Prelims Probability
 Sheet 8 - MT23

1. Continuous random variables X and Y have joint probability density function
(a) $f_{X, Y}(x, y)=C_{1}\left(x^{2}+\frac{1}{3} x y\right), x \in(0,1), y \in(0,2)$.
(b) $f_{X, Y}(x, y)=C_{2} e^{-x-y}, 0<x<y<\infty$.

Find the values of the constants C_{1} and C_{2}. For each of the joint densities above:

- are X and Y independent?
- find the marginal probability density functions of X and of Y.
- find $\mathbb{P}(X \leq 1 / 2, Y \leq 1)$.

In case (b), if the region had been $0<x, y<\infty$, how would this affect your answer to the question about independence?
2. In the game of Oxémon Ko, you wander the streets of an old university town in search of a set of n different small furry creatures.

Let T_{i} be the time (in hours) at which you first see a creature of type i, for $1 \leq i \leq n$. Suppose that $\left(T_{i}, 1 \leq i \leq n\right)$ are independent, and that T_{i} has exponential distribution with parameter λ_{i}.
(a) Let $X=\min \left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ be the time at which you see your first creature. Show that X has an exponential distribution and give its parameter. [Hint: consider $\mathbb{P}(X>t)$ and use independence.]
(b) What is the expected number of types of creature that you have not met by time 1 ?
(c) Let $M=\max \left\{T_{1}, T_{2}, \ldots, T_{n}\right\}$ be the time until you have met all n different types of creature. Suppose now they are all equally common, with $\lambda_{i}=1$ for all i. Find the median of the distribution of M. (As well as giving an exact expression, try to describe how quickly it grows as n becomes large.) [Here you may wish to consider instead $\mathbb{P}(M \leq t)$. You may find useful an estimate like $\alpha^{1 / n}-1=e^{\frac{1}{n} \log \alpha}-1 \approx$ $\frac{1}{n} \log \alpha$ for large n.]
3. Let U and V be independent random variables, both uniformly distributed on $[0,1]$. Find the probability that the quadratic equation $x^{2}+2 U x+V=0$ has two real solutions.
4. A fair die is thrown n times. Using Chebyshev's inequality, show that with probability at least $31 / 36$, the number of sixes obtained is between $n / 6-\sqrt{n}$ and $n / 6+\sqrt{n}$.
5. Suppose that you take a random sample of size n from a distribution with mean μ and variance σ^{2}. Using Chebyshev's inequality, determine how large n needs to be to ensure that the difference between the sample mean and μ is less than two standard deviations with probability exceeding 0.99 .
6. A fair coin is tossed $n+1$ times. For $1 \leq i \leq n$, let A_{i} be 1 if the i th and $(i+1)$ st outcomes are both heads, and 0 otherwise.
(a) Find the mean and the variance of A_{i}.
(b) Find the covariance of A_{i} and A_{j} for $i \neq j$. (Consider the cases $|i-j|=1$ and $|i-j|>1$.
(c) Define $M=A_{1}+\cdots+A_{n}$, the number of occurrences of the motif HH in the sequence. Find the mean and variance of M. [Recall the formula for the variance of a sum of random variables, in terms of their variances and pairwise covariances.]
(d) Use a similar method to find the mean and variance of the number of occurrences of the motif TH in the sequence.
7. What is the distribution of the sum of n independent Bernoulli random variables with parameter p ? By considering this sum and applying the weak law of large numbers, identify the limit

$$
\lim _{n \rightarrow \infty} \sum_{\substack{r \in \mathbb{N}: \\ a n<r<b n}}\binom{n}{r} p^{r}(1-p)^{n-r}
$$

in the cases (i) $p<a$; (ii) $a<p<b$; (iii) $b<p$.

