Model solutions and marking scheme for B4.4. March 2020

Question 1: (a) When f € L!(R) its Fourier transform is
FP© =F©) = [ s dn, ek

(i): The Riemann-Lebesgue lemma: If f € L!(R), then its Fourier
transform f € Co(R).

Proof. Tt follows immediately from Lebesgue’s dominated convergence the-
orem that f is continuous. It is also clear that supg | f \ < || f]l1. We prove
that f(&) — 0 as £ — +oo in three steps.
Step 1. If a < b, then 1/(a\,b)(§) = e Moot

3¢
It follows that 1, ) € Co(R).
Step 2. If s: R — C is a step function, so (after changing the value of s at
at most fintely many points),

when £ # 0 and b — a for £ = 0.

s € span{l(@b) ca,beR and a < b},

then by linearity of F and Step 1 it follows that s € Cy(R).

Step 3. Let f € LY(R). Fix e > 0. Since step functions are dense in L (R) we
find a step function s so || f — s|l1 < &/2. Now supg |f — 5] = supg ]f/—\s| <
lf — slli < &/2, so invoking Step 2 and taking r > 0 with |5(¢)| < /2 for
€| > r we get for || > r by the traingle inequality:

£ < 1f(€) =5 +[5(6)| < &

and we are done.
(ii): Fourier inversion formula in L'(R): Let f € L!(R). Then

Fx) = lim oL /f )el?e= 3(t)° d¢  in L'(R).

) 27

A subsequence t; \, 0 will also converge pointwise almost everywhere. If
also f € L*(R), then the formula simplifies to

= / f©)e™de ae.

Since the right-hand side is in Co(R) by the Riemann-Lebesgue lemma it
follows that f has a represnetative in Cp(R).



(ili): Plancherel’s theorem on L*(R): F: L*(R) — L*(R) is a linear
bijection and ||f||2 = /27| f]|2 for all f € L2(R). We have

F© = tim [ @) dr and flz) = lim L / F©)ee dé in L2(R).

]—>OO _]

We record that in symbols: F~! = %]? on L?(R) and so F? = 2x(-) on
L2(R).

[143+3+3 marks] (All bookwork)
(b) (i): fJ =1 ”)f € L' N L2, the former by Cauchy-Schwarz, the latter

by Plancherel and f] — f in L?, so by Plancherel again, ||f; — f|2 =

=Tl = A~ Fl 0.
(ii): Define f;, gj as in (i). Then fJ, g; € L' NL? and by Fubini:

—

Fregite) = [ B~ nasm dne = ag
=//f]£ e =€ (e dy dg
—F(@)5;(x) = (2m)2f,(~2)g,(~2).

where we used the Fourier inversion formula (both in L! and in L? will do).
Since f; x gj € L' we get from Fourier inversion formula on L':

00 ——

(J/c; *gj)(g) lgn f] *gj( Je izg&— %(mﬁ du

=27 hm/ fi(— —z)e imgf%(m)z de
(5 e 1) =2n [ fi(-algi(-a)e< ao
(-iU — 27) :271'/_ fj(lf)gj(a?)e_ixf de — 2%@(5)

Since, using triangle and Cauchy-Schwarz inequalities, || fig;— fglli < ||(fj—
Najll + 111 (g — Dl < f5 = fll2llgillz + £ Nl2llgs — gll2 = 0 we get

| F(fig;) — F(f9)lloo < If595 — fylli — 0.

By the definitions
(F+3)© = [ 7€ = )g(n) dn
(=3 )N(E—5i+)
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and since n — f(£ —n)g(n) is integrable by Cauchy-Schwarz we deduce by
Lebesgue’s dominated convergence theorem f] *gj — f* g pointwise on R.

[3+5 marks] (New variant of bookwork)
(c) Proof. ’C’ Let f € L. Then g1 := /|f], g2 := /| f[sen(f) € L? so by
(b) i) i N
f=0102=501%02 = &«

and Plancherel guarantees that £, gy € L2.
D" Let f, g € L2 _Then by Plancherel and Fourier inversion we have

f= iﬁ with f1 := ]?E L2 and similarly for g, hence by (b)(ii),

1 7 f1

fr9=GGmzh * 1= 5= 191 = 41

and this is the required identity since g—; g1 € L! by Cauchy-Schwarz.
[7 marks] (New example)

Question 2: (a) Schwartz class of test functions on R":
L (R") := {cp € C¥(R") : Sap(p) < oo forall o, e N’S},

where S, () = sup,cpn|2°(0%9)(2)]. ¢; — 0 in L (R™) if Su5(d;) — 0
for all o, B € Njj.
Tempered distribution on R": u: .(R") — C linear and (u,¢;) — 0
when ¢; — 0 in .Z(R").
u; — 0 in '(R") if (u;,¢) — 0 for all ¢ € Z(R"™).

[1+1 marks] (All bookwork)
(i): Fourier bounds: For k, I € Ny put Sy ;(¢) := max|q|<k|gj<i Sa,8(¢).
Then there exist constants ¢ = ¢(n, k,1) > 0 so Ek,l@) < ¢Siin+1.k(0) holds
for all ¢ € 7 (R").
Fourier inversion formula on . (R"): F:.(R") — . (R") is a linear
bijection with

F@)@) = @m™ | o) de.

(Or: F~1 = (2n) ™ F))
[24+2 marks] (All bookwork)
(ii): If uw € & (R™), then u € ./(R") defined by rule

~

(u,¢) == (u,¢), ¢S R").



(Not required: well-defined since clearly defined and linear on .(R"), and
if ¢; — 0 in .(R™), then by Fourier bounds ¢; — 0 in ./(R"™) too, hence
(@, ¢j) — 0.) Consistent: by the product rule

opdr= | ¢pde Vo, € S (R
Rn R™

that is a straight forward consequence of Fubini’s theorem.
[1+1 marks] (All Bookwork)
(iii): Fourier inversion formula in ./(R"): F:.'(R") — /(R") is a

~

linear bijection with F~1 = (27)™F, where Fu = 1 = u and (4 ¢) := (u, ¢),

3(a) = $(~2). o
Proof. Clear that F: " — %' is linear. We first check that u = u: for

¢ € . the definitions give <;7\, o) = (u, qA5> and for £ € R™ we calculate

~

36 =30 = [ o dn =" | o(-y)e i dy = o(¢),

consequently (7,6) = (u, @) = (u, ) = (@ 9).
We next check that (27) " FF =1d = F((2r) "F). For ¢ € . we get by
use of definitions and the Fourier inversion formula in .¥:
<(2ﬂ)_"f}"u, ¢> :<u, f((QW)_”}N'gZ)»
—(u, ) = (u, (2m) " F(F o))
=<.7:((27r)7”]?u) , q§>,

and we are done.
[143 marks] (All bookwork)
(b): 6o € '(R) so we have for ¢ € . (R):

(6o, 9) = (60, 9) = B(0) = /R oda,

SO 5A0 = 1. Since ‘
J

(L—j ) ®) :/'¢d$—>/R¢dx
—J

and F is ./ continuous (immediate from definitions) the Fourier inversion
formula on .’ yields

= —— Ey
o = (2m)"'T = lim (2m)"'1(_;; = lim 21/ et dz.
j—o0 ’ j—oo <7 :

—J



§ince dp = 5~0 the conclusion follows from the .’ continuity of the operation
(+)-
Write sin® z =
rule

— %612‘% — %e_ﬁ“ and so by the above and the translation

N[ =

Fuose(sin® ) = wdp — Tdo — To_o.
[3+3 marks] (Seen before and new example)
(c): Let ¢ € .#(R) and estimate using the Fourier bounds:
e (7, 9)] = Jexd(~k)| < M(l + k) [o(=k)]
= 1z (LR [ = k™ + [ = k["2)[6(—k)]

AM S 12,0(0)
1+k2

< 1 S2mi2(0)

IN

for all k € Ny. It follows that the series Y 2o, cx(e'*®, ¢) is absolutely con-
vergent and that

|<u7 ¢>} < ( fﬁ%) §2,m+2(¢)

k=0

for all ¢ € . (R). Thus u € ./(R). If r € (0,1), then the function F(re®)
is a bounded continuous function of z € R, and if ¢ € /(R), then from
above bound we get

D (exd(~k) = exro(=k)) S( %> Spmi2($)(1—7) =0
k=0 k=0

as r ' 1. Consequently, F(re?) — u in .#/(R) as r /1.
Note that F'(2) = Y22, kepzF1 and o/ = >272 | cxike™™ by ./ continuity
of differentiation, consequently as r "1,
F'(re'®) — —ie™ %/ in .7'(R).
[44+3 marks] (New examples)
Question 3: (a)(i): We estimate for [ € {0,1,2}, x € R and k € Z:

O @ + 2mk)| =FHEE | £O(2 + 20k)|

252,4(f)
= 1+|z+2mk]2 "



It follows from this with [ = 0 that the series defining P f(z) is absolutely
convergent and so defines a 2m-periodic function Pf: R — C. If |z| < 27
then the above bound gives

|f(l)(x +2mk)| < 1f5c112(7{11|2 < 1+(§i§él((lf2)_1)

for all [k| > 2, and consequently by Weierstrass’ M-test the series ), ., f O (z+

27k) is uniformly convergent in x € [—27, 27]. The function Pf is therefore
C? on (—2m, 27), and therefore by 27-periodicity a C? function on R.

[4 marks] (All bookwork)

(ii): By (i) and hint we have (Pf)(z) = )¢z cxe™™ uniformly in z € R.

Now for each k € Z we get by the uniform convergence of the series defining

Pf:

2 2
k= 5 Pf(z)e " dx = = Z/ f(z + 2mj)e e dz
0

JEZ
Z /27r by —i’f(y—%j) d
= or Y
JEZL
1 2n(G+) —ik
—L> [ ety
jez 27y
_ It
as required. [3 marks]| (Variant of bookwork)

(iif): Since t > 0 the function z — e~**l is integrable on R and its Fourier
transform is

0 o)
Fuose (e_”x') = / =17 qg 4 / e~ 8z qp
—00 0

1 2t

t—i€ + t+1§ = pere

Since the function f(z) := t2+ 5 for each fixed ¢ > 0 is C? and S22(f) < 00

we can apply (ii). By Fourier inversion in .%: f(&) = F2(e ') = 2me~ 1Kl
and then by (ii) follows

2 : 2t _ Z o tlkl+ikz
t2+(z+2mk)2 T
keZ kEZ

for all x € R and ¢t > 0. Take x = 0 and ¢ = 27 to conclude. [5 marks]
(New example)



(b): Plancherel theorem for Fourier series: If f: R — C is a 2n-
periodic L12oc function, then

2
flx) = Z et op = % ; (z)e F d,
keZ

holds in L2(0,27]. Furthermore, Parseval’s formula holds:

2
= ; [f(@)Pde =) [er]”

kEZ

Conversely, if (bg)ez € (2(Z), then the series Y, , bpe*™ converges in
L2(0, 27 to a 2m-periodic L _ function. [2 marks] (All bookwork)
(i): Put f. := pe x f, where (pa)5>0 is the standard mollifier on R. Then f.
is a 27-periodic C*° function and || f — fellr2(0,2x) + [If" — fillL2(0,27) — 0 as
e \¢ 0. If ¢x(g) denote the Fourier coefficients for the function g, then we

get by partial integration:

2T
a(fl) = 5= i flz)e ™ do = ikey(f.)

Since ¢, (fL) — cx(f') and cx(fe) — e as € Ny 0 we find ¢ (f') = ikey as
required. [2 marks] (Seen before)
By Parseval’s formula

27
/ @) — o2z =21 3 Jexl? =21 3 ik |2
0 k£0 k£0
<2y fikeg|?
k0

=27 /027T\f’(x)|2 dz.

The equality holds precisely when f = ¢y + c_i1e7% 4 ¢je'®.

[3+1 marks] (Seen before)
(ii): Extend g to odd 27-periodic function (still denoted) g: R — C. Clearly
g € L2 (R). It is clear that g is C! away from 7Z and since g(0) = g(r) = 0
the function g is continuous so by integration by parts we see that the
distributional derivative ¢’ is represented by the usual derivative (on R\ 7Z)

and hence that it in particular is in L2 (R). [2 marks]



By (i) we have

2m 2
/0 l9(2) — eolg) > dz < /0 1§ (@) de

with equality exactly when g = ¢y + c_1e7% + ¢1e'®. Because g is odd and
2m-periodic, ¢o(g) = 0 and

27 T
2 _ 2
/0 9() — colg) dx = 2 /O lg(@)P da,

¢' is even and 27-periodic so

27 T
/0 g(@)2de =2 /0 1¢/(@)2 de.

[la@riar < [N1gPa.

Equality holds precisely when g = cg + c_1e7 % + ¢1e® that for odd 27-
periodic functions require ¢g = 0 and ¢c_; = —c1, hence equality holds
precisely when g = ¢sin for some ¢ € C.

It follows that

[34+2 marks] (New example)



