Model solutions and marking scheme for B4.4. March 2020

Question 1: (a) When $f \in L^1(\mathbb{R})$ its Fourier transform is

$$\mathcal{F}(f)(\xi) = \widehat{f}(\xi) := \int_{-\infty}^{\infty} f(x) \mathrm{e}^{-\mathrm{i}\xi x} \,\mathrm{d}x, \quad \xi \in \mathbb{R}.$$

(i): The Riemann-Lebesgue lemma: If $f \in L^1(\mathbb{R})$, then its Fourier transform $\hat{f} \in C_0(\mathbb{R})$.

Proof. It follows immediately from Lebesgue's dominated convergence theorem that \hat{f} is continuous. It is also clear that $\sup_{\mathbb{R}} |\hat{f}| \leq ||f||_1$. We prove that $\hat{f}(\xi) \to 0$ as $\xi \to \pm \infty$ in three steps.

that $\widehat{f}(\xi) \to 0$ as $\xi \to \pm \infty$ in three steps. Step 1. If a < b, then $\widehat{\mathbf{1}_{(a,b)}}(\xi) = \frac{\mathrm{e}^{-\mathrm{i}b\xi} - \mathrm{e}^{-\mathrm{i}a\xi}}{-\mathrm{i}\xi}$ when $\xi \neq 0$ and b - a for $\xi = 0$. It follows that $\widehat{\mathbf{1}_{(a,b)}} \in \mathrm{C}_0(\mathbb{R})$.

Step 2. If $s \colon \mathbb{R} \to \mathbb{C}$ is a step function, so (after changing the value of s at at most fintely many points),

$$s \in \operatorname{span}\left\{\mathbf{1}_{(a,b)}: a, b \in \mathbb{R} \text{ and } a < b\right\},$$

then by linearity of \mathcal{F} and Step 1 it follows that $\hat{s} \in C_0(\mathbb{R})$.

Step 3. Let $f \in L^1(\mathbb{R})$. Fix $\varepsilon > 0$. Since step functions are dense in $L^1(\mathbb{R})$ we find a step function s so $||f - s||_1 < \varepsilon/2$. Now $\sup_{\mathbb{R}} |\widehat{f} - \widehat{s}| = \sup_{\mathbb{R}} |\widehat{f} - s| \le ||f - s||_1 < \varepsilon/2$, so invoking Step 2 and taking r > 0 with $|\widehat{s}(\xi)| < \varepsilon/2$ for $|\xi| > r$ we get for $|\xi| > r$ by the traingle inequality:

$$|\widehat{f}(\xi)| \le |\widehat{f}(\xi) - \widehat{s}(\xi)| + |\widehat{s}(\xi)| < \varepsilon$$

and we are done.

(ii): Fourier inversion formula in $L^1(\mathbb{R})$: Let $f \in L^1(\mathbb{R})$. Then

$$f(x) = \lim_{t \searrow 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\xi) \mathrm{e}^{\mathrm{i}x\xi - \frac{1}{2}(t\xi)^2} \,\mathrm{d}\xi \quad \text{ in } \mathrm{L}^1(\mathbb{R}).$$

A subsequence $t_j \searrow 0$ will also converge pointwise almost everywhere. If also $\hat{f} \in L^1(\mathbb{R})$, then the formula simplifies to

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{ix\xi} d\xi \quad a.e.$$

Since the right-hand side is in $C_0(\mathbb{R})$ by the Riemann-Lebesgue lemma it follows that f has a representative in $C_0(\mathbb{R})$.

(iii): Plancherel's theorem on $L^2(\mathbb{R})$: $\mathcal{F}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is a linear bijection and $\|\widehat{f}\|_2 = \sqrt{2\pi} \|f\|_2$ for all $f \in L^2(\mathbb{R})$. We have

$$\widehat{f}(\xi) = \lim_{j \to \infty} \int_{-j}^{j} f(x) \mathrm{e}^{-\mathrm{i}\xi x} \,\mathrm{d}x \text{ and } f(x) = \lim_{j \to \infty} \frac{1}{2\pi} \int_{-j}^{j} \widehat{f}(\xi) \mathrm{e}^{\mathrm{i}x\xi} \,\mathrm{d}\xi \text{ in } \mathrm{L}^{2}(\mathbb{R}).$$

We record that in symbols: $\mathcal{F}^{-1} = \frac{1}{2\pi} \widetilde{\mathcal{F}}$ on $L^2(\mathbb{R})$ and so $\mathcal{F}^2 = 2\pi \widetilde{(\cdot)}$ on $L^2(\mathbb{R}).$

[1+3+3+3 marks] (All bookwork)(b) (i): $\hat{f}_j = \mathbf{1}_{(-j,j)} \hat{f} \in \mathrm{L}^1 \cap \mathrm{L}^2$, the former by Cauchy-Schwarz, the latter by Plancherel and $\hat{f}_j \to \hat{f}$ in L^2 , so by Plancherel again, $||f_j - f||_2 = \frac{1}{\sqrt{2\pi}} ||\widehat{f}_j - \hat{f}||_2 \to 0$. (ii): Define f_i as as in (i) The \hat{f}_i to the former by \hat{f}_i is the former by \hat{f}_i in \hat{f}_i is the former by Plancherel again.

(ii): Define f_j, g_j as in (i). Then $\widehat{f_j}, \widehat{g_j} \in L^1 \cap L^2$ and by Fubini:

$$\begin{split} \widehat{f_j \ast \hat{g}_j}(x) &= \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{f_j}(\xi - \eta) \widehat{g}_j(\eta) \, \mathrm{d}\eta \mathrm{e}^{-\mathrm{i}x\xi} \, \mathrm{d}\xi \\ &= \int_{\mathbb{R}} \int_{\mathbb{R}} \widehat{f_j}(\xi - \eta) \mathrm{e}^{-\mathrm{i}x(\xi - \eta)} \widehat{g}_j(\eta) \mathrm{e}^{-\mathrm{i}x\eta} \, \mathrm{d}\eta \, \mathrm{d}\xi \\ &= \widehat{\widehat{f}_j}(x) \widehat{\widehat{g}_j}(x) = (2\pi)^2 f_j(-x) g_j(-x), \end{split}$$

where we used the Fourier inversion formula (both in L^1 and in L^2 will do). Since $\hat{f}_j * \hat{g}_j \in L^1$ we get from Fourier inversion formula on L^1 :

$$(\widehat{f}_j * \widehat{g}_j)(\xi) = \frac{1}{2\pi} \lim_{t \searrow 0} \int_{-\infty}^{\infty} \widehat{f}_j * \widehat{g}_j(x) e^{ix\xi - \frac{1}{2}(tx)^2} dx$$

$$= 2\pi \lim_{t \searrow 0} \int_{-\infty}^{\infty} f_j(-x)g_j(-x) e^{ix\xi - \frac{1}{2}(tx)^2} dx$$

$$(\widetilde{f}_j \widetilde{g}_j \in L^1) = 2\pi \int_{-\infty}^{\infty} f_j(-x)g_j(-x) e^{ix\xi} dx$$

$$(-x \mapsto x) = 2\pi \int_{-\infty}^{\infty} f_j(x)g_j(x) e^{-ix\xi} dx = 2\pi \widehat{(f_j g_j)}(\xi)$$

Since, using triangle and Cauchy-Schwarz inequalities, $||f_jg_j - fg||_1 \le ||(f_j - f)g_j||_1 + ||f(g_j - g)||_1 \le ||f_j - f||_2 ||g_j||_2 + ||f||_2 ||g_j - g||_2 \to 0$ we get

$$\|\mathcal{F}(f_jg_j) - \mathcal{F}(fg)\|_{\infty} \le \|f_jg_j - fg\|_1 \to 0.$$

By the definitions

$$\left(\widehat{f}_j * \widehat{g}_j\right)(\xi) = \int_{(-j,j)\cap(\xi-j,\xi+j)} \widehat{f}(\xi-\eta)\widehat{g}(\eta) \,\mathrm{d}\eta$$

and since $\eta \mapsto \widehat{f}(\xi - \eta)\widehat{g}(\eta)$ is integrable by Cauchy-Schwarz we deduce by Lebesgue's dominated convergence theorem $\widehat{f}_j * \widehat{g}_j \to \widehat{f} * \widehat{g}$ pointwise on \mathbb{R} . [3+5 marks] (New variant of bookwork)

(c) Proof. ' \subseteq ' Let $f \in L^1$. Then $g_1 := \sqrt{|f|}, g_2 := \sqrt{|f|} \operatorname{sgn}(f) \in L^2$ so by (b)(ii)

$$\widehat{f} = \widehat{g_1g_2} = \frac{1}{2\pi}\widehat{g}_1 * \widehat{g}_2 = \frac{\widehat{g_1}}{2\pi} * \widehat{g}_2$$

and Plancherel guarantees that $\widehat{g_1}_{2\pi}, \widehat{g}_2 \in L^2$. ' \supseteq ' Let $f, g \in L^2$. Then by Plancherel and Fourier inversion we have $f = \frac{1}{2\pi} \widehat{f_1}$ with $f_1 := \widetilde{\widehat{f}} \in L^2$ and similarly for g, hence by (b)(ii),

$$f * g = \frac{1}{(2\pi)^2} \widehat{f_1} * \widehat{g_1} = \frac{1}{2\pi} \widehat{f_1 g_1} = \frac{\widehat{f_1}}{2\pi} \widehat{g_1}$$

and this is the required identity since $\frac{f_1}{2\pi}g_1 \in L^1$ by Cauchy-Schwarz. [7 marks] (New example)

Question 2: (a) Schwartz class of test functions on \mathbb{R}^n :

$$\mathscr{S}(\mathbb{R}^n) := \bigg\{ \varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n) : S_{\alpha,\beta}(\varphi) < \infty \text{ for all } \alpha, \, \beta \in \mathbb{N}_0^n \bigg\},\$$

where $S_{\alpha,\beta}(\varphi) := \sup_{x \in \mathbb{R}^n} \left| x^{\alpha} (\partial^{\beta} \varphi)(x) \right|$. $\phi_j \to 0$ in $\mathscr{S}(\mathbb{R}^n)$ if $S_{\alpha,\beta}(\phi_j) \to 0$ for all $\alpha, \beta \in \mathbb{N}_0^n$.

Tempered distribution on \mathbb{R}^n : $u: \mathscr{S}(\mathbb{R}^n) \to \mathbb{C}$ linear and $\langle u, \phi_j \rangle \to 0$ when $\phi_j \to 0$ in $\mathscr{S}(\mathbb{R}^n)$. $u_j \to 0$ in $\mathscr{S}'(\mathbb{R}^n)$ if $\langle u_j, \phi \rangle \to 0$ for all $\phi \in \mathscr{S}(\mathbb{R}^n)$.

(i): Fourier bounds: For $k, l \in \mathbb{N}_0$ put $\overline{S}_{k,l}(\phi) := \max_{|\alpha| \le k, |\beta| \le l} S_{\alpha,\beta}(\phi)$. Then there exist constants $c = c(n, k, l) \ge 0$ so $\overline{S}_{k,l}(\widehat{\phi}) \le c\overline{S}_{l+n+1,k}(\phi)$ holds for all $\phi \in \mathscr{S}(\mathbb{R}^n)$.

Fourier inversion formula on $\mathscr{S}(\mathbb{R}^n)$: $\mathcal{F}: \mathscr{S}(\mathbb{R}^n) \to \mathscr{S}(\mathbb{R}^n)$ is a linear bijection with

$$\mathcal{F}^{-1}(\phi)(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \phi(\xi) \mathrm{e}^{\mathrm{i}x \cdot \xi} \,\mathrm{d}\xi.$$

(Or: $\mathcal{F}^{-1} = (2\pi)^{-n} \widetilde{\mathcal{F}}$.)

[2+2 marks] (All bookwork)

(ii): If $u \in \mathscr{S}'(\mathbb{R}^n)$, then $\hat{u} \in \mathscr{S}'(\mathbb{R}^n)$ defined by rule

$$\langle \widehat{u}, \phi \rangle := \langle u, \phi \rangle, \quad \phi \in \mathscr{S}(\mathbb{R}^n).$$

(Not required: well-defined since clearly defined and linear on $\mathscr{S}(\mathbb{R}^n)$, and if $\phi_j \to 0$ in $\mathscr{S}(\mathbb{R}^n)$, then by Fourier bounds $\hat{\phi}_j \to 0$ in $\mathscr{S}(\mathbb{R}^n)$ too, hence $\langle \hat{u}, \phi_j \rangle \to 0$.) Consistent: by the product rule

$$\int_{\mathbb{R}^n} \widehat{\phi} \psi \, \mathrm{d}x = \int_{\mathbb{R}^n} \phi \widehat{\psi} \, \mathrm{d}x \quad \forall \, \phi, \, \psi \in \mathscr{S}(\mathbb{R}^n)$$

that is a straight forward consequence of Fubini's theorem.

 $[\mathbf{1+1 marks}] \text{ (All Bookwork)}$ (iii): Fourier inversion formula in $\mathscr{S}'(\mathbb{R}^n)$: $\mathcal{F}: \mathscr{S}'(\mathbb{R}^n) \to \mathscr{S}'(\mathbb{R}^n)$ is a linear bijection with $\mathcal{F}^{-1} = (2\pi)^{-n}\widetilde{\mathcal{F}}$, where $\widetilde{\mathcal{F}}u = \widetilde{\widehat{u}} = \widehat{\widetilde{u}}$ and $\langle \widetilde{u} \phi \rangle := \langle u, \widetilde{\phi} \rangle$, $\widetilde{\phi}(x) := \phi(-x)$.

Proof. Clear that $\mathcal{F}: \mathscr{S}' \to \mathscr{S}'$ is linear. We first check that $\tilde{\hat{u}} = \hat{\tilde{u}}$: for $\phi \in \mathscr{S}$ the definitions give $\langle \hat{\tilde{u}}, \phi \rangle = \langle u, \tilde{\phi} \rangle$ and for $\xi \in \mathbb{R}^n$ we calculate

$$\widetilde{\widehat{\phi}}(\xi) = \widehat{\phi}(-\xi) = \int_{\mathbb{R}^n} \phi(x) \mathrm{e}^{\mathrm{i}\xi \cdot x} \, \mathrm{d}x \stackrel{y=-x}{=} \int_{\mathbb{R}^n} \phi(-y) \mathrm{e}^{-\mathrm{i}\xi \cdot y} \, \mathrm{d}y = \widehat{\widetilde{\phi}}(\xi),$$

consequently $\langle \widehat{\widetilde{u}}, \phi \rangle = \langle u, \widetilde{\widehat{\phi}} \rangle = \langle u, \widehat{\widetilde{\phi}} \rangle = \langle \widetilde{\widetilde{u}}, \phi \rangle.$ We next check that $(2\pi)^{-n} \widetilde{\mathcal{F}} \mathcal{F} = \mathrm{Id} = \mathcal{F}((2\pi)^{-n} \widetilde{\mathcal{F}})$. For $\phi \in \mathscr{S}$ we get by

We next check that (2π) " $\mathcal{FF} = \mathrm{Id} = \mathcal{F}((2\pi)$ " $\mathcal{F})$. For $\phi \in \mathcal{F}$ we get by use of definitions and the Fourier inversion formula in \mathscr{S} :

$$\begin{split} \left\langle (2\pi)^{-n} \widetilde{\mathcal{F}} \mathcal{F} u, \phi \right\rangle = & \left\langle u, \mathcal{F} \left((2\pi)^{-n} \widetilde{\mathcal{F}} \phi \right) \right\rangle \\ = & \left\langle u, \phi \right\rangle = \left\langle u, (2\pi)^{-n} \widetilde{\mathcal{F}} \left(\mathcal{F} \phi \right) \right\rangle \\ = & \left\langle \mathcal{F} \left((2\pi)^{-n} \widetilde{\mathcal{F}} u \right), \phi \right\rangle, \end{split}$$

and we are done.

[1+3 marks] (All bookwork)

(b): $\delta_0 \in \mathscr{S}'(\mathbb{R})$ so we have for $\phi \in \mathscr{S}(\mathbb{R})$:

$$\langle \widehat{\delta_0}, \phi \rangle = \langle \delta_0, \widehat{\phi} \rangle = \widehat{\phi}(0) = \int_{\mathbb{R}} \phi \, \mathrm{d}x,$$

so $\widehat{\delta_0} = 1$. Since

$$\langle \mathbf{1}_{(-j,j)}, \phi \rangle = \int_{-j}^{j} \phi \, \mathrm{d}x \to \int_{\mathbb{R}} \phi \, \mathrm{d}x$$

and $\mathcal F$ is $\mathscr S'$ continuous (immediate from definitions) the Fourier inversion formula on $\mathscr S'$ yields

$$\delta_0 = (2\pi)^{-1} \widetilde{\hat{1}} = \lim_{j \to \infty} (2\pi)^{-1} \widetilde{\mathbf{1}_{(-j,j)}} = \lim_{j \to \infty} \frac{1}{2\pi} \int_{-j}^{j} e^{i\xi x} dx.$$

Since $\delta_0 = \widetilde{\delta_0}$ the conclusion follows from the \mathscr{S}' continuity of the operation $\widetilde{(\cdot)}$.

Write $\sin^2 x = \frac{1}{2} - \frac{1}{4}e^{i2x} - \frac{1}{4}e^{-i2x}$ and so by the above and the translation rule

$$\mathcal{F}_{x \to \xi} \left(\sin^2 x \right) = \pi \delta_0 - \frac{\pi}{2} \delta_2 - \frac{\pi}{2} \delta_{-2}$$

 $[\mathbf{3+3 \ marks}] \text{ (Seen before and new example)}$ (c): Let $\phi \in \mathscr{S}(\mathbb{R})$ and estimate using the Fourier bounds:

$$\begin{aligned} \left| c_k \langle \mathbf{e}^{\mathbf{i}kx}, \phi \rangle \right| &= \left| c_k \widehat{\phi}(-k) \right| \le M \left(1 + k^m \right) \left| \widehat{\phi}(-k) \right| \\ &= \frac{M}{1 + k^2} \left(1 + k^2 + |-k|^m + |-k|^{m+2} \right) \left| \widehat{\phi}(-k) \right| \\ &\le \frac{4M\overline{S}_{m+2,0}(\widehat{\phi})}{1 + k^2} \\ &\le \frac{4Mc}{1 + k^2} \overline{S}_{2,m+2}(\phi) \end{aligned}$$

for all $k \in \mathbb{N}_0$. It follows that the series $\sum_{k=0}^{\infty} c_k \langle e^{ikx}, \phi \rangle$ is absolutely convergent and that

$$\left|\langle u,\phi\rangle\right| \le \left(\sum_{k=0}^{\infty} \frac{4Mc}{1+k^2}\right)\overline{S}_{2,m+2}(\phi)$$

for all $\phi \in \mathscr{S}(\mathbb{R})$. Thus $u \in \mathscr{S}'(\mathbb{R})$. If $r \in (0,1)$, then the function $F(re^{ix})$ is a bounded continuous function of $x \in \mathbb{R}$, and if $\phi \in \mathscr{S}(\mathbb{R})$, then from above bound we get

$$\left|\sum_{k=0}^{\infty} \left(c_k \widehat{\phi}(-k) - c_k r^k \widehat{\phi}(-k)\right)\right| \le \left(\sum_{k=0}^{\infty} \frac{4Mc}{1+k^2}\right) \overline{S}_{2,m+2}(\phi)(1-r) \to 0$$

as $r \nearrow 1$. Consequently, $F(re^{ix}) \to u$ in $\mathscr{S}'(\mathbb{R})$ as $r \nearrow 1$. Note that $F'(z) = \sum_{k=1}^{\infty} kc_k z^{k-1}$ and $u' = \sum_{k=1}^{\infty} c_k i k e^{ikx}$ by \mathscr{S}' continuity of differentiation, consequently as $r \nearrow 1$,

$$F'(re^{ix}) \to -ie^{-ix}u'$$
 in $\mathscr{S}'(\mathbb{R})$.

[4+3 marks] (New examples)

Question 3: (a)(i): We estimate for $l \in \{0, 1, 2\}$, $x \in \mathbb{R}$ and $k \in \mathbb{Z}$:

$$\begin{aligned} \left| f^{(l)}(x+2\pi k) \right| &= \frac{1+|x+2\pi k|^2}{1+|x+2\pi k|^2} \left| f^{(l)}(x+2\pi k) \right| \\ &\leq \frac{2\overline{S}_{2,l}(f)}{1+|x+2\pi k|^2}. \end{aligned}$$

It follows from this with l = 0 that the series defining Pf(x) is absolutely convergent and so defines a 2π -periodic function $Pf: \mathbb{R} \to \mathbb{C}$. If $|x| \leq 2\pi$ then the above bound gives

$$\left|f^{(l)}(x+2\pi k)\right| \le \frac{2\overline{S}_{2,l}(f)}{1+|x+2\pi k|^2} \le \frac{2\overline{S}_{2,l}(f)}{1+(2\pi)^2(k^2-1)}$$

for all $|k| \geq 2$, and consequently by Weierstrass' M-test the series $\sum_{k \in \mathbb{Z}} f^{(l)}(x + 2\pi k)$ is uniformly convergent in $x \in [-2\pi, 2\pi]$. The function Pf is therefore C^2 on $(-2\pi, 2\pi)$, and therefore by 2π -periodicity a C^2 function on \mathbb{R} .

[4 marks] (All bookwork) [4 marks] (All bookwork) (ii): By (i) and hint we have $(Pf)(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$ uniformly in $x \in \mathbb{R}$. Now for each $k \in \mathbb{Z}$ we get by the uniform convergence of the series defining Pf:

$$c_{k} = \frac{1}{2\pi} \int_{0}^{2\pi} Pf(x) e^{-ikx} dx = \frac{1}{2\pi} \sum_{j \in \mathbb{Z}} \int_{0}^{2\pi} f(x + 2\pi j) e^{-ikx} dx$$
$$= \frac{1}{2\pi} \sum_{j \in \mathbb{Z}} \int_{2\pi j}^{2\pi (j+1)} f(y) e^{-ik(y-2\pi j)} dy$$
$$= \frac{1}{2\pi} \sum_{j \in \mathbb{Z}} \int_{2\pi j}^{2\pi (j+1)} f(y) e^{-iky} dy$$
$$= \frac{\hat{f}(k)}{2\pi}$$

as required. [3 marks] (Variant of bookwork) (iii): Since t > 0 the function $x \mapsto e^{-t|x|}$ is integrable on \mathbb{R} and its Fourier transform is

$$\mathcal{F}_{x \to \xi} \left(e^{-t|x|} \right) = \int_{-\infty}^{0} e^{(t - i\xi)x} dx + \int_{0}^{\infty} e^{-(t + i\xi)x} dx$$
$$= \frac{1}{t - i\xi} + \frac{1}{t + i\xi} = \frac{2t}{t^2 + \xi^2}.$$

Since the function $f(x) := \frac{2t}{t^2 + x^2}$ for each fixed t > 0 is C^2 and $\overline{S}_{2,2}(f) < \infty$ we can apply (ii). By Fourier inversion in \mathscr{S} : $\widehat{f}(\xi) = \mathcal{F}^2(e^{-t|\cdot|}) = 2\pi e^{-t|\xi|}$ and then by (ii) follows

$$\sum_{k \in \mathbb{Z}} \frac{2t}{t^2 + (x + 2\pi k)^2} = \sum_{k \in \mathbb{Z}} e^{-t|k| + ikx}$$

for all $x \in \mathbb{R}$ and t > 0. Take x = 0 and $t = 2\pi$ to conclude. [5 marks] (New example)

(b): Plancherel theorem for Fourier series: If $f \colon \mathbb{R} \to \mathbb{C}$ is a 2π -periodic L^2_{loc} function, then

$$f(x) = \sum_{k \in \mathbb{Z}} c_k \mathrm{e}^{\mathrm{i}kx}, \quad c_k = \frac{1}{2\pi} \int_0^{2\pi} f(x) \mathrm{e}^{-\mathrm{i}kx} \,\mathrm{d}x,$$

holds in $L^2(0, 2\pi]$. Furthermore, Parseval's formula holds:

$$\frac{1}{2\pi} \int_0^{2\pi} |f(x)|^2 \, \mathrm{d}x = \sum_{k \in \mathbb{Z}} |c_k|^2$$

Conversely, if $(b_k)_{k\in\mathbb{Z}} \in \ell^2(\mathbb{Z})$, then the series $\sum_{k\in\mathbb{Z}} b_k e^{ikx}$ converges in $L^2(0, 2\pi]$ to a 2π -periodic L^2_{loc} function. [2 marks] (All bookwork) (i): Put $f_{\varepsilon} := \rho_{\varepsilon} * f$, where $(\rho_{\varepsilon})_{\varepsilon>0}$ is the standard mollifier on \mathbb{R} . Then f_{ε} is a 2π -periodic C^{∞} function and $||f - f_{\varepsilon}||_{L^2(0,2\pi)} + ||f' - f'_{\varepsilon}||_{L^2(0,2\pi)} \to 0$ as $\varepsilon \searrow 0$. If $c_k(g)$ denote the Fourier coefficients for the function g, then we get by partial integration:

$$c_k(f_{\varepsilon}') = \frac{1}{2\pi} \int_0^{2\pi} f_{\varepsilon}'(x) \mathrm{e}^{-\mathrm{i}kx} \,\mathrm{d}x = ikc_k(f_{\varepsilon})$$

Since $c_k(f'_{\varepsilon}) \to c_k(f')$ and $c_k(f_{\varepsilon}) \to c_k$ as $\varepsilon \searrow 0$ we find $c_k(f') = ikc_k$ as required. [2 marks] (Seen before)

By Parseval's formula

$$\int_{0}^{2\pi} |f(x) - c_{0}|^{2} dx = 2\pi \sum_{k \neq 0} |c_{k}|^{2} = 2\pi \sum_{k \neq 0} \frac{1}{k^{2}} |ikc_{k}|^{2}$$
$$\leq 2\pi \sum_{k \neq 0} |ikc_{k}|^{2}$$
$$= 2\pi \int_{0}^{2\pi} |f'(x)|^{2} dx.$$

The equality holds precisely when $f = c_0 + c_{-1}e^{-ix} + c_1e^{ix}$.

 $[\mathbf{3+1 marks}] \text{ (Seen before)}$ (ii): Extend g to odd 2π -periodic function (still denoted) $g: \mathbb{R} \to \mathbb{C}$. Clearly $g \in \mathrm{L}^2_{\mathrm{loc}}(\mathbb{R})$. It is clear that g is C¹ away from $\pi\mathbb{Z}$ and since $g(0) = g(\pi) = 0$ the function g is continuous so by integration by parts we see that the distributional derivative g' is represented by the usual derivative (on $\mathbb{R} \setminus \pi\mathbb{Z}$) and hence that it in particular is in $\mathrm{L}^2_{\mathrm{loc}}(\mathbb{R})$. [2 marks]

By (i) we have

$$\int_0^{2\pi} |g(x) - c_0(g)|^2 \, \mathrm{d}x \le \int_0^{2\pi} |g'(x)|^2 \, \mathrm{d}x$$

with equality exactly when $g = c_0 + c_{-1}e^{-ix} + c_1e^{ix}$. Because g is odd and 2π -periodic, $c_0(g) = 0$ and

$$\int_0^{2\pi} |g(x) - c_0(g)|^2 \, \mathrm{d}x = 2 \int_0^{\pi} |g(x)|^2 \, \mathrm{d}x,$$

g' is even and $2\pi\text{-periodic}$ so

$$\int_0^{2\pi} |g'(x)|^2 \,\mathrm{d}x = 2 \int_0^{\pi} |g'(x)|^2 \,\mathrm{d}x.$$

It follows that

$$\int_0^{\pi} |g(x)|^2 \, \mathrm{d}x \le \int_0^{\pi} |g'(x)|^2 \, \mathrm{d}x.$$

Equality holds precisely when $g = c_0 + c_{-1}e^{-ix} + c_1e^{ix}$ that for odd 2π -periodic functions require $c_0 = 0$ and $c_{-1} = -c_1$, hence equality holds precisely when $g = c \sin$ for some $c \in \mathbb{C}$.

[3+2 marks] (New example)