B4.4 Fourier Analysis Consultation Session 4

Example 1 Suppose $u \in \mathscr{D}^{\prime}(\mathbb{R})$ is 2π periodic. What is its Fourier expansion and in what sense does it hold? Briefly explain the connection to the Fourier transform of u.
Let $\left(\rho_{\varepsilon}\right)_{\varepsilon>0}$ be the standard mollifier on \mathbb{R}. Show that $\rho_{\varepsilon} * u$ is 2π periodic and that the n-th Fourier coefficients satisfy $c_{n}\left(\rho_{\varepsilon} * u\right) \rightarrow c_{n}(u)$ as $\varepsilon \searrow 0$. Next prove that

$$
c_{n}\left(\rho_{\varepsilon} * u\right)=c_{n}(u) \int_{-1}^{1} \rho(y) \mathrm{e}^{\mathrm{i} \varepsilon n y} \mathrm{~d} y
$$

and deduce that $\left|c_{n}\left(\rho_{\varepsilon} * u\right)\right| \leq\left|c_{n}(u)\right|$. Let $p(x) \in \mathbb{C}[x]$ be a polynomial in one indeterminate. Show that $p\left(\frac{\mathrm{~d}}{\mathrm{~d} x}\right) u$ is a 2π periodic tempered distribution and express its Fourier coefficients in terms of $c_{n}(u)$.

Example 2 Let u be a regular 2π periodic distribution on \mathbb{R}. Show that its n-th Fourier coefficient for $n \neq 0$ satisfies

$$
c_{n}(u)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(u(x)-u\left(x+\frac{\pi}{n}\right)\right) \mathrm{e}^{-\mathrm{i} n x} \mathrm{~d} x
$$

and deduce that $c_{n}(u) \rightarrow 0$ as $|n| \rightarrow \infty$.
Show that if v is a 2π periodic distribution of order 0 , then its Fourier coefficients $c_{n}(v)$ are bounded:

$$
\sup _{n \in \mathbb{Z}}\left|c_{n}(v)\right|<\infty
$$

Can this bound be strengthened to $c_{n}(v) \rightarrow 0$ as $|n| \rightarrow \infty$?

Example 3 Let $u \in \mathrm{H}_{\mathrm{loc}}^{1}(\mathbb{R})$ (so $u, u^{\prime} \in \mathrm{L}_{\mathrm{loc}}^{2}(\mathbb{R})$) be 2π periodic. Show that its Fourier coefficients c_{n} satisfy

$$
\sum_{n \in \mathbb{Z}}\left(1+n^{2}\right)\left|c_{n}\right|^{2}=k \int_{0}^{2 \pi}\left(|u|^{2}+\left|u^{\prime}\right|^{2}\right) \mathrm{d} x
$$

for some constant k that should be determined.
Example 4 Find $\mathcal{F}_{x \rightarrow \xi}(\sin x)$ and use it in conjunction with a differentiation rule to find $\mathcal{F}_{x \rightarrow \xi}(\operatorname{sinc}(x))$. HINT: $\int_{\mathbb{R}} \operatorname{sinc}(x) \mathrm{d} x=\pi$. Next state a convolution rule and use it to find $\mathcal{F}_{x \rightarrow \xi}\left(\operatorname{sinc}^{2}(x)\right)$.

Calculate for each $x \in \mathbb{R}$ the infinite series

$$
\sum_{n \in \mathbb{Z}} \operatorname{sinc}^{2}(x+n \pi)
$$

