
C5.2 Elasticity & Plasticity Hilary Term 2019

Problem Sheet 4: Solutions

1. The two-dimensional stress tensor is

T =

✓
⌧xx ⌧xy
⌧xy ⌧yy

◆
.

The normal stress on a line element with normal n is

N = n·(T n) = (cos ✓, sin ✓)

✓
⌧xx cos ✓ + ⌧xy sin ✓
⌧xy cos ✓ + ⌧yy sin ✓

◆
= ⌧xx cos

2 ✓+2⌧xy sin ✓ cos ✓+⌧yy sin
2 ✓,

which can also be written

N =
1
2(⌧xx + ⌧yy) +

1
2(⌧xx � ⌧yy) cos 2✓ + ⌧xy sin 2✓. (1)

The shear stress is

S = t·(T n) = (� sin ✓, cos ✓)

✓
⌧xx cos ✓ + ⌧xy sin ✓
⌧xy cos ✓ + ⌧yy sin ✓

◆
= (⌧yy�⌧xx) sin ✓ cos ✓+⌧xy(cos

2 ✓�sin
2 ✓),

which gives

S = �1
2(⌧xx � ⌧yy) sin 2✓ + ⌧xy cos 2✓. (2)

The two relationships (1) and (2) defined a circle (the Mohr circle) in the (N,S)-plane
that is parametrized by ✓. It is easy to see by direct substitution that

S2
+
⇥
N � 1

2(⌧xx + ⌧yy)
⇤2

=
1
4(⌧xx � ⌧yy)

2
+ ⌧ 2xy.

This is a circle radius R =
⇥
(⌧xx � ⌧yy)2/4 + ⌧ 2xy

⇤1/2
and centre ((⌧xx + ⌧yy)/2, 0).

Since a granular material cannot withstand any tensile stress, we need N  0 8✓,
which in turn requires that

0 � �⌧xx + ⌧yy
2

+
⇥
1
4(⌧xx � ⌧yy)

2
+ ⌧ 2xy

⇤1/2

or

(⌧xx + ⌧yy)2

4
� 1

4(⌧xx � ⌧yy)
2
+ ⌧ 2xy, (3)

which is equivalent to ⌧xx⌧yy � ⌧ 2xy; ⌧xx  0, ⌧yy  0, so that the stress tensor T , is

negative semi-definite.
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The Coulomb condition requires that |S|  �N tan� with � the angle of friction and

equality when the material yields.

There are then three cases of interest:

(a) (b) (c)S

N

S

N

S

N

(a) |S| < �N tan� for all ✓; the material has not yielded anywhere.

(b) For some values of ✓, |S| > �N tan�. This is not possible (it violates the

Coulomb friction assumption).

(c) There is precisely one value of ✓ for which |S| = �N tan�, so the material yields.

In this last case, trigonometry gives

sin� =

⇥
1
4(⌧xx � ⌧yy)2 + ⌧ 2xy

⇤1/2

� ⌧xx+⌧yy
2

.

Rearranging, we find that

(⌧xx + ⌧yy)
2
sin

2 � = (⌧xx � ⌧yy)
2
+ 4⌧ 2xy

or

0 = (⌧xx + ⌧yy)
2
(1� sin

2 �) + 4(⌧ 2xy � ⌧xx⌧yy).

Finally, we have

⌧xx⌧yy � ⌧ 2xy =
cos

2 �

4
(⌧xx + ⌧yy)

2.

With no body force, the two-dimensional Navier equation is

@⌧xx
@x

+
@⌧xy
@y

= ⇢
@2u

@t2

@⌧xy
@x

+
@⌧yy
@y

= ⇢
@2v

@t2
.
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As in lectures, we assume that any motion (including plastic flow) is slow enough that

the acceleration terms may be neglected. We then introduce an Airy stress function

A(x, y) such that ⌧xx = @2A/@y2, ⌧yy = @2A/@x2
, ⌧xy = �@2A/@x@y, and hence the

Navier equation is automatically satisfied.

Substituting the stress components associated with the stress function into (3), we

find that

cos
2 �

4
(r2A)

2
=

@2A
@x2

@2A
@y2

�
✓

@2A
@x@y

◆2

, (4)

as required.

To show that this equation is hyperbolic, we let

p =
@2A
@x2

, q =
@2A
@y2

, r =
@2A
@x@y

so that symmetry of mixed partial derivatives gives

@r

@x
=

@p

@y
,

@r

@y
=

@q

@x
.

The condition (4) may be written

cos
2 �

4
(p+ q)2 = pq � r2,

and, di↵erentiating with respect to x and y we find

q
@p

@x
+ p

@q

@x
� 2r

@p

@y
=

cos
2 �

2
(p+ q)

✓
@p

@x
+

@q

@x

◆

and

q
@p

@y
+ p

@q

@y
� 2r

@q

@x
=

cos
2 �

2
(p+ q)

✓
@p

@y
+

@q

@y

◆
,

respectively.

This can be written as a system of linear equations in (@p/@x, @q/@x)T and (@p/@y, @q/@y)T ,
which has characteristics � = dy/dx where � satisfies

det

 
�2r � �

h
q � cos2 �

2 (p+ q)
i

��
h
p� cos2 �

2 (p+ q)
i

q � cos2 �
2 (p+ q) p� cos2 �

2 (p+ q) + 2�r

!
= 0, (5)

which can be expanded out to give

h
q � cos2 �

2 (p+ q)
i
�2

+ 2r�+ p� cos2 �
2 (p+ q) = 0.
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The discriminant is � = r2�
h
p� cos2 �

2 (p+ q)2
i h

q � cos2 �
2 (p+ q)2

i
, which simplifies

to � = r2� pq+ cos2 �
2 (p+ q)2� cos4 �

4 (p+ q)2. However, since we know that pq� r2 =
cos

2 �(p+ q)2/4 from (4) we can therefore write

� =
cos2 �

4 (p+ q)2(1� cos
2 �) =

sin
2
(2�)

16
(p+ q)2 > 0.

Hence, the PDE is hyperbolic, as required.

Finally, we can note that the gradients of the characteristics are

� =
�2r ±�

1/2

2q � (p+ q) cos2 �
.

2. In antiplane strain at equilibrium, we have u = w(x, y)k and r2w = 0. In plane

polars (r, ✓) Laplace’s equation becomes

0 = r2w =
@2w

@r2
+

1

r

@w

@r
+

1

r2
@2w

@✓2
= 0.

Hence w(r, ✓) = b✓/(2⇡) is a possible solution.

From the lecture notes, the stress components in antiplane strain (expressed in polar

coordinates) all vanish except

⌧rz = µ
@w

@r
, ⌧✓z =

µ

r

@w

@✓
.

Here the only nonzero stress is

⌧✓z =
µb

2⇡r
.

Note that this stress is singular as r ! 0, where ✓ is not well-defined in any case.

This displacement could be realized by cutting a cylinder along a ray from the axis,

then shifting one face up a distance b and welding/gluing the two face back together.
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[Note: After this ‘cut-and-weld’ operation, the cylinder would be in a state of self-

stress: ⌧✓z 6= 0 despite no external forces being imposed on the boundary.

The compatibility condition in antiplane strain comes from @2w/@x@y = @2w/@y@x
which immediately leads to

@⌧yz
@x

=
@⌧xz
@y

.

Here

⌧xz = �µb

2⇡

y

x2 + y2
, ⌧yz =

µb

2⇡

x

x2 + y2
,

which satisfies the compatibility condition except at (x, y) = (0, 0), where the stresses
are not defined.

In fact, it can be shown that

@⌧yz
@x

� @⌧xz
@y

= µb �(x)�(y)

where �(x) is the usual Dirac �-function. As a result, this displacement field corre-

sponds to a line of incompatibility along the z-axis.]

3. From Q. 1, the shear stress on a line element with normal n = (cos ✓, sin ✓, 0)T is

F = �1
2(⌧xx � ⌧yy) sin(2✓) + ⌧xy cos(2✓)

=
⇥
1
4(⌧xx � ⌧yy)

2
+ ⌧ 2xy

⇤1/2
sin(2✓ � ↵)

for some ↵. Hence the maximum is

max
✓

|F | =
⇥
1
4(⌧xx � ⌧yy)

2
+ ⌧ 2xy

⇤1/2  ⌧Y

under the Tresca condition, with equality when the material is yielding.
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The equality (at yielding) can be rearranged to give

(⌧xx � ⌧yy)
2
+ 4⌧ 2xy = 4⌧ 2Y .

When inertia and gravity are negligible, the 2-D Navier equations

@⌧xx
@x

+
@⌧xy
@y

= 0

@⌧xy
@x

+
@⌧yy
@y

= 0,

imply the existence of an Airy stress function A such that ⌧xx = @2A/@y2, ⌧yy =

@2A/@x2
, ⌧xy = �@2A/@x@y. The Tresca condition (at yield) then immediately

gives

(r2A)
2
+ 4

"✓
@2A
@x@y

◆2

� @2A
@x2

@2A
@y2

#
= 4⌧ 2Y ,

as required.

To show that this equation is hyperbolic, we first let

p =
@2A
@x2

, q =
@2A
@y2

, r =
@2A
@x@y

so that symmetry of mixed partial derivatives gives

@r

@x
=

@p

@y
,

@r

@y
=

@q

@x

while the Tresca yielding condition may be written

(p� q)2 + 4r2 = 4⌧ 2Y .

Di↵erentiating with respect to x and y we find that

0 = 2(p� q)

✓
@p

@x
� @q

@x

◆
+ 8r

@p

@y

0 = 2(p� q)

✓
@p

@y
� @q

@y

◆
+ 8r

@q

@x
.

Writing this as a linear system, we find that the system has characteristics dy/dx = �
where

det

✓
4r + �(q � p) �(p� q)

p� q q � p� 4�r

◆
= 0, (6)

which gives that

(p� q)�2 � 4r�� (p� q) = 0,
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which has solution

� = (p� q)�1
h
2r ±

p
4r2 + (p� q)2

i
.

However, from the original PDE, we know that 4r2 + (p� q)2 = 4⌧ 2Y , so that

� =
2r ± 2⌧Y
p� q

.

Since these solutions are real, the original problem is hyperbolic, with characteristics

� =
dy

dx
=

2

⇣
@2A
@x@y ± ⌧Y

⌘

@2A
@x2 � @2A

@y2

.

4. Recall (e.g. from Sheet 1, Question 5) that the displacement in an unyielded circular

bar is u = ⌦(�yz, xz, 0)T , which corresponds to non-zero stress components ⌧xz =

�µ⌦y and ⌧yz = µ⌦x. The applied torque is given by

M =

Z Z

D

(x⌧yz � y⌧xz) dxdy = µ⌦

Z Z

D

(x2
+ y2) dxdy

where, here, the cross-section D is the circle x2
+ y2 < a2.

Use polar coordinates (r, ✓) to show that

M = µ⌦

Z 2⇡

0

Z a

0

r2 · rdrd✓ =
⇡a4µ⌦

2
.

The Tresca condition states that ⌧ 2xz + ⌧ 2yz  ⌧ 2Y where ⌧Y is the yield stress. Here,

this becomes

µ2
⌦

2
(x2

+ y2)  ⌧ 2Y ,

or µ⌦r  ⌧Y .

This is first violated at r = a when

⌦ = ⌦c =
⌧Y
µa

.

For ⌦ > ⌦c, there must be a plastic region near the boundary of the bar, denoted

s < r < a.

In r < s, the bar is still elastic and we have the same solution as before: in r < s,
⌧xz = �µ⌦y and ⌧yz = µ⌦x.
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At the free boundary, r = s, we must have that the yield criterion is satisfied, i.e.

⌧ 2xz + ⌧ 2yz = ⌧ 2Y =) µ⌦s = ⌧Y =) s =
⌧Y
µ⌦

or s/a = ⌦c/⌦. (Note that s starts at a when ⌦ = ⌦c and decreases towards the

centre of the bar as ⌦ increases.)

In the plastic region s < r < a, the Tresca condition becomes an equality: ⌧ 2xz+⌧ 2yz =
⌧ 2Y to be solved along with the Navier equation

@⌧xz
@x

+
@⌧yz
@y

= 0.

To solve this, we introduce a stress function �(x, y) such that ⌧xz = @�/@y, ⌧yz =

�@�/@x so that the Tresca condition becomes

|r�| = ⌧Y .

Since � is only defined up to a constant (this domain is simply connected), we can

choose � = 0 on r = a.

We then seek an axisymmetric solution, � = �(r), so that d�/dr = ±⌧Y . To choose

the sign, we note that in r < s d�/dr = �µ⌦r < 0; hence, continuity of d�/dr across
r = s shows that we require d�/dr < 0. We find that

� = ⌧Y (a� r)

and hence
@�

@x
= �⌧Y x

r
,

@�

@y
= �⌧Y y

r
.

We therefore have that

⌧xz = �⌧Y x

r
, ⌧yz =

⌧Y x

r
in s < r < a

so that the applied torque

M =

Z Z

D

(x⌧yz � y⌧xz) dxdy = 2⇡

Z 2

0

µ⌦r2 · r dr + 2⇡

Z a

s

⌧Y r · r dr

or

2M

⇡a3⌧Y
=

1
3

✓
4� ⌦

3
c

⌦3

◆
, for ⌦ > ⌦c.
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