Model solutions and marking scheme for B4.3.  December 2019

Question 1: (a)

e  is a test function on R, ¢ € D(R), if p: R — C is a C*> function
with compact support, supp(p) := {x € R: ¢(z) # 0}.

e ¢; — ¢ in D(R) if for some compact K C R we have supp(y;),

(s)

supp(p) C K for all j and @; = ©() uniformly on R for each s € N.

e u is a distribution on R, u € D'(R), if u: D(R) — C is linear and
D-continuous: if ¢; = ¢ in D(R), then (u, p;) = (u,p) as j — oo.

[Marks 14+1+41. Bookwork]
A linear functional u: D(R) — C is a distribution on R iff it has the bound-
edness property: if K C R is compact, then there exist constants ¢ = cx > 0,
m =mpg € Ny so

)| < czs;l(pw(s)l (1)
s=0

holds for all ¢ € D(R) with supp(¢) C K.

Proof. Assume first, u € D'(R) but that u hasn’t got the boundedness prop-
erty (1): there exists a compact set K C R so that for each c=m =j € N
we can find ¢; € D(R) with supp(p;) C K and |(u, ;)| > j>.7_,sup \gog.s)].
Put A\; := |(u, ;)| > 0. If ¢j = @j/Aj, then ¢; € D(R) have supports in
K and 1/j > Zj o Sup W | for all j. It follows that ¢; — 0 in D(R) and
hence, by D-continuity of u, that 1 = |(u, ;)| — 0, a contradiction proving
that v must have the boundedness property.

Next, if u is linear and has the boundedness property, then for ¢; — ¢
in D(R) as above, we find constants ¢ = cx, m = mg so (1) holds for
¢ = ¢; — ¢. The D-continuity is then a consequence of linearity. O

[Marks 14-2. Bookwork]|
u € D'(R) has order at most m if we can take mg = m for all compact
K CcRin (1). [1 mark. Bookwork]
Assume u has order at most m. Fix a compact K C R and let ¢ € D(R)
with supp(¢) € K. Then from supp(y’) C supp(¢) we get by (1):

(', )| = [{u, —¢' Zsup\sos“

m+1

¢y suplp®
s=0



and v’ has order at most m + 1 as required. [1 mark. Seen before]
(b) Clearly E(yp) is well-defined and by FTC is C! with E(p) = ¢ —
p Jppdt € C* so E(p) € C®(R). Take a > 1 so large that supp(y) C
[—a,a]. Then supp(E(¢)) C [—a,a] too: clearly E(p) = 0 on (—o0,a] and
if x > a, then

E)@) = [ (o) - p(s) [ ¢)ds

—00 R

~ [ ot [ ) ds=0.

Therefore supp(E(p)) C [—a,a], so E(¢) € D(R) and E: D(R) — D(R). It
is clear that F' is linear. We check D-continuity: Assume ¢; — ¢ in D(R).
Take a > 1 containing all supports so that, by above argument, the supports
of E(¢;), E(¢) are also contained in [—a, a]. Next, we estimate

S%p|E(¢j) —E()| <2 [ |¢j—¢ldx< 488111)\@ ¢l =0,
and for k € N,

sup| (E(¢;) - E(d»))““)] = sup|gf* ) —p(h D + / (¢; — ¢) s~V
R R

< suplof ™ — 6D+ [ o) — ol dssup o] =0

Thus E is linear and D-continuous, and it is then clear that U = P(u) €
D'(R). By FTC we see that E(¢') = ¢ holds for all ¢ € D(R), so (U’,¢) =
—(u, @) = (u/, @), that is, U' = u. [5 marks. Variant of bookwork.]
(c) Assume u € D), (R) for an m > 1. Fix a compact set K C R. Take a > 1
so K C [—a,a] and find ¢ = ¢, = 0 so

u, @) <Y sup|pM], V¢ € D([—a,a)).
k=0 R

If ¢ € D(K), then by (b) E(¢) € D([—a,a]) and using also the bounds from
(b), sup |E(¢)| < 4asup |¢| and for k > 1,

sup |E(¢) ™| < sup [¢"D| + 2asup [p* Y sup |g].
If C = 4a + 2a(m + 1) sup{|p*~D(z)| : k < m,z € R}, then

m—1
Czsup|¢ , V¢eDK).
k=0
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Thus U has order at most m — 1.

If u has order 0, then P(u) need not be continuous: u = Jp clearly has
order 0 and results in P(u) = H — fgoop ds that is discontinuous at 0. Put
f = P(u) so that from HINT f € LL (R) and if v = P?(u), then v/ = f in
D'(R). But

Flz) = /Oxf(t) dt, 7 € R,

is a Wiloi function, that in particular is continuous, and F’ = f in D’(R) too.
By the constancy theorem, v = f 4 ¢ for some constant ¢, so v is continuous
too. [34+1+44 marks. New example
(d) A compactly supported distribution has finite order, say v € D/ (R).
By (c), P™(v) has order 0 and so f := P™2(v) € C(R). Also we have
fm+2) — 4 ag required.

Next, suppose f € C.(R) and f) = o for some n > 1. Take x € D(R)
so x = 1 near the supports of v, f. Then (v, 2"~ ') = (v,2""!x) where we
have "1y € D(R). Now

(£, ) = (1) (@) ) = 0

since (z"1 x)(”) = 0 near the support of f, as required.
[242 marks. First result treated on Problem sheet by different
method, the second is a new example.|
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Question 2: (a) The constancy theorem: Let v € D'(R) and assume that
v’ =0 in D'(R). Then u is constant.

Proof. Let (pz)e>o be the standard mollifier on R and put u. = p. *u. Then
us € C®°(R), ue — u in D'(R) as € \, 0 and u. = p. x v/ = 0 in the usual
sense on R. Then by the usual constancy theorem, u. = ¢. on R for some
constant ¢. € C. Now

Ce _Ca/pdx = (ue, p) — (u, p)
R

as € \( 0. Consequently, if ¢ = (u, p), then we have for ¢ € D(R) as ¢ \, 0:
(ue, ) — (u,) and also (uc, @) = ce [ppder — ¢ [ppda and therefore

u=c. O [142 marks. Bookwork]
(i) u is in WAL(R™) if the distributional derivatives 0%u € L*(R") for each
multi-index a € Nij with |a| < k. [1 mark. Bookwork]

(ii) Assume z; — z in R. Estimating

[21f e <ay
|F(x;) — F(z)| < { [MERTE xj

it follows from DCT that F(z;) — F(z) and thus that F' is continuous. In
particular F' is a regular distribution and for ¢ € D(R) we get from Fubini
and FTC:

(F'.g) = —(F.¢f) = / " F(a)g/ () da

/ /f dtdx—/ /f v dt dz
:// z)dz f(t)dt — // z)dz f ()

:/_ww()f()dt /O—so()f()

- / F()p(t) dt
R

as required. Hence if u € WHL(R), so u, v/ € Ll(R), we have that U(x) =

o u'(t)dt is a continuous function with U’ = «’ in D'(R). Consequently,

(U—w) = 0in D'(R) so that u = U + ¢ for some constant ¢ by the constancy



theorem and U + ¢ is a continuous representative for u. [14341 marks.
Seen before]
(b) From two applications of FTC we have for all (z,y) € R?:

oy
lp(z, y)| = ‘/ / 0102w (s, t) dt ds

T ry
</ / |0102¢0(s, )| dt dt
<[|10102¢]1

whereby the desired bound follows. [2 marks. New ex] Next, put y, :=
p*1_p_1pny1)- Then clearly xn € D(R), xn = 1 near [—n,n], supp(x») C
[=n=2,n+2] and 5| = |p %Ly iy < 0P = e o = Oxm@xn,
then ¢ € D(R?) and from the above we get for (z,y) € [-n,n]? by use of
the Leibniz rule and triangle inequality:

[ (z,y)| <[|0102¢0]11
=[|0102Xn @ Xn + O2UXp, @ X + O190Xn ® X5, + VX5, © X1
<0101 + c1l|O1pllr + crl|Da2pl|1 + cFlle ]y
Le([|ll + 1ol + (|02 )11 + (01022 ]|1)

forc=1+ c%. The conclusion follows because the upper bound is indepen-
dent of n. [4 marks. New ex]

Next, if u € W21(R?), then we let u. = p. * u, note that u. € C>®°(R?)
and that for a multi-index o € Ng of length at most 2, 0%u, = p. * %u and
10%ucll1 < ||0%ul|1 so that u. € W21(R?) too. Also, [|0%ue — 0%y — 0 as
e\, 0. For g1 > 0, &2 > 0 we take 1 = ue, — us, € WH(R?) N C*°(R?) in
(1) whereby we see that u. is a uniform Cauchy family for € ™\, 0 and so is
uniformly convergent. It follows that u has a continuous representative. [5
marks. New ex]

(c) The answer to question (i) is no: Let u = 0102 f, where f is Ornstein’s
function. Then w has order 1 and since dju = 82612 f, Oou = 618% f, where
O3 f and 93 f are regular distribtions, so in particular of order 0, it follows
that both 0ju and Oyu have orders at most 1. [2 marks. New ex] The
answer to question (ii) is no: Take ¢ = p* f, where (,05)€>0 is the standard

mollifier on R2. Then supp(p:) C supp(f) + B:(0) so p. € D(R?) and if
we assume that we have a constant ¢ so [|01020][1 < ¢(||0F¢|l1 + [|030]1)
for all p € D(R?), then a contradiction is obtained. Indeed, note 0102. =
pe * 0102 f and 8]2<p5 = pe % aj%f — 8]2f in L'(R?) as € \, 0, hence taking



© = e, — e, for €1, €2 > 0 above we deduce that the family 0;02¢:
is Cauchy in L!(R?), hence convergent in L!(R?), as ¢ \, 0. But since
also 0100 — 910of in D'(R?) as ¢ \, 0, and L' convergence implies D’
convergence a contradiction is reached. [3 marks. New ex]
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Question 3: (a) The distributional derivative u’ of u € D'(R) is defined as
(W', ) := —(u, ) for ¢ € D(R). The distributional product au of u € D'(R)
and a € C®(R) is defined as (au, ) := (u,ap) for ¢ € D(R). Since ¢’,
ap € D(R) it is clear that v/, au: D(R) — C are well-defined and linear. We
check that they are also D-continuous: Let ¢; — ¢ in D(R), that is supp(p;),
supp(¢) C K for some fixed compact K C R and (p; — ¢)®) — 0 uniformly
on R for each s € Np. Clearly supp(¢’;) C supp(p;) and (¢} — @) =0
uniformly on R, so (v, ;) — (v/,p). Clearly also supp(ap;) C supp(y;)
and by the Leibniz rule (ap; — ap)® — 0 uniformly on R, so (au,¢;) —
(au, 9)

Leibniz rule on D": (au) = a’u + au’ when a € C*(R), u € D'(R).

Proof. For ¢ € D(R) we check the actions of the distributions using the
previous definitions and linearity of w:

((au), ) = (d'u+au', ) = —(au, ') = (u,d'p) — (v, ap)
= —(u,a¢’ +d'p) + (u, (ap)’)
-0

where the last equality follows from the usual Leibniz’ rule. O
We have log |z| € L{ _(R) so it is a regular distribution and for ¢ € D(R) we
get by integration by parts:

(e}

(F1oglal, o) = [ loglaly/ (o) ds

—0o0

X0 -
:ii\n% loge(p(e) — ¢(—¢)) + (/_: +/:O> (PE;) dm)
=(ov(2).9)

where we used that loge(p(e) — ¢(—¢)) = alogsw — 0 as e N\, 0.
It follows in particular that pv(%) is a distribution on R.
[34+3 marks. Bookwork and Example known from Problem Sheets]
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(b) Fix ¢ € D(R). We start by checking that <fp(w—12) ,©) is well-defined, and
have by Taylor’s formula

p(z) —¢(0) =" (0)z , ¢"(0) 0
2

so the integral over any interval (—r,r) with r > 0 exists. If we take r > 1
so large that ¢ is supported in (—r,7) the remaining part of the integrand
is (0)x~2 which is clearly integrable over R\ (—r,7). Thus the expression
is well-defined. Next, we calculate using integration by parts:

(stovi2)e)=— (w()e')
=£<%(/Z+/°°>*”'f
“i (T ([ 7))
:ii{%Cp(_) p(g) — 20(0) </_ /) O)dm>

Since z @1(_1,1)(95) is an odd function we have for each ¢ € (0, 1) that

</s / > d;p _ (/5 / > ©(0) —;’(O)xl(u)(x) "

and since we in particular know that the finite part integral is well-defined
we have shown that

<£1pv(1)7 (p> i £ 0(6) = 20(0) <fp(12)7 g0>

eNo €

_ <fp($12),<p>.

Hence it follows in particular that fp(m%) is a distribution. Next, we calculate
for ¢ € D(R), since 2?p(z) = (z?p )),—Oat$:(),

(z*fp (), ) = (fp (5, 2°p) = /sodx
R

as required. [14+442 marks. Seen before on Problem Sheet]
(c) We have for € > 0,

(z+ 16)72 = %Log (r +ie) in D'(R)

8



and classically on R. Now by inspection, as € \, 0,
Log (z + ie) — log|z| + irH(—z) in D'(R)

and so by D’ continuity of differentiation,

. . \—2

;1{%@ +ie) T =4 <log |z| +irH (— )>
:fp<112> — imdy.

[5 marks. Seen related ex before on Problem Sheet)]
(d) The equation is an inhomogeneous linear equation, and so GS can be
found as the sum of a PS and GS to the corresponding homogeneous equa—
tion. In order to find a PS we observe that m = —% — xQ + =5 for

x # 0, 1. It follows from the result in (c) and its version shifted to 1, that
—pv(%) - fp(m%) + pv(ﬁ) is a PS to the equation in D'(R). Next consider

*(x—1)v=0 in D'(R). (2)

If v is a solution to (2), then v is supported in {0,1}. By a theorem from
lectures it follows that v must be of the form

M~

K
ciof + 3 o™
=0 k=0

where J, K € Ny and ¢;, d;, € C are constants. Now (2 — 1)6(()j) =0iff j €
{0,1} and 2?(x — 1)(5§k) = 0 iff £ = 0, so we must have v = ¢ydg + ¢10() + dod1
for constants ¢y, c1, dy € C. Conversely we check that any distribution of

this form is a solution to (2), so that these distributions constitute the GS
o (2). It follows that GS is

—pv (L) — fp(&) + pv(:21) + codo + c18) + dods

where ¢y, c1, dy € C are constants. [14+342 marks. New Ex]|



