
Model solutions and marking scheme for B4.4. March 2020

Question 1: (a) When f ∈ L1(R) its Fourier transform is

F(f)(ξ) = f̂(ξ) :=

∫ ∞

−∞
f(x)e−iξx dx, ξ ∈ R.

(i): The Riemann-Lebesgue lemma: If f ∈ L1(R), then its Fourier
transform f̂ ∈ C0(R).
Proof. It follows immediately from Lebesgue’s dominated convergence the-
orem that f̂ is continuous. It is also clear that supR |f̂ | ≤ ∥f∥1. We prove
that f̂(ξ) → 0 as ξ → ±∞ in three steps.

Step 1. If a < b, then 1̂(a,b)(ξ) =
e−ibξ−e−iaξ

−iξ when ξ ̸= 0 and b− a for ξ = 0.

It follows that 1̂(a,b) ∈ C0(R).
Step 2. If s : R → C is a step function, so (after changing the value of s at
at most fintely many points),

s ∈ span

{
1(a,b) : a, b ∈ R and a < b

}
,

then by linearity of F and Step 1 it follows that ŝ ∈ C0(R).
Step 3. Let f ∈ L1(R). Fix ε > 0. Since step functions are dense in L1(R) we
find a step function s so ∥f − s∥1 < ε/2. Now supR |f̂ − ŝ| = supR |f̂ − s| ≤
∥f − s∥1 < ε/2, so invoking Step 2 and taking r > 0 with |ŝ(ξ)| < ε/2 for
|ξ| > r we get for |ξ| > r by the traingle inequality:

|f̂(ξ)| ≤ |f̂(ξ)− ŝ(ξ)|+ |ŝ(ξ)| < ε

and we are done.
(ii): Fourier inversion formula in L1(R): Let f ∈ L1(R). Then

f(x) = lim
t↘0

1
2π

∫ ∞

−∞
f̂(ξ)eixξ−

1
2 (tξ)

2

dξ in L1(R).

A subsequence tj ↘ 0 will also converge pointwise almost everywhere. If

also f̂ ∈ L1(R), then the formula simplifies to

f(x) = 1
2π

∫ ∞

−∞
f̂(ξ)eixξ dξ a.e.

Since the right-hand side is in C0(R) by the Riemann-Lebesgue lemma it
follows that f has a represnetative in C0(R).
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(iii): Plancherel’s theorem on L2(R): F : L2(R) → L2(R) is a linear
bijection and ∥f̂∥2 =

√
2π∥f∥2 for all f ∈ L2(R). We have

f̂(ξ) = lim
j→∞

∫ j

−j
f(x)e−iξx dx and f(x) = lim

j→∞
1
2π

∫ j

−j
f̂(ξ)eixξ dξ in L2(R).

We record that in symbols: F−1 = 1
2π F̃ on L2(R) and so F2 = 2π(̃·) on

L2(R).
[1+3+3+3 marks] (All bookwork)

(b) (i): f̂j = 1(−j,j)f̂ ∈ L1 ∩ L2, the former by Cauchy-Schwarz, the latter

by Plancherel and f̂j → f̂ in L2, so by Plancherel again, ∥fj − f∥2 =
1√
2π
∥f̂j − f∥2 = 1√

2π
∥f̂j − f̂∥2 → 0.

(ii): Define fj , gj as in (i). Then f̂j , ĝj ∈ L1 ∩ L2 and by Fubini:

̂̂
fj ∗ ĝj(x) =

∫
R

∫
R
f̂j(ξ − η)ĝj(η) dηe

−ixξ dξ

=

∫
R

∫
R
f̂j(ξ − η)e−ix(ξ−η)ĝj(η)e

−ixη dη dξ

=
̂̂
f j(x)

̂̂gj(x) = (2π)2fj(−x)gj(−x),

where we used the Fourier inversion formula (both in L1 and in L2 will do).
Since f̂j ∗ ĝj ∈ L1 we get from Fourier inversion formula on L1:(

f̂j ∗ ĝj
)
(ξ) = 1

2π lim
t↘0

∫ ∞

−∞

̂̂
fj ∗ ĝj(x)eixξ−

1
2 (tx)

2

dx

=2π lim
t↘0

∫ ∞

−∞
fj(−x)gj(−x)eixξ−

1
2 (tx)

2

dx

(f̃j g̃j ∈ L1) =2π

∫ ∞

−∞
fj(−x)gj(−x)eixξ dx

(−x 7→ x) =2π

∫ ∞

−∞
fj(x)gj(x)e

−ixξ dx = 2π(̂fjgj)(ξ).

Since, using triangle and Cauchy-Schwarz inequalities, ∥fjgj−fg∥1 ≤ ∥(fj−
f)gj∥1 + ∥f(gj − g)∥1 ≤ ∥fj − f∥2∥gj∥2 + ∥f∥2∥gj − g∥2 → 0 we get

∥F(fjgj)−F(fg)∥∞ ≤ ∥fjgj − fg∥1 → 0.

By the definitions(
f̂j ∗ ĝj

)
(ξ) =

∫
(−j,j)∩(ξ−j,ξ+j)

f̂(ξ − η)ĝ(η) dη
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and since η 7→ f̂(ξ − η)ĝ(η) is integrable by Cauchy-Schwarz we deduce by
Lebesgue’s dominated convergence theorem f̂j ∗ ĝj → f̂ ∗ ĝ pointwise on R.

[3+5 marks] (New variant of bookwork)
(c) Proof. ’⊆’ Let f ∈ L1. Then g1 :=

√
|f |, g2 :=

√
|f |sgn(f) ∈ L2 so by

(b)(ii)

f̂ = ĝ1g2 =
1
2π ĝ1 ∗ ĝ2 =

ĝ1
2π ∗ ĝ2

and Plancherel guarantees that ĝ1
2π , ĝ2 ∈ L2.

’⊇’ Let f , g ∈ L2. Then by Plancherel and Fourier inversion we have

f = 1
2π f̂1 with f1 :=

˜̂
f ∈ L2 and similarly for g, hence by (b)(ii),

f ∗ g = 1
(2π)2

f̂1 ∗ ĝ1 = 1
2π f̂1g1 =

f̂1
2πg1

and this is the required identity since f1
2πg1 ∈ L1 by Cauchy-Schwarz.

[7 marks] (New example)

Question 2: (a) Schwartz class of test functions on Rn:

S (Rn) :=

{
φ ∈ C∞(Rn) : Sα,β(φ) <∞ for all α, β ∈ Nn

0

}
,

where Sα,β(φ) := supx∈Rn

∣∣xα(∂βφ)(x)∣∣. ϕj → 0 in S (Rn) if Sα,β(ϕj) → 0
for all α, β ∈ Nn

0 .
Tempered distribution on Rn: u : S (Rn) → C linear and ⟨u, ϕj⟩ → 0
when ϕj → 0 in S (Rn).
uj → 0 in S ′(Rn) if ⟨uj , ϕ⟩ → 0 for all ϕ ∈ S (Rn).

[1+1 marks] (All bookwork)
(i): Fourier bounds: For k, l ∈ N0 put Sk,l(ϕ) := max|α|≤k,|β|≤l Sα,β(ϕ).

Then there exist constants c = c(n, k, l) ≥ 0 so Sk,l(ϕ̂) ≤ cSl+n+1,k(ϕ) holds
for all ϕ ∈ S (Rn).
Fourier inversion formula on S (Rn): F : S (Rn) → S (Rn) is a linear
bijection with

F−1(ϕ)(x) = (2π)−n

∫
Rn

ϕ(ξ)eix·ξ dξ.

(Or: F−1 = (2π)−nF̃ .)
[2+2 marks] (All bookwork)

(ii): If u ∈ S ′(Rn), then û ∈ S ′(Rn) defined by rule

⟨û, ϕ⟩ := ⟨u, ϕ̂⟩, ϕ ∈ S (Rn).
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(Not required: well-defined since clearly defined and linear on S (Rn), and
if ϕj → 0 in S (Rn), then by Fourier bounds ϕ̂j → 0 in S (Rn) too, hence
⟨û, ϕj⟩ → 0.) Consistent: by the product rule∫

Rn

ϕ̂ψ dx =

∫
Rn

ϕψ̂ dx ∀ϕ, ψ ∈ S (Rn)

that is a straight forward consequence of Fubini’s theorem.
[1+1 marks] (All Bookwork)

(iii): Fourier inversion formula in S ′(Rn): F : S ′(Rn) → S ′(Rn) is a

linear bijection with F−1 = (2π)−nF̃ , where F̃u = ˜̂u = ̂̃u and ⟨ũ ϕ⟩ := ⟨u, ϕ̃⟩,
ϕ̃(x) := ϕ(−x).
Proof. Clear that F : S ′ → S ′ is linear. We first check that ˜̂u = ̂̃u: for

ϕ ∈ S the definitions give ⟨̂̃u, ϕ⟩ = ⟨u, ˜̂ϕ⟩ and for ξ ∈ Rn we calculate

˜̂
ϕ(ξ) = ϕ̂(−ξ) =

∫
Rn

ϕ(x)eiξ·x dx
y=−x
=

∫
Rn

ϕ(−y)e−iξ·y dy =
̂̃
ϕ(ξ),

consequently ⟨̂̃u, ϕ⟩ = ⟨u, ˜̂ϕ⟩ = ⟨u, ̂̃ϕ⟩ = ⟨˜̂u, ϕ⟩.
We next check that (2π)−nF̃F = Id = F

(
(2π)−nF̃

)
. For ϕ ∈ S we get by

use of definitions and the Fourier inversion formula in S :⟨
(2π)−nF̃Fu, ϕ

⟩
=
⟨
u,F

(
(2π)−nF̃ϕ

)⟩
=⟨u, ϕ⟩ =

⟨
u, (2π)−nF̃

(
Fϕ
)⟩

=
⟨
F
(
(2π)−nF̃u

)
, ϕ
⟩
,

and we are done.
[1+3 marks] (All bookwork)

(b): δ0 ∈ S ′(R) so we have for ϕ ∈ S (R):

⟨δ̂0, ϕ⟩ = ⟨δ0, ϕ̂⟩ = ϕ̂(0) =

∫
R
ϕ dx,

so δ̂0 = 1. Since

⟨1(−j,j), ϕ⟩ =
∫ j

−j
ϕdx→

∫
R
ϕ dx

and F is S ′ continuous (immediate from definitions) the Fourier inversion
formula on S ′ yields

δ0 = (2π)−1˜̂1 = lim
j→∞

(2π)−1 ˜̂1(−j,j) = lim
j→∞

1
2π

∫ j

−j
eiξx dx.
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Since δ0 = δ̃0 the conclusion follows from the S ′ continuity of the operation

(̃·).
Write sin2 x = 1

2 − 1
4e

i2x − 1
4e

−i2x and so by the above and the translation
rule

Fx→ξ

(
sin2 x

)
= πδ0 − π

2 δ2 −
π
2 δ−2.

[3+3 marks] (Seen before and new example)
(c): Let ϕ ∈ S (R) and estimate using the Fourier bounds:∣∣ck⟨eikx, ϕ⟩∣∣ = ∣∣ckϕ̂(−k)∣∣ ≤M

(
1 + km

)∣∣ϕ̂(−k)∣∣
= M

1+k2

(
1 + k2 + | − k|m + | − k|m+2

)∣∣ϕ̂(−k)∣∣
≤ 4MSm+2,0(ϕ̂)

1+k2

≤ 4Mc
1+k2

S2,m+2(ϕ)

for all k ∈ N0. It follows that the series
∑∞

k=0 ck⟨eikx, ϕ⟩ is absolutely con-
vergent and that ∣∣⟨u, ϕ⟩∣∣ ≤ ( ∞∑

k=0

4Mc
1+k2

)
S2,m+2(ϕ)

for all ϕ ∈ S (R). Thus u ∈ S ′(R). If r ∈ (0, 1), then the function F (reix)
is a bounded continuous function of x ∈ R, and if ϕ ∈ S (R), then from
above bound we get∣∣∣∣∣

∞∑
k=0

(
ckϕ̂(−k)− ckr

kϕ̂(−k)
)∣∣∣∣∣ ≤

( ∞∑
k=0

4Mc
1+k2

)
S2,m+2(ϕ)(1− r) → 0

as r ↗ 1. Consequently, F (reix) → u in S ′(R) as r ↗ 1.
Note that F ′(z) =

∑∞
k=1 kckz

k−1 and u′ =
∑∞

k=1 ckike
ikx by S ′ continuity

of differentiation, consequently as r ↗ 1,

F ′(reix) → −ie−ixu′ in S ′(R).

[4+3 marks] (New examples)

Question 3: (a)(i): We estimate for l ∈ {0, 1, 2}, x ∈ R and k ∈ Z:∣∣f (l)(x+ 2πk)
∣∣ =1+|x+2πk|2

1+|x+2πk|2
∣∣f (l)(x+ 2πk)

∣∣
≤ 2S2,l(f)

1+|x+2πk|2 .
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It follows from this with l = 0 that the series defining Pf(x) is absolutely
convergent and so defines a 2π-periodic function Pf : R → C. If |x| ≤ 2π
then the above bound gives∣∣f (l)(x+ 2πk)

∣∣ ≤ 2S2,l(f)

1+|x+2πk|2 ≤ 2S2,l(f)

1+(2π)2(k2−1)

for all |k| ≥ 2, and consequently byWeierstrass’ M-test the series
∑

k∈Z f
(l)(x+

2πk) is uniformly convergent in x ∈ [−2π, 2π]. The function Pf is therefore
C2 on (−2π, 2π), and therefore by 2π-periodicity a C2 function on R.

[4 marks] (All bookwork)
(ii): By (i) and hint we have (Pf)(x) =

∑
k∈Z cke

ikx uniformly in x ∈ R.
Now for each k ∈ Z we get by the uniform convergence of the series defining
Pf :

ck = 1
2π

∫ 2π

0
Pf(x)e−ikx dx = 1

2π

∑
j∈Z

∫ 2π

0
f(x+ 2πj)e−ikx dx

= 1
2π

∑
j∈Z

∫ 2π(j+1)

2πj
f(y)e−ik(y−2πj) dy

= 1
2π

∑
j∈Z

∫ 2π(j+1)

2πj
f(y)e−iky dy

= f̂(k)
2π

as required. [3 marks] (Variant of bookwork)
(iii): Since t > 0 the function x 7→ e−t|x| is integrable on R and its Fourier
transform is

Fx→ξ

(
e−t|x|) =∫ 0

−∞
e(t−iξ)x dx+

∫ ∞

0
e−(t+iξ)x dx

= 1
t−iξ +

1
t+iξ = 2t

t2+ξ2
.

Since the function f(x) := 2t
t2+x2 for each fixed t > 0 is C2 and S2,2(f) <∞

we can apply (ii). By Fourier inversion in S : f̂(ξ) = F2(e−t|·|) = 2πe−t|ξ|

and then by (ii) follows∑
k∈Z

2t
t2+(x+2πk)2

=
∑
k∈Z

e−t|k|+ikx

for all x ∈ R and t > 0. Take x = 0 and t = 2π to conclude. [5 marks]
(New example)

6



(b): Plancherel theorem for Fourier series: If f : R → C is a 2π-
periodic L2

loc function, then

f(x) =
∑
k∈Z

cke
ikx, ck = 1

2π

∫ 2π

0
f(x)e−ikx dx,

holds in L2(0, 2π]. Furthermore, Parseval’s formula holds:

1
2π

∫ 2π

0
|f(x)|2 dx =

∑
k∈Z

|ck|2.

Conversely, if (bk)k∈Z ∈ ℓ2(Z), then the series
∑

k∈Z bke
ikx converges in

L2(0, 2π] to a 2π-periodic L2
loc function. [2 marks] (All bookwork)

(i): Put fε := ρε ∗ f , where
(
ρε
)
ε>0

is the standard mollifier on R. Then fε
is a 2π-periodic C∞ function and ∥f − fε∥L2(0,2π) + ∥f ′ − f ′ε∥L2(0,2π) → 0 as
ε ↘ 0. If ck(g) denote the Fourier coefficients for the function g, then we
get by partial integration:

ck(f
′
ε) =

1
2π

∫ 2π

0
f ′ε(x)e

−ikx dx = ikck(fε)

Since ck(f
′
ε) → ck(f

′) and ck(fε) → ck as ε ↘ 0 we find ck(f
′) = ikck as

required. [2 marks] (Seen before)
By Parseval’s formula∫ 2π

0
|f(x)− c0|2 dx = 2π

∑
k ̸=0

|ck|2 =2π
∑
k ̸=0

1
k2
|ikck|2

≤2π
∑
k ̸=0

|ikck|2

=2π

∫ 2π

0
|f ′(x)|2 dx.

The equality holds precisely when f = c0 + c−1e
−ix + c1e

ix.
[3+1 marks] (Seen before)

(ii): Extend g to odd 2π-periodic function (still denoted) g : R → C. Clearly
g ∈ L2

loc(R). It is clear that g is C1 away from πZ and since g(0) = g(π) = 0
the function g is continuous so by integration by parts we see that the
distributional derivative g′ is represented by the usual derivative (on R\πZ)
and hence that it in particular is in L2

loc(R). [2 marks]
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By (i) we have ∫ 2π

0
|g(x)− c0(g)|2 dx ≤

∫ 2π

0
|g′(x)|2 dx

with equality exactly when g = c0 + c−1e
−ix + c1e

ix. Because g is odd and
2π-periodic, c0(g) = 0 and∫ 2π

0
|g(x)− c0(g)|2 dx = 2

∫ π

0
|g(x)|2 dx,

g′ is even and 2π-periodic so∫ 2π

0
|g′(x)|2 dx = 2

∫ π

0
|g′(x)|2 dx.

It follows that ∫ π

0
|g(x)|2 dx ≤

∫ π

0
|g′(x)|2 dx.

Equality holds precisely when g = c0 + c−1e
−ix + c1e

ix that for odd 2π-
periodic functions require c0 = 0 and c−1 = −c1, hence equality holds
precisely when g = c sin for some c ∈ C.

[3+2 marks] (New example)
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