
Model solutions and marking scheme for B4.3. December 2019

Question 1: (a)

• φ is a test function on R, φ ∈ D(R), if φ : R → C is a C∞ function
with compact support, supp(φ) := {x ∈ R : φ(x) ̸= 0}.

• φj → φ in D(R) if for some compact K ⊂ R we have supp(φj),

supp(φ) ⊆ K for all j and φ
(s)
j → φ(s) uniformly on R for each s ∈ N0.

• u is a distribution on R, u ∈ D′(R), if u : D(R) → C is linear and
D-continuous: if φj → φ in D(R), then ⟨u, φj⟩ → ⟨u, φ⟩ as j → ∞.

[Marks 1+1+1. Bookwork]
A linear functional u : D(R) → C is a distribution on R iff it has the bound-
edness property: ifK ⊂ R is compact, then there exist constants c = cK ⩾ 0,
m = mK ∈ N0 so ∣∣⟨u, ϕ⟩∣∣ ⩽ c

m∑
s=0

sup
K

∣∣ϕ(s)∣∣ (1)

holds for all ϕ ∈ D(R) with supp(ϕ) ⊆ K.
Proof. Assume first, u ∈ D′(R) but that u hasn’t got the boundedness prop-
erty (1): there exists a compact set K ⊂ R so that for each c = m = j ∈ N
we can find φj ∈ D(R) with supp(φj) ⊆ K and |⟨u, φj⟩| > j

∑j
s=0 sup |φ

(s)
j |.

Put λj := |⟨u, φj⟩| > 0. If ψj := φj/λj , then ψj ∈ D(R) have supports in

K and 1/j >
∑j

s=0 sup |ψ
(s)
j | for all j. It follows that ψj → 0 in D(R) and

hence, by D-continuity of u, that 1 = |⟨u, ψj⟩| → 0, a contradiction proving
that u must have the boundedness property.

Next, if u is linear and has the boundedness property, then for φj → φ
in D(R) as above, we find constants c = cK , m = mK so (1) holds for
ϕ = φj − φ. The D-continuity is then a consequence of linearity. □

[Marks 1+2. Bookwork]
u ∈ D′(R) has order at most m if we can take mK = m for all compact
K ⊂ R in (1). [1 mark. Bookwork]
Assume u has order at most m. Fix a compact K ⊂ R and let φ ∈ D(R)
with supp(φ) ⊆ K. Then from supp(φ′) ⊆ supp(φ) we get by (1):

|⟨u′, φ⟩| = |⟨u,−φ′⟩| ⩽ c
m∑
s=0

sup |φ(s+1)|

⩽ c
m+1∑
s=0

sup |φ(s)|
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and u′ has order at most m+ 1 as required. [1 mark. Seen before]
(b) Clearly E(φ) is well-defined and by FTC is C1 with E(φ)′ = φ −
ρ
∫
Rφdt ∈ C∞ so E(φ) ∈ C∞(R). Take a > 1 so large that supp(φ) ⊆

[−a, a]. Then supp(E(φ)) ⊆ [−a, a] too: clearly E(φ) = 0 on (−∞, a] and
if x ⩾ a, then

E(φ)(x) =

∫ x

−∞

(
φ(s)− ρ(s)

∫
R
φ
)
ds

=

∫
R

(
φ(s)− ρ(s)

∫
R
φ
)
ds = 0.

Therefore supp(E(φ)) ⊆ [−a, a], so E(φ) ∈ D(R) and E : D(R) → D(R). It
is clear that E is linear. We check D-continuity: Assume ϕj → ϕ in D(R).
Take a > 1 containing all supports so that, by above argument, the supports
of E(ϕj), E(ϕ) are also contained in [−a, a]. Next, we estimate

sup
R

∣∣E(ϕj)− E(ϕ)
∣∣ ⩽ 2

∫ a

−a
|ϕj − ϕ| dx ⩽ 4s sup

R
|ϕj − ϕ| → 0,

and for k ∈ N,

sup
R

∣∣∣∣(E(ϕj)− E(ϕ)
)(k)∣∣∣∣ = sup

R

∣∣∣∣ϕ(k−1)
j − ϕ(k−1) +

∫
R
(ϕj − ϕ) dsρ(k−1)

∣∣∣∣
⩽ sup

R

∣∣ϕ(k−1)
j − ϕ(k−1)

∣∣+ ∫ a

−a
|ϕj − ϕ| ds sup

R
|ρ(k−1)| → 0.

Thus E is linear and D-continuous, and it is then clear that U = P (u) ∈
D′(R). By FTC we see that E(ϕ′) = ϕ holds for all ϕ ∈ D(R), so ⟨U ′, ϕ⟩ =
−⟨u, ϕ′⟩ = ⟨u′, ϕ⟩, that is, U ′ = u. [5 marks. Variant of bookwork.]
(c) Assume u ∈ D′

m(R) for an m ⩾ 1. Fix a compact set K ⊂ R. Take a > 1
so K ⊂ [−a, a] and find c = ca ⩾ 0 so

∣∣⟨u, ϕ⟩∣∣ ⩽ c

m∑
k=0

sup
R

|ϕ(k)|, ∀ϕ ∈ D([−a, a]).

If ϕ ∈ D(K), then by (b) E(ϕ) ∈ D([−a, a]) and using also the bounds from
(b), sup |E(ϕ)| ⩽ 4a sup |ϕ| and for k ⩾ 1,

sup |E(ϕ)(k)| ⩽ sup |ϕ(k−1)|+ 2a sup |ρ(k−1)| sup |ϕ|.

If C = 4a+ 2a(m+ 1) sup{|ρ(k−1)(x)| : k ⩽ m,x ∈ R}, then

∣∣⟨U, ϕ⟩∣∣ ⩽ C
m−1∑
k=0

sup
R

|ϕ(k)|, ∀ϕ ∈ D(K).
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Thus U has order at most m− 1.
If u has order 0, then P (u) need not be continuous: u = δ0 clearly has

order 0 and results in P (u) = H̃ −
∫ 0
−∞ρds that is discontinuous at 0. Put

f = P (u) so that from HINT f ∈ L1
loc(R) and if v = P 2(u), then v′ = f in

D′(R). But

F (x) =

∫ x

0
f(t) dt, x ∈ R,

is a W1,1
loc function, that in particular is continuous, and F ′ = f in D′(R) too.

By the constancy theorem, v = f + c for some constant c, so v is continuous
too. [3+1+4 marks. New example
(d) A compactly supported distribution has finite order, say v ∈ D′

m(R).
By (c), Pm(v) has order 0 and so f := Pm+2(v) ∈ C(R). Also we have
f (m+2) = v as required.

Next, suppose f ∈ Cc(R) and f (n) = v for some n ⩾ 1. Take χ ∈ D(R)
so χ = 1 near the supports of v, f . Then ⟨v, xn−1⟩ = ⟨v, xn−1χ⟩ where we
have xn−1χ ∈ D(R). Now

⟨f (n), xn−1χ⟩ = (−1)n⟨f,
(
xn−1χ

)(n)⟩ = 0

since (xn−1χ)(n) = 0 near the support of f , as required.
[2+2 marks. First result treated on Problem sheet by different
method, the second is a new example.]
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Model solutions and marking scheme for B4.3. December 2019

Question 2: (a) The constancy theorem: Let u ∈ D′(R) and assume that
u′ = 0 in D′(R). Then u is constant.
Proof. Let (ρε)ε>0 be the standard mollifier on R and put uε = ρε ∗u. Then
uε ∈ C∞(R), uε → u in D′(R) as ε ↘ 0 and u′ε = ρε ∗ u′ = 0 in the usual
sense on R. Then by the usual constancy theorem, uε = cε on R for some
constant cε ∈ C. Now

cε = cε

∫
R
ρ dx = ⟨uε, ρ⟩ → ⟨u, ρ⟩

as ε ↘ 0. Consequently, if c = ⟨u, ρ⟩, then we have for φ ∈ D(R) as ε ↘ 0:
⟨uε, φ⟩ → ⟨u, φ⟩ and also ⟨uε, φ⟩ = cε

∫
Rφdx → c

∫
Rφdx and therefore

u = c. □ [1+2 marks. Bookwork]
(i) u is in Wk,1(Rn) if the distributional derivatives ∂αu ∈ L1(Rn) for each
multi-index α ∈ Nn

0 with |α| ⩽ k. [1 mark. Bookwork]
(ii) Assume xj → x in R. Estimating

|F (xj)− F (x)| ⩽
{ ∫ xj

x |f | if x < xj∫ x
xj
|f | if x ⩾ xj .

it follows from DCT that F (xj) → F (x) and thus that F is continuous. In
particular F is a regular distribution and for φ ∈ D(R) we get from Fubini
and FTC:

⟨F ′, φ⟩ = −⟨F,φ′⟩ = −
∫ ∞

−∞
F (x)φ′(x) dx

=

∫ 0

−∞

∫ 0

x
f(t)φ′(x) dtdx−

∫ ∞

0

∫ x

0
f(t)φ′(x) dt dx

=

∫ 0

−∞

∫ t

−∞
φ′(x) dxf(t) dt−

∫ ∞

0

∫ ∞

t
φ′(x) dxf(t) dt

=

∫ 0

−∞
φ(t)f(t) dt−

∫ ∞

0
−φ(t)f(t) dt

=

∫
R
f(t)φ(t) dt

as required. Hence if u ∈ W1,1(R), so u, u′ ∈ L1(R), we have that U(x) =∫ x
0 u

′(t) dt is a continuous function with U ′ = u′ in D′(R). Consequently,
(U−u)′ = 0 in D′(R) so that u = U+c for some constant c by the constancy
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theorem and U + c is a continuous representative for u. [1+3+1 marks.
Seen before]
(b) From two applications of FTC we have for all (x, y) ∈ R2:

|φ(x, y)| =
∣∣∣∣∫ x

−∞

∫ y

−∞
∂1∂2ϖ(s, t) dtds

∣∣∣∣
⩽
∫ x

−∞

∫ y

−∞

∣∣∂1∂2φ(s, t)∣∣ dt dt
⩽∥∂1∂2φ∥1

whereby the desired bound follows. [2 marks. New ex] Next, put χn :=
ρ ∗ 1[−n−1,n+1]. Then clearly χn ∈ D(R), χn = 1 near [−n, n], supp(χn) ⊆
[−n−2, n+2] and |χ(s)

n | = |ρ(s)∗1[−n−1,n+1]| ⩽ ∥ρ(s)∥1 =: cs. If φ = ψχn⊗χn,
then φ ∈ D(R2) and from the above we get for (x, y) ∈ [−n, n]2 by use of
the Leibniz rule and triangle inequality:

|ψ(x, y)| ⩽∥∂1∂2φ∥1
=∥∂1∂2ψχn ⊗ χn + ∂2ψχ

′
n ⊗ χn + ∂1ψχn ⊗ χ′

n + ψχ′
n ⊗ χ′

n∥1
⩽∥∂1∂2ψ∥1 + c1∥∂1ψ∥1 + c1∥∂2ψ∥1 + c21∥ψ∥1
⩽c

(
∥ψ∥1 + ∥∂1ψ∥1 + ∥∂2ψ∥1 + ∥∂1∂2ψ∥1

)
for c = 1 + c21. The conclusion follows because the upper bound is indepen-
dent of n. [4 marks. New ex]

Next, if u ∈ W2,1(R2), then we let uε = ρε ∗ u, note that uε ∈ C∞(R2)
and that for a multi-index α ∈ N2

0 of length at most 2, ∂αuε = ρε ∗ ∂αu and
∥∂αuε∥1 ⩽ ∥∂αu∥1 so that uε ∈ W2,1(R2) too. Also, ∥∂αuε − ∂αu∥1 → 0 as
ε ↘ 0. For ε1 > 0, ε2 > 0 we take ψ = uε1 − uε2 ∈ W2,1(R2) ∩ C∞(R2) in
(1) whereby we see that uε is a uniform Cauchy family for ε ↘ 0 and so is
uniformly convergent. It follows that u has a continuous representative. [5
marks. New ex]
(c) The answer to question (i) is no: Let u = ∂1∂2f , where f is Ornstein’s
function. Then u has order 1 and since ∂1u = ∂2∂

2
1f , ∂2u = ∂1∂

2
2f , where

∂21f and ∂22f are regular distribtions, so in particular of order 0, it follows
that both ∂1u and ∂2u have orders at most 1. [2 marks. New ex] The
answer to question (ii) is no: Take φε = ρε∗f , where

(
ρε
)
ε>0

is the standard

mollifier on R2. Then supp(φε) ⊆ supp(f) + Bε(0) so φε ∈ D(R2) and if
we assume that we have a constant c so ∥∂1∂2φ∥1 ⩽ c

(
∥∂21φ∥1 + ∥∂22φ∥1

)
for all φ ∈ D(R2), then a contradiction is obtained. Indeed, note ∂1∂2φε =
ρε ∗ ∂1∂2f and ∂2jφε = ρε ∗ ∂2j f → ∂2j f in L1(R2) as ε ↘ 0, hence taking
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φ = φε1 − φε2 for ε1, ε2 > 0 above we deduce that the family ∂1∂2φε

is Cauchy in L1(R2), hence convergent in L1(R2), as ε ↘ 0. But since
also ∂1∂2φε → ∂1∂2f in D′(R2) as ε ↘ 0, and L1 convergence implies D′

convergence a contradiction is reached. [3 marks. New ex]
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Model solutions and marking scheme for B4.3. December 2019

Question 3: (a) The distributional derivative u′ of u ∈ D′(R) is defined as
⟨u′, φ⟩ := −⟨u, φ′⟩ for φ ∈ D(R). The distributional product au of u ∈ D′(R)
and a ∈ C∞(R) is defined as ⟨au, φ⟩ := ⟨u, aφ⟩ for φ ∈ D(R). Since φ′,
aφ ∈ D(R) it is clear that u′, au : D(R) → C are well-defined and linear. We
check that they are alsoD-continuous: Let φj → φ inD(R), that is supp(φj),
supp(φ) ⊆ K for some fixed compact K ⊂ R and (φj −φ)(s) → 0 uniformly
on R for each s ∈ N0. Clearly supp(φ′

j) ⊆ supp(φj) and (φ′
j − φ′)(s) → 0

uniformly on R, so ⟨u′, φj⟩ → ⟨u′, φ⟩. Clearly also supp(aφj) ⊆ supp(φj)
and by the Leibniz rule (aφj − aφ)(s) → 0 uniformly on R, so ⟨au, φj⟩ →
⟨au, φ⟩.
Leibniz rule on D′: (au)′ = a′u+ au′ when a ∈ C∞(R), u ∈ D′(R).
Proof. For φ ∈ D(R) we check the actions of the distributions using the
previous definitions and linearity of u:

⟨(au)′, φ⟩ − ⟨a′u+ au′, φ⟩ = −⟨au, φ′⟩ − ⟨u, a′φ⟩ − ⟨u′, aφ⟩
= −⟨u, aφ′ + a′φ⟩+ ⟨u, (aφ)′⟩
= 0

where the last equality follows from the usual Leibniz’ rule. □
We have log |x| ∈ L1

loc(R) so it is a regular distribution and for φ ∈ D(R) we
get by integration by parts:

⟨ d
dx log |x|, φ⟩ =−

∫ ∞

−∞
log |x|φ′(x) dx

= lim
ε↘0

(
−
∫ −ε

−∞
−
∫ ∞

ε

)
log |x|φ′(x) dx

= lim
ε↘0

(
−
[
log |x|φ(x)

]x=−ε

x→−∞ +

∫ −ε

−∞

φ(x)

x
dx−

[
log |x|φ(x)

]x→∞
x=ε

+

∫ ∞

ε

φ(x)

x
dx

)
= lim

ε↘0

(
log ε

(
φ(ε)− φ(−ε)

)
+

(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)

x
dx

)
=⟨pv

(1
x

)
, φ⟩

where we used that log ε
(
φ(ε) − φ(−ε)

)
= ε log εφ(ε)−φ(−ε)

ε → 0 as ε ↘ 0.
It follows in particular that pv

(
1
x

)
is a distribution on R.

[3+3 marks. Bookwork and Example known from Problem Sheets]
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(b) Fix φ ∈ D(R). We start by checking that ⟨fp
(

1
x2

)
, φ⟩ is well-defined, and

have by Taylor’s formula

φ(x)− φ(0)− φ′(0)x

x2
→ φ′′(0)

2
as x→ 0

so the integral over any interval (−r, r) with r > 0 exists. If we take r > 1
so large that φ is supported in (−r, r) the remaining part of the integrand
is φ(0)x−2 which is clearly integrable over R \ (−r, r). Thus the expression
is well-defined. Next, we calculate using integration by parts:⟨

d

dx
pv

(1
x

)
, φ

⟩
=−

⟨
pv

(1
x

)
, φ′

⟩
= lim

ε↘0
−
(∫ −ε

−∞
+

∫ ∞

ε

)
φ′(x)

x
dx

= lim
ε↘0

(
φ(−ε) + φ(ε)

ε
−

(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)

x2
dx

)
= lim

ε↘0

(
φ(−ε) + φ(ε)− 2φ(0)

ε
−
(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)− φ(0)

x2
dx

)
Since x 7→ φ′(0)

x 1(−1,1)(x) is an odd function we have for each ε ∈ (0, 1) that(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)− φ(0)

x2
dx =

(∫ −ε

−∞
+

∫ ∞

ε

)
φ(x)− φ(0)− φ′(0)x1(−1,1)(x)

x2
dx

and since we in particular know that the finite part integral is well-defined
we have shown that⟨

d

dx
pv

(1
x

)
, φ

⟩
= lim

ε↘0

φ(−ε) + φ(ε)− 2φ(0)

ε
−
⟨
fp
( 1

x2
)
, φ

⟩
=−

⟨
fp
( 1

x2
)
, φ

⟩
.

Hence it follows in particular that fp
(

1
x2

)
is a distribution. Next, we calculate

for φ ∈ D(R), since x2φ(x) =
(
x2φ(x)

)′
= 0 at x = 0,

⟨x2fp
(

1
x2

)
, φ⟩ = ⟨fp

(
1
x2 , x

2φ⟩ =
∫
R
φdx

as required. [1+4+2 marks. Seen before on Problem Sheet]
(c) We have for ε > 0,(

x+ iε
)−2

= d2

dx2Log (x+ iε) in D′(R)
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and classically on R. Now by inspection, as ε↘ 0,

Log (x+ iε) → log |x|+ iπH(−x) in D′(R)

and so by D′ continuity of differentiation,

lim
ε↘0

(
x+ iε

)−2
= d2

dx2

(
log |x|+ iπH(−x)

)
=fp

(
1
x2

)
− iπδ′0.

[5 marks. Seen related ex before on Problem Sheet]
(d) The equation is an inhomogeneous linear equation, and so GS can be
found as the sum of a PS and GS to the corresponding homogeneous equa-
tion. In order to find a PS we observe that 1

x2(x−1)
= − 1

x − 1
x2 + 1

x−1 for

x ̸= 0, 1. It follows from the result in (c) and its version shifted to 1, that
−pv

(
1
x

)
− fp

(
1
x2

)
+pv

(
1

x−1

)
is a PS to the equation in D′(R). Next consider

x2(x− 1)v = 0 in D′(R). (2)

If v is a solution to (2), then v is supported in {0, 1}. By a theorem from
lectures it follows that v must be of the form

J∑
j=0

cjδ
(j)
0 +

K∑
k=0

dkδ
(k)
1 ,

where J , K ∈ N0 and cj , dk ∈ C are constants. Now x2(x−1)δ
(j)
0 = 0 iff j ∈

{0, 1} and x2(x−1)δ
(k)
1 = 0 iff k = 0, so we must have v = c0δ0+ c1δ

′
0+d0δ1

for constants c0, c1, d0 ∈ C. Conversely we check that any distribution of
this form is a solution to (2), so that these distributions constitute the GS
to (2). It follows that GS is

−pv
(
1
x

)
− fp

(
1
x2

)
+ pv

(
1

x−1

)
+ c0δ0 + c1δ

′
0 + d0δ1

where c0, c1, d0 ∈ C are constants. [1+3+2 marks. New Ex]
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