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We briefly review themain ideas and results of the course.

i) The definition of a Lie algebra (crucially the Jacobi identity) and examples 𝔤𝔩𝑉 , 𝔰𝔩𝑉 etc.. Basic struc-
tures such as ideals, quotients and isomorphism theorems.

ii) Nilpotent and Solvable Lie algebras: Engel’s theorem and Lie’s theorem. The main technique to
prove results for such algebras is induction (e.g. on dimension using a short exact sequence in the
inductive step, or by using the lower central series/derived series). For Lie’s theorem we need to
work over an algebraically closed field k of characteristic zero, and the assumption that k is of this
form is in place for essentially all the remaining results in the course. This is for two (different and
equally important) reasons:

1. If a field k is algebraically closed, then any endomorphism of a k-vector space has an eigen-
value. (This is actually an ”if and only if” statement).

2. Ifkhas characteristic zero, and𝜆 ∈ k, then for any integer𝑛 ∈ Z>0wehave𝑛.𝜆 = 0 if andonly
if 𝜆 = 0. This comes up because we can often calculate the trace of a linear endomorphism 𝛼
by choosing an appropriate basis, and then if we know 𝛼 has a single eigenvalue 𝜆 (where k
is algebraically closed), we see that if tr(𝛼) = dim(𝑉).𝜆 = 0 if and only if 𝜆 = 0. (This is, for
example, how the proof of Lie’s Lemmaworks.)

iii) It’s also worth noting that the proof of Lie’s Lemma uses another idea – the “trace trick” – which
comes up in many proofs in the course (it’s one of the principal technical tools in the course): If
𝑥, 𝑦, 𝑧 ∈ 𝔤 are elements of the Lie algebra 𝔤, and (𝑉, 𝜌) is a representation of 𝔤, then if 𝑧 = [𝑥, 𝑦]
and 𝜌(𝑧), 𝜌(𝑥), 𝜌(𝑦) all preserve a subspace𝑊 of 𝑉, the trace of 𝜌(𝑧) on𝑊 is zero, since it is the
commutator [𝜌(𝑥), 𝜌(𝑦)]. Proofs which use this trick combine it with some other way of computing
tr𝑊(𝜌(𝑧)), which is in most cases via a knowledge of the generalised eigenspace decomposition of
𝑊 with respect to 𝜌(𝑧). Note it is crucial that 𝜌(𝑥) and 𝜌(𝑦) preserve𝑊 not just 𝜌(𝑧): consider the
representation of 𝔰𝔩2(k) on k2with standard basis {𝑒1, 𝑒2}. If {𝑒, ℎ, 𝑓} is the standard basis of 𝔰𝔩2, then
ℎ preserves k.𝑒1, and ℎ = [𝑒, 𝑓], but 𝑓 does not preserve𝑊 and tr𝑊(ℎ) = 1.

iv) Representations of nilpotent Lie algebras: linear endomorphisms decompose a vector space nat-
urally into generalised eigenspaces. Representations of nilpotent Lie algebras behave in a sim-
ilar way: every representation (𝑉, 𝜌) of a nilpotent Lie algebra 𝔥 decomposes into a direct sum
of subrepresentations 𝑉𝛼 where 𝑉𝛼 has only one composition factor, the one-dimensional rep-
resentation k𝛼 (𝛼 ∈ (𝔥/𝐷(𝔥))∗ = 𝐷(𝔥)0). 𝑉𝛼 may thus also be characterised as the simultane-
ous (i.e. the intersection of the) generalised 𝛼(ℎ)-eigenspaces for the elements of 𝜌(𝔥). That is,
𝑉𝛼 = {𝑣 ∈ 𝑉 ∶ (𝜌(ℎ) − 𝛼(ℎ))𝑛(𝑣) = 0, ∀𝑛 ≥ dim(𝑉), ∀ℎ ∈ 𝔥}.

v) Cartan subalgebras: these subalgebras allow us to use the representation theory of nilpotent Lie al-
gebras to study the structure of general (finite-dimensional) Lie algebras. The proof of the existence
of Cartan subalgebras uses the notion of a regular element, and Engel’s theorem.
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The motivation for the definition is the following: we have seen that the representation theory of
nilpotent Lie algebras is, in a sense, easy – representations are a direct sum of their generalised
weight spaces. Since any 1-dimensional subspace of a Lie algebra 𝔤 is a subalgebra isomorphic to
𝔤𝔩1, if 𝔤 is nonzero, it contains nontrivial nilpotent subalgebras. If 𝔥 is any such subalgebra, by re-
striction, any 𝔤-representation (𝑉, 𝜌) decomposes as an 𝔥-representation into 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆
whereΨ𝑉 ⊆ 𝐷(𝔥)0 ⊆ 𝔤∗ are the weights of 𝔥 which occur as composition factors of 𝑉 and 𝑉𝜆 is
the 𝜆-generalised weight space of 𝑉, that is, the isotypical subrepresentation of 𝑉 associated to the
isomorphism class of irreducible representation given by 𝜆. In particular, taking (𝑉, 𝜌) = (𝔤, ad),
the adjoint representation, gives the decomposition 𝔤 = ⨁𝜆∈Ψ𝔤

𝔤𝜆. Since 𝔥 is nilpotent, 𝔥 ⊆ 𝔤0,
and soΨ𝔤 = {0} ∪ Φ, that is,Φ denotes the roots, i.e., the (possibly empty) set non-zero weights of
𝔥 that occur in 𝔤.
Since, for any 𝔥-representations 𝑉 and𝑊 and weights 𝜆, 𝜇 ∈ 𝐷(𝔥)0 we have 𝑉𝜆 ⊗𝑊𝜇 ⊆ (𝑉 ⊗
𝑊)𝜆+𝜇 and if 𝜃∶ 𝑉 → 𝑊 is a homomorphism of 𝔥-representations, then 𝜃(𝑉𝜆) ⊆ 𝑊𝜆, it is easy to
see that [𝔤𝛼, 𝔤𝛽] ⊆ 𝔤𝛼+𝛽 and 𝔤𝛼(𝑉𝜇) ⊆ 𝑉𝛼+𝜇, so that 𝔤 and its representations are “graded” by the
weights of 𝔥.
Indeed if 𝔥 ⊆ 𝔥′ ⊆ 𝔤 where 𝔥′ is again nilpotent, then the decompositions obtained using 𝔥′ will
be finer than those obtained using 𝔥, thus we obtain more information about the structure of 𝔤 by
using nilpotent subalgebraswhich aremaximalwith respect to containment. However, the decom-
position 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆 actually gives a decomposition of 𝑉 into 𝔤0-subrepresentations (𝔤0 is a
subalgebra because [𝔤0, 𝔤0] ⊆ 𝔤0+0 = 𝔤0). In general 𝔥 ⊆ 𝔤0 but the containment will usually be
strict. In particular, 𝔤0 need not be a nilpotent Lie algebra, and so to understand the structure of 𝔤
using the decomposition 𝔤 = 𝔤0⨁𝛼∈Φ 𝔤𝛼wewould need to understand the structure of 𝔤0, at least
enough to understand its representations.1

If we can guarantee that 𝔥 = 𝔤0, then it is easy to see that this implies that 𝔥 is a maximal nilpotent
subalgebra with respect to containment, and clearly in this case 𝔤0 is nilpotent. The condition that
𝔥 is self-normalizing is in fact equivalent (for nilpotent subalgebras) to the condition that 𝔤0 = 𝔥,
that is, that 𝔥 is a Cartan subalgebra. Indeed in the proof of the existence of Cartan subalgebras one
considers the 0-generalised eigenspaces 𝔤0,𝑥 of ad(𝑥) for 𝑥 ∈ 𝔤. This is equivalent to considering the
the abelian subalgerba 𝔥𝑥 = k.𝑥 of 𝔤 and taking its 0-generalised weight space 𝔤0. The existence
theorem is proved by showing two things: for any 𝑥, the subalgebra 𝔤0,𝑥 is self-normalizing, and
that provided 𝑥 is regular, so that dim(𝔤0,𝑥) is minimal, then 𝔤0,𝑥 is nilpotent, and hence a Cartan
subalgebra.

vi) Cartan’s Criterion for solvable and semisimple Lie algebras: Bilinear forms play a critical role in
the course through the Killing form. The proof of Cartan’s criterion (or rather Lemma 5.2.10) relies
on the “trace trick” where the vanishing of the trace of a commutator shows that the restriction
of a weight 𝜆 to the subspace [𝔤𝛼, 𝔤−𝛼] ⊆ 𝔥 must equal a rational multiple of the root 𝛼. To see
how this works, let 𝑉 = ⨁𝜆∈Ψ𝑉

𝑉𝜆 be the decomposition of 𝑉 as an 𝔥-representation, and set

𝑊 = ⨁−𝑝≤𝑘≤𝑞𝑉𝜆+𝑘𝛼 ⊆ 𝑉 where 𝜆 − (𝑝 + 1)𝛼 ∉ Ψ𝑉 , and 𝜆 + (𝑞 + 1)𝛼 ∉ Ψ𝑉 , so that𝑊 is
stable under the action of 𝔤𝛼 ⊕ 𝔤−𝛼. Then if 𝑧 ∈ [𝔤𝛼, 𝔤−𝛼], the trace of 𝜌(𝑧)must vanish on𝑊 since
𝜌(𝑧) ∈ [𝜌(𝔤𝛼), 𝜌(𝔤−𝛼]must be a sum of commutators. On the other hand, for any ℎ ∈ 𝔥, we have
tr𝑉𝜇(𝜌(ℎ)) = dim(𝑉𝜇).𝜇(ℎ), since 𝜌(ℎ) has 𝜇(ℎ) as its only eigenvalue on𝑉𝜆. We thus see that the
vanishing of tr𝑊(𝜌(𝑧)) gives an equation relating𝜆(𝑧) and𝛼(𝑧)which readily establishes that upon
restricting to [𝔤𝛼, 𝔤−𝛼] 𝜆 becomes equal to a rational multiple of 𝛼. This is the same strategy is used
later when studying 𝛼-root strings through 𝛽 for 𝛼, 𝛽 roots of a semisimple Lie algebra.

1As an example, if 𝔤 = 𝔟𝑛 denotes the upper-triangular 𝑛 × 𝑛matrices and 𝔥 = 𝔫𝑛 the strictly upper-triangular matrices,
then 𝔥 is a nilpotent subalgebra which is maximal with respect to containment, but it is also an ideal, hence 𝔤 = 𝔤0, and so the
decomposition of 𝔤 one obtains by viewing it as an 𝔥-representation is trivial. Indeed if 𝔥 is any nilpotent ideal of 𝔤 then 𝔤 = 𝔤0
as an 𝔥-representation.
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vii) The Jordan decomposition: This gives a generalisation of the Jordan decomposition of a linear map
to the case of any semisimple Lie algebra. The idea of the proof that the decomposition exists is to
show that anyderivationof a semisimple Lie algebra is inner, and that the semisimple andnilpotent
parts of a derivation are again derivations (which is true for any Lie algebra). The fact that any
derivation of a semisimple Lie algebra is inner is equivalent to showing that you cannot extend 𝔤𝔩1
by a semisimple Lie algebra in a non-trivialway, and this follows fromCartan’s criterion in the same
way thatone shows that a semisimpleLie algebra is adirect sumof simply (nonabelian)Lie algebras.

viii) The compatibility of the Killing form and the Cartan decomposition of a semisimple Lie algebra is
the key to the detailed structure of semisimple Lie algebras. We use the trace trick of 𝑖𝑖𝑖) above a
number of times to get information about the root spaces.

ix) Weyl’s theorem: the semisimplicity of finitedimensional representationsof semisimpleLie algebras
follows roughly the pattern of the standard proof of the corresponding theorem for representations
of finite groups: using Hom-spaces the problem of finding a complementary subrepresentation for
an arbitrary subrepresentation𝑈 ≤ 𝑉 is reduced to the problem of finding a complementary sub-
representation to the subrepresentationof invariants𝑉𝔤. There is anatural candidate2 – the subrep-
resentation𝔤.𝑉 –andbyusing theCasimir operatorswe canprove that𝑉 = 𝑉𝔤⊕𝔤.𝑉 for anyfinite-
dimensional representation of a semisimple Lie algebra 𝔤. This decomposition yields a natural 𝔤-
homomorphism from 𝑉 to 𝑉𝔤, which is precisely what the “averaging” operator |𝐺|−1∑𝑔∈𝐺 𝜌(𝑔)
yields in the case of finite group representations, so it can be thought of as the analogue of that op-
erator.

x) Root systems: this part of the course has a different feel from the rest as it uses just elementary facts
about reflections in Euclidean vector spaces (i.e. a vector spaces with a positive definite bilinear
form, and hence a notion of angle and distance). The existence of a base and the analysis of the
Weyl group are the crucial results, e.g. that the Weyl group acts transitively on the collection of all
bases in a root system. Thess results shows that root systems are determined up to isomorphism by
the Cartanmatrix.

xi) The classification theorems: Putting everything together, semisimple Lie algebras are classified by
Cartan matrices (or Dynkin diagrams) and these can be completely classified. We don’t have time
in the course to prove all of this, but the statements(only!) which are required should be known,
and there are twomain results:

1. The uniqueness result: the procedure which associates a root system to a semisimple Lie al-
gebra is well-defined, that is, the root system attached to a semsimple Lie algebra is unique.
The procedure involves a choice of a Cartan subalgebra, so it is enough to know that if any two
Cartan subalgebras are conjugate by an automorphism of the semisimple Lie algebra. This is
in fact true for any finite dimensional Lie algebra over an algebraically closed field of charac-
teristic zero (but uses some ideas we did not cover in the course).

2. The existence result: Given any root system, there is a semisimple Lie algebra with that root
system. This can be proved in a number ofways and only requires the use of techniqueswhich
we used in the course.

2𝑉/𝔤.𝑉 is the largest quotient of𝑉 on which 𝔤 acts trivially. If the trivial representation occurs in𝑉 only in𝑉𝔤, as it must if
𝑉 is completely reducible, then𝑉𝔤 will map isomorphically onto𝑉/𝔤.𝑉, so that𝑉 = 𝑉𝔤 ⊕ 𝔤.𝑉.
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