\mu\left(\Omega-\Omega_{m}\right) x+\mu \operatorname{lm} S_{m} \frac{x}{r} & r>S_{m}\end{cases}
\end{aligned}
$$

as required. Nor the torque is given by

$$
\begin{aligned}
& M=\iint_{D}\left(x \tau_{y z}-y \tau_{x z}\right) d x d y \\
& =2 \pi \int_{0}^{S_{m}} \mu \Omega r^{2} \cdot r d r+2 \pi \int_{S_{m}}^{a}\left[\mu\left(\Omega-\Omega_{m}\right) r^{2}+\mu \Omega_{m} S_{u} r\right] r d r \\
& =\frac{\pi \mu \Omega S_{M}^{4}}{2}+\frac{\pi \mu\left(\Omega-\Omega_{\mu}\right)}{2}\left(a^{4}-S_{m}^{4}\right)+\frac{2 \pi \mu}{3} \Omega_{m} S_{m}\left(a^{3}-S_{m}^{3}\right) \\
& \Rightarrow \frac{2 M}{\pi a^{3} \tau_{y}}=\frac{\mu \Omega}{\tau_{y}} \frac{S_{M}^{4}}{a^{3}}+\frac{\mu\left(\Omega-\Omega_{m}\right)}{\tau_{y}} a\left(1-\frac{S_{M}^{4}}{a^{4}}\right)+\frac{4}{3} \frac{\mu \Omega_{m} S_{m}}{\tau_{y}}\left(1-\frac{S_{m}^{3}}{a^{3}}\right) \\
& =\frac{\Omega^{2}}{\Omega_{c}}\left(\frac{\Omega_{c}^{4}}{\Omega_{m}^{4}}\right)+\left(\frac{\Omega}{\Omega_{c}}-\frac{\Omega_{m}}{\Omega_{c}}\right)\left(1-\frac{\Omega_{c}^{4}}{\Omega_{m}^{4}}\right)+\frac{4}{3}\left(1-\frac{\Omega_{c}^{3}}{\Omega_{m}^{3}}\right) \\
& \text { ie. } \frac{2 m}{\pi a^{3} \tau_{y}}=\frac{\Omega_{-} \Omega_{m}}{\Omega_{c}}+\frac{1}{3}\left(4-\frac{\Omega_{c}^{3}}{\Omega_{m}^{3}}\right)
\end{aligned}
$$

The second term is the initial torque wen $\Omega=\Omega_{a}$; the first term is a linear Clasp response allen $\Omega<\Omega_{m}$:
]
when $M=0$, we get a residual thirst Ω_{0} given by

$$
\frac{\Omega_{0}}{\Omega_{c}}=\frac{\Omega_{M}}{\Omega_{c}}-\frac{1}{3}\left(4-\frac{\Omega_{c}^{3}}{\Omega_{M}^{3}}\right)
$$

[This is zero uleu $\Omega_{M}=\Omega_{c}$, is. When ne haven't twisted the bar enough to make it yield. Then Ω_{0} increases as Ω_{m} increases past Ω_{c} :

From (*) we have

$$
\begin{aligned}
& \tau_{x z}^{2}+\tau_{y z}^{2}= \begin{cases}\mu^{2} \Omega^{2} r^{2} & r<S_{m} \\
{\left[\mu\left(\Omega_{m}-\Omega\right)-\mu \Omega_{m} \frac{S_{m}}{r}\right]^{2} r^{2}} & r>S_{m}\end{cases} \\
& \text { ie. } \quad \tau_{x z}^{2}+\tau_{y z}^{2}= \begin{cases}\mu^{2} \Omega^{2} r^{2} & r<S_{m} \\
\mu^{2}\left[\Omega_{m}\left(r-S_{m}\right)-\Omega_{r}\right]^{2} & r>S_{m}\end{cases}
\end{aligned}
$$

You can easily verity that this is an increasing function of r, so takes its maximum value at $r=a$, where

$$
\tau_{x z}^{2}+\tau_{y z}^{2}=\mu^{2}\left[\left(\Omega_{m}-\Omega\right) a-\Omega_{m} S_{m}\right]^{2}
$$

The bor will yield agouk wen this equals τ_{y}^{2}, ie.

$$
\mu\left[\left(\Omega_{m}-\Omega\right) a-\Omega_{m} S_{m}\right]=\tau_{y}=\mu a \Omega_{c}
$$

ie. $\Omega_{m}-\Omega-\Omega_{c}=\Omega_{c} \quad\left[\right.$ recall $\left.\Omega_{m} S_{u}=a \Omega_{c}\right]$

$$
\Rightarrow \Omega=\Omega_{m}-2 \Omega_{c}
$$

Substitute into expression for M:

$$
\frac{2 M}{\pi a^{3} \tau_{y}}=-\frac{2 \Omega_{c}}{\Omega_{c}}+\frac{1}{3}\left(4-\frac{\Omega_{c}^{3}}{\Omega_{c}^{3}}\right)=-\frac{2}{3}-\frac{\Omega_{c}^{3}}{3 \Omega_{M}^{3}}
$$

as required.
[Here's the torque-vesus-twist behaviour during a complete loading cycle:

1. The bar deforms elastically
2. Yield coccus and pas ki deformation connences
3. The bar recover elastically as the lond is released.
4. Now a torque is supplied in the reverse direction
5. The bar yields at a lower critical torque.
6. Finally the lond is released and a pervarect regative twist remains.

5,

Use plane polars (r, e) and look for a radially symmetric solution int $\tau_{r e}=0$, Tr r and $\tau_{\text {ere }}$ fuackios of r only. The Navies equation in $\frac{d \tau_{r r}}{d r}+\frac{\tau_{r r}-T_{o e}}{r}=0$ ard the loudly cordixias are $\tau_{r r}=-P$ on $r=a$

$$
\text { Ur, } \text { Ter } \rightarrow 0 \text { as } r \rightarrow \infty \text {. }
$$

While the material remains blast, he can use the constitutive relations

$$
\begin{aligned}
& \tau_{r r}=(\lambda+2 \mu) \frac{d u_{r}}{d r}+\lambda \frac{u_{r}}{r} \\
& \tau_{e r}=\lambda \frac{d u_{r}}{d r}+(\lambda+2 \mu) \frac{u_{r}}{r}
\end{aligned}
$$

where $\underset{\sim}{U}=u_{r}(r) e_{r}$ is the displacement.
Hence the Javier equation becomes

$$
(\lambda+2 \mu) \frac{d^{2} u_{r}}{d r^{2}}+\frac{\lambda}{r} \frac{d u_{r}}{d r}-\frac{\lambda u_{r}}{r^{2}}+2 \mu\left(\frac{d u_{r}}{d r}-\frac{u_{r}}{r}\right)=0
$$

ie. $\quad \frac{d^{2} u_{r}}{d r^{2}}+\frac{1}{r} \frac{d u_{r}}{d r}-\frac{u r}{r^{2}}=0$
Try $u_{r}=r^{m} \Rightarrow m(m-1)+m-1=0$

$$
\Rightarrow \quad(m+1)(m-1)=0 \Rightarrow m= \pm 1
$$

So general solution is $u_{r}=A r+\frac{B}{r}$

$$
\begin{aligned}
\Rightarrow \quad \tau_{r r} & =(\lambda+2 \mu)\left(A-\frac{B}{r^{2}}\right)+\lambda\left(A+\frac{B}{r^{2}}\right)=2(\lambda+\mu) A-\frac{2 \mu B}{r^{2}} \\
\tau_{e \theta} & =\lambda\left(A-\frac{B}{r^{2}}\right)+(\lambda+2 \mu)\left(A+\frac{B}{r^{2}}\right)=2(\lambda+\mu) A+\frac{2 \mu B}{r^{2}}
\end{aligned}
$$

We want τ_{r}, $\tau_{e e} \rightarrow 0$ as $r \rightarrow \infty \Rightarrow A=0$.

$$
\text { Tor }=-P \text { on } r=a \Rightarrow \frac{2 \mu B}{a^{2}}=P
$$

so that $\tau_{r r}=-\frac{P a^{2}}{r^{2}}, \tau_{e e}=\frac{P a^{2}}{r^{2}}$

The Tresca cossition in pulas is

$$
\sqrt{\frac{1}{4}\left(\tau_{r r}-\tau_{e r}\right)^{2}+\tau_{r e}^{2}} \leqslant \tau_{y}
$$

ie. $\left|\tau_{r r}-\tau_{e o}\right| \leqslant 2 \tau_{y}$ when $\tau_{\text {re }}=0$ with equality when the material is yielding.

Here $\tau_{e o}>\tau_{r r}$ so $\left|\tau_{r r}-\tau_{e o}\right|=\tau_{e 0}-\tau_{r r}$ and Tresca becomes $\frac{2 P a^{2}}{r^{2}} \leqslant 2 \tau_{y}$.

This fist fails at $r=a$ when $P=T_{y}$.
For $I>t_{y}$, there will be a plastic region near the bole, say in $a<r<s$.

In $r>s$ the material is still elastic so ne still have

$$
\tau_{r f}=-\frac{2 \mu B}{r^{2}}, \tau_{\theta e}=\frac{2 \mu B}{r^{2}}
$$

The Tresca condition on the plastic bouday $r=s$ gives

$$
\begin{aligned}
& \tau_{\theta o}-\tau_{r r}=\frac{4 \mu B}{s^{2}}=2 \tau_{y} \Rightarrow B=\frac{s^{2} \tau_{y}}{2 \mu} \\
\Rightarrow & \tau_{r r}=-\frac{s^{2} \tau_{y}}{r^{2}}, \tau_{e \theta}=\frac{s^{2} \tau_{y}}{r^{2}} \quad \text { in } r>s
\end{aligned}
$$

In $r<s$ we solve the Navier equation

$$
\frac{d \tau_{r r}}{d r}+\frac{\tau_{r r}-\tau_{a b}}{r}=0
$$

and the Tresca condition $\tau_{00}-\tau_{\text {or }}=2 \tau_{+}$simultacesuly.

The normal shes Tor must be continuous at $r=s$:

$$
2 \tau_{y} \log s+c=-\tau_{y}
$$

and the Bl on $r=a$ is $\tau_{r r}=-1$ so

$$
2 \tau_{y} \log a+C=-P
$$

Herne $C=-1-2 \tau_{y} \log a$ so that

$$
\left.\begin{array}{l}
\tau_{r r}=-B+2 \tau_{y} \log \left(\frac{r}{a}\right) \\
\tau_{e s}=2 \tau_{y}-P+2 \tau_{y} \log \left(\frac{r}{a}\right)
\end{array}\right\} \text { in } r<s
$$

and $\quad 2 \tau_{y} \log s=-\tau_{y}-C=P-\tau_{y}+2 \tau_{y} \log a$

$$
\begin{aligned}
& \Rightarrow \quad \log \left(\frac{s}{a}\right)=\frac{p}{2 \tau_{y}}-\frac{1}{2} \\
& \Rightarrow \quad S=a \exp \left(\frac{p}{2 \tau_{y}}-\frac{1}{2}\right)
\end{aligned}
$$

[Notice that $S=a$ when $P=\tau_{y}$; then s increases rapidly as P is increased past the yield stress.]

Now when the shes is released, the ratevial becomes elastic so we just superimpose an elastic stress on the shes filed just ostried:

$$
\begin{aligned}
& \tau_{r r}= \begin{cases}-\frac{S_{M}^{2} \tau_{y}}{r^{2}}-\frac{2 \mu B}{r^{2}} & r>S_{m} \\
-P_{M}+2 \tau_{y} \log \left(\frac{r}{a}\right)-\frac{2 \mu B}{r^{2}} & r<S_{M}\end{cases} \\
& \tau_{\text {ere }}= \begin{cases}\frac{S_{M}^{2} \tau_{y}}{r^{2}}+\frac{2 \mu B}{r^{2}} & r>S_{M} \\
2 \tau_{y}-P_{M}+2 \tau_{y} \log \left(\frac{r}{a}\right)+\frac{2 \mu B}{r^{2}} & r<S_{M}\end{cases}
\end{aligned}
$$

On $r=a$ we have $\operatorname{Trr}=-P$, so

$$
-P=-P_{M}-\frac{2 \mu B}{a^{2}} \Rightarrow \quad 2 \mu b=a^{2}\left(P-P_{M}\right)
$$

So when the applied press we P reaches zero, $B=\frac{-a^{2} P_{M}}{2 \mu}$ and heme the residual shes is

$$
\begin{aligned}
& \tau_{r r}= \begin{cases}-\frac{S_{M}^{2} \tau_{y}}{r^{2}}+\frac{a^{2} \operatorname{Pam}_{M}}{r^{2}} & r>S_{m} \\
-P_{m}+2 \tau_{y} \log \left(\frac{r}{a}\right)+\frac{a^{2} P_{m}}{r^{2}} & r<S_{m}\end{cases} \\
& \tau_{\infty B}= \begin{cases}\frac{S_{M}^{2} \tau_{y}}{r^{2}}-\frac{a^{2} P_{M}}{r^{2}} & r>\operatorname{Sm} \\
2 \tau_{y}-P_{M}+2 \tau_{y} \log \left(\frac{r}{a}\right)-\frac{a^{2} P_{m}}{r^{2}} & r<\operatorname{su}\end{cases}
\end{aligned}
$$

Hence

$$
\tau_{\infty}-\tau_{r r}= \begin{cases}\frac{2\left(S_{M}^{2} \tau_{y}-a^{2} I_{m}\right)}{r^{2}} & r>\sin \\ 2 \tau_{y}-\frac{2 a^{2} I_{M}}{r^{2}} & r<\operatorname{sim}\end{cases}
$$

where $S_{M}=\operatorname{aexp}\left(\frac{I_{M}}{2 \tau_{Y}}-\frac{1}{2}\right)$

Here we see how the residual steps increases as the maximum applied pressure f_{M} increases past τ_{y}. Near the hole $r=a$, the material is under a negative shear shes. When $P_{M}=2 \tau_{y}$, we get $\left|\tau_{\text {eoe }}-\tau_{r r}\right|=2 \tau_{y}$ at $r=a$, so the material yields again as it recovers.

