B4.4 Fourier Analysis Consultation Session 4 TT23

Example 1 Suppose $u \in \mathscr{D}'(\mathbb{R})$ is 2π periodic. What is its *Fourier* expansion and in what sense does it hold? Briefly explain the connection to the Fourier transform of u.

Let $(\rho_{\varepsilon})_{\varepsilon>0}$ be the standard mollifier on \mathbb{R} . Show that $\rho_{\varepsilon} * u$ is 2π periodic and that the *n*-th Fourier coefficients satisfy $c_n(\rho_{\varepsilon} * u) \rightarrow c_n(u)$ as $\varepsilon \searrow 0$. Next prove that

$$c_n(
ho_{arepsilon} * u) = c_n(u) \int_{-1}^1
ho(y) \, \mathrm{e}^{\mathrm{i} arepsilon n y} \, \mathrm{d} y$$

and deduce that $|c_n(\rho_{\varepsilon} * u)| \leq |c_n(u)|$. Let $p(x) \in \mathbb{C}[x]$ be a polynomial in one indeterminate. Show that $p\left(\frac{d}{dx}\right)u$ is a 2π periodic tempered distribution and express its Fourier coefficients in terms of $c_n(u)$.

Example 2 Let *u* be a regular 2π periodic distribution on \mathbb{R} . Show that its *n*-th Fourier coefficient for $n \neq 0$ satisfies

$$c_n(u) = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left(u(x) - u(x + \frac{\pi}{n}) \right) \, \mathrm{e}^{-\mathrm{i}nx} \, \mathrm{d}x,$$

and deduce that $c_n(u) \to 0$ as $|n| \to \infty$. Show that if v is a 2π periodic distribution of order 0, then its Fourier

coefficients $c_n(v)$ are bounded:

$$\sup_{n\in\mathbb{Z}}|c_n(v)|<\infty.$$

Can this bound be strengthened to $c_n(v) \rightarrow 0$ as $|n| \rightarrow \infty$?

Example 3 Let $u \in H^1_{loc}(\mathbb{R})$ (so $u, u' \in L^2_{loc}(\mathbb{R})$) be 2π periodic. Show that its Fourier coefficients c_n satisfy

$$\sum_{n\in\mathbb{Z}} (1+n^2) |c_n|^2 = k \int_0^{2\pi} (|u|^2 + |u'|^2) \, \mathrm{d}x.$$

for some constant k that should be determined.

Example 4 Find $\mathcal{F}_{x\to\xi}(\sin x)$ and use it in conjunction with a differentiation rule to find $\mathcal{F}_{x\to\xi}(\operatorname{sinc}(x))$. *HINT:* $\int_{\mathbb{R}}\operatorname{sinc}(x) dx = \pi$. Next state a convolution rule and use it to find $\mathcal{F}_{x\to\xi}(\operatorname{sinc}^2(x))$.

Calculate for each $x \in \mathbb{R}$ the infinite series

$$\sum_{n\in\mathbb{Z}}\operatorname{sinc}^2(x+n\pi).$$