Analysis II: Continuity and Differentiability Sheet 6 HT 2022

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable, with $f^{\prime \prime}(x) \geq 0$ for all $x \in \mathbb{R}$. Prove that

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y)) \text { for all } x, y \in \mathbb{R} .
$$

2. (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable and let $a \in \mathbb{R}$. Suppose that $f^{\prime \prime}(a)$ exists. Prove that

$$
\lim _{h \rightarrow 0} \frac{f(a+h)+f(a-h)-2 f(a)}{h^{2}}=f^{\prime \prime}(a) .
$$

(b) Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable on \mathbb{R}. Suppose that f satisfies the following convex inequality

$$
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}(f(x)+f(y)) \text { for all } x, y \in \mathbb{R}
$$

Using (a) to show that $f^{\prime \prime}(a) \geq 0$ for all $a \in \mathbb{R}$.
3. (a) Prove that $\cos x$ and $\sin x$, given by their power series:

$$
\cos x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}
$$

and

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

are differentiable on \mathbb{R}. Hence prove that

$$
\cos (x+y)=\cos x \cos y-\sin x \sin y \text { for all } x, y \in \mathbb{R}
$$

Deduce from the addition formula for $\cos x$ the corresponding addition formula for $\sin x$, and prove that

$$
|\cos x| \leq 1 \text { and }|\sin x| \leq 1 \text { for all } x \in \mathbb{R}
$$

(b) Prove that $\sin x \geq x-\frac{x^{3}}{3!}$ and that $\cos x \leq 1-\frac{x^{2}}{2}+\frac{x^{4}}{24}$ for $x \geq 0$, and deduce that $\cos 2<0, \sin x>0$ for $x \in(0,2)$ and \cos is strictly decreasing on $[0,2]$. Hence, by using IVT, prove that there exists a unique $p \in[0,2]$ such that $\cos p=0$ and $\sin p=1$.

Define $\pi=2 p$. Show that $\cos (x+2 \pi)=\cos x$, and $\sin (x+2 \pi)=\sin x$ for all $x \in \mathbb{R}$, and 2π is the smallest strictly positive period of \sin (or the same cos) function.
(c) Let $q \in \mathbb{R}$. Prove that $\sin q=0$ only if q is of the form $q=k \pi$ for some $k \in \mathbb{Z}$.
(d) Describe the continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy $\sin (f(x))=\sin x$ for all $x \in \mathbb{R}$.
[Graphical presentation of answer acceptable.]
4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is twice differentiable everywhere.
(a) Prove that if $f^{\prime}(x)=a f(x)$ for all x, then $f(x)=A \exp (a x)$ for some constant A.
(b) Prove that if $f^{\prime \prime}(x)-5 f^{\prime}(x)+6 f(x)=0$ then $f(x)=A \exp (2 x)+B \exp (3 x)$ for some constants A, B.
[Consider $g(x)=f^{\prime}(x)-2 f(x)$ and $h(x)=f^{\prime}(x)-3 f(x)$.]
(c) Prove that if $f^{\prime \prime}(x)+25 f(x)=0$ then $f(x)=A \cos (5 x)+B \sin (5 x)$ for some constants A, B.
[Put $A:=f(0)$ and $B:=f^{\prime}(0) / 5$; look at $g(x):=f(x)-A \cos (5 x)-B \sin (5 x)$; now take a hint from the applied mathematicians and consider $\frac{25}{2} g(x)^{2}+\frac{1}{2} g^{\prime}(x)^{2}$.]
(d) What can be said about the solutions of the differential equation $f^{\prime \prime}(x)-$ $4 f^{\prime}(x)+4 f(x)=0$?

