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1 Introduction

This course is a first introduction to real analysis. We’ll set the scene with

exploring basic properties of real numbers. Then we’ll go on to define what

it means for a sequence to converge, and for a series to converge, and we’ll

explore these ideas in detail, allowing us to give careful justifications of some

familiar results, as well as proving some that you might not have seen before.

There are several resources that will help you as you study the course:

- the lecture videos

- the slides that go with the lecture videos

- these notes

- the notes by Dr Hilary Priestley

- the problems sheets

- the additional content on Moodle

- each other

- your college tutors.

When I made the lecture videos, I used a mix of slides and handwriting,

but everything handwritten also appears on a typed slide. I’m making the

slides available alongside the videos, in case you would like a copy of these to

view or annotate. These notes (the document you’re reading now!) include

everything in the slides. You are encouraged to read them alongside the

notes by Dr Hilary Priestley.
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2 Axioms for arithmetic in R

What are the real numbers?

We are going to work with the real numbers in this course. What is a real

number? We are not, in this course, going to define the real numbers — we

aren’t going to say what they are. Instead, we’ll focus on how they behave —

what they do. We’ll identify the key properties of the real numbers, and the

goal is to deduce everything from these properties. That leaves the task of

showing that there is a set with the required properties (that is, constructing

the real numbers), but that is not a task for this course.

So what are these key properties? They are all properties that will prob-

ably feel ‘obvious’. For us, they are assumptions. We assume that the real
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numbers have these properties. You might feel surprised that there aren’t

more assumptions, but, as we’ll see, we can deduce the other familiar (and

not so familiar) properties from these assumptions. The goal is to avoid

assuming more than we have to.

One question to have in the back of your mind through this section is

“What other structures also have these properties?” We know that the ra-

tional numbers share some properties with the real numbers, and also the

complex numbers share some properties with the real numbers. But we also

know that in some way the rational numbers are definitely different from

the real numbers, and similarly for complex numbers, and we should see this

come up. If the rational numbers share all of our key properties of the real

numbers, then we haven’t assumed enough properties of the real numbers!

The flavour of this section will be about deducing basic properties, one

careful step at a time. Some people enjoy this way of working; others, well,

not so much. If you’re in the latter category, don’t worry: most of this

course will have quite a different flavour (although it will still be about giving

careful, rigorous proofs of results that might feel ‘obvious’). But, at its heart,

mathematics is built on the sort of axiomatic reasoning that we’ll see in this

section, so it’s good to have a sense of how that works.

Notation. We write R for the set of real numbers. We write Q for the set

of rational numbers, and C for the set of complex numbers.

Axioms for arithmetic in R

One really important feature of R is that we can do ‘arithmetic’. We have

operations of addition and multiplication. (Note that I didn’t mention sub-

traction or division. Can you think why?) Here is a careful statement of the

key properties of addition and multiplication.
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� For every a, b ∈ R there is a unique real number a+b, called their sum.

� For every a, b ∈ R there is a unique real number a · b, called their

product.

� For a ∈ R there is a unique real number −a called its negative or its

additive inverse.

� For a ∈ R with a ̸= 0 there is a unique real number 1
a
called its reciprocal

or its multiplicative inverse.

� There is a special element 0 ∈ R called zero or the additive identity.

� There is a special element 1 ∈ R called one or the multiplicative iden-

tity.

For all a, b, c ∈ R, we have

� a+ b = b+ a (+ is commutative)

� a+ (b+ c) = (a+ b) + c (+ is associative)

� a+ 0 = a (additive identity)

� a+ (−a) = 0 (additive inverses)

� a · b = b · a (· is commutative)

� a · (b · c) = (a · b) · c (· is associative)

� a · 1 = a (multiplicative identity)

� if a ̸= 0 then a · 1
a
= 1 (multiplicative inverses)

� a · (b+ c) = a · b+ a · c (· distributes over +)
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� 0 ̸= 1 (to avoid total collapse)

This is a long list of properties, called axioms.

I have given a name to each axiom, so that in proofs we can say which

property we are using at each stage. Some people prefer to number the ax-

ioms, but there is no standard way to do this, and I find it hard to remember

the numbers and easier to remember the names.

I think of the axioms as coming in bundles, to help me to remember

them. The first four tell us that ‘addition behaves nicely’. The next four tell

us that ‘multiplication behaves nicely’. Then there is an axiom that tells us

that ‘addition and multiplication interact nicely’, and a final technical detail

to clarify that R ̸= {0}.

As you study abstract algebra (such as linear algebra and group theory)

this year, you’ll find yourself coming across lists of axioms such as this again.

Definition. Let F be a set with operations + and · that satisfy the axioms

above. Then we say that F is a field.

Example. We’ve just said that R is a field. The rational numbers Q form a

field. The complex numbers C form a field. You’ll meet other fields too, in

other courses. The integers Z do not form a field.

In the next section, we’ll use these axioms to deduce the basic properties

of arithmetic in R. This reasoning would apply equally to any field. We’ll

need to make further assumptions about R, but we’ll postpone this till we’ve

studied basic arithmetic.

3 Properties of arithmetic in R

In the last section, we saw the arithmetic axioms for R. Now we’ll deduce

some properties of arithmetic in R.
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Proposition 1. Let a, b, c, x, y be real numbers.

(i) If a+ x = a for all a then x = 0 (uniqueness of 0).

(ii) If a+ x = a+ y then x = y (cancellation for +).

(iii) −0 = 0.

(iv) −(−a) = a.

(v) −(a+ b) = (−a) + (−b).

(vi) If a · x = a for all a ̸= 0 then x = 1 (uniqueness of 1).

(vii) If a ̸= 0 and a · x = a · y then x = y (cancellation for ·).

(viii) If a ̸= 0 then 1
1
a

= a.

(ix) (a+ b) · c = a · c+ b · c.

(x) a · 0 = 0.

(xi) a · (−b) = −(a · b). In particular, (−1) · a = −a.

(xii) (−1) · (−1) = 1.

(xiii) If a · b = 0 then a = 0 or b = 0. If a ̸= 0 and b ̸= 0 then 1
a·b =

1
a
· 1
b
.

Remark. � (ii) shows the uniqueness of −a, the additive inverse of a.

� (vii) shows the uniqueness of 1
a
, the multiplicative inverse of a (if a ̸= 0).

� As we’ll see shortly, (i)–(v) can be proved using only the four axioms

about +.

� Similarly, (vi)–(viii) can be proved using only the four axioms about ·.
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� (ix)–(xiii) between them use all the axioms.

� It’s worth proving results like this in a sensible order! Once we’ve

proved a property, we can add it to the list of properties we can assume

in subsequent parts. You’ll see that we prove some later parts using

earlier parts.

Proof. (i) Suppose that a+ x = a for all a. Then

x = x+ 0 (additive identity)

= 0 + x (+ is commutative)

= 0 (by hypothesis, with a = 0).

(ii) Suppose that a+ x = a+ y. Then

y = y + 0 (additive identity)

= y + (a+ (−a)) (additive inverses)

= (y + a) + (−a) (+ is associative)

= (a+ y) + (−a) (+ is commutative)

= (a+ x) + (−a) (hypothesis)

= (x+ a) + (−a) (+ is commutative)

= x+ (a+ (−a)) (+ is associative)

= x+ 0 (additive inverses)

= x (additive identity).

(iii) We have 0 + 0 = 0 (additive identity)

and 0 + (−0) = 0 (additive inverses)

so 0 + 0 = 0 + (−0), so 0 = −0 (cancellation for + (ii)).
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(iv) We have

(−a) + a = a+ (−a) (+ is commutative)

= 0 (additive inverses)

and (−a) + (−(−a)) = 0 (additive inverses),

so (−a) + a = (−a) + (−(−a)),

so a = −(−a) (cancellation for + (ii)).

(v) Exercise (see Sheet 1).

(vi)–(viii) Exercise — similar to (i), (ii), (iv).

(ix) (This is another form of distributivity, similar to the axiom but differ-

ent!)

We have

(a+ b) · c = c · (a+ b) (+ is commutative)

= c · a+ c · b (· distributes over +)

= a · c+ b · c (· is commutative – twice).

(x) We have a · (0 + 0) = a · 0 + a · 0 (· distributes over +),

and also

a · (0 + 0) = a · 0 (additive identity)

= a · 0 + 0 (additive identity)

so a · 0 = 0 (cancellation for + (ii))
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(xi) We have

a · b+ a · (−b) = a · (b+ (−b)) (· distributes over +)

= a · 0 (additive inverses)

and a · b+ (−(a · b)) = 0 (additive inverses),

so a · (−b) = −(a · b) (cancellation for + (ii)).

(xii) We have

(−1) · (−1) = −((−1) · 1) ((xi) with a = −1, b = 1)

= −(−1) (multiplicative identity)

= 1 ((iv)).

(xiii) Suppose, for a contradiction, that a ̸= 0, b ̸= 0 but a · b = 0. Then

0 =

(
1

a
· 1
b

)
· 0 ((x))

= 0 ·
(
1

a
· 1
b

)
(· is commutative)

= (a · b) ·
(
1

a
· 1
b

)
(hypothesis)

= (b · a) ·
(
1

a
· 1
b

)
(· is commutative)

=

(
(b · a) · 1

a

)
· 1
b

(· is associative)

= (b ·
(
a · 1

a

)
) · 1

b
(· is associative)

= (b · 1) · 1
b

(multiplicative inverses)

= b · 1
b

(multiplicative identity)

= 1 (multiplicative inverses)
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and this is a contradiction (0 ̸= 1).

So if a · b = 0 then a = 0 or b = 0.

Note that on the way we showed that if a ̸= 0 and b ̸= 0 then a · b ̸= 0

and (a · b) ·
(
1

a
· 1
b

)
= 1 so

1

a · b
=

1

a
· 1
b
(cancellation for · (vii)).

From now on, we can use all of these properties. We shan’t give such

detailed, one-axiom-at-a-time, derivations in the remainder of the course —

but we could, if we needed to!

Remark. (This remark is not part of the course!) You might be concerned

that if we don’t go back to the axioms every time then we might overlook an

unproved step, or might make a mistake. But going back to the axioms every

time is not practical: a research paper might take tens of pages to give a proof,

referring back to other results, which themselves build on results, which build

on results, . . . . This is where proof verification comes in: computers can take

care of this detailed checking, leaving humans to focus on things that humans

are good at (like having creative ideas for proofs).

One interesting project in this area (there are others, not just this one) is

Xena https://xenaproject.wordpress.com/what-is-the-xena-project/

— this is aimed at undergraduates, which is why I’m mentioning it. Some of

you might find it interesting. There’s an article about proof verification and

Xena in the London Mathematical Society Newsletter, pages 32–36 of https:

//www.lms.ac.uk/sites/lms.ac.uk/files/files/NLMS_484-forweb2.pdf.

Now back to the course . . . .
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Notation. From now on, we use more familiar notation. We write

a− b for a+ (−b)

ab for a · b
a

b
for a ·

(
1

b

)
a−1 sometimes for

1

a
.

The associativity of addition and multiplication means that we can write

expressions like a+ b+ c and xyz, without needing to write brackets.

Definition. Take a ∈ R \ {0}.

Define a0 = 1.

We define positive powers of a inductively: for integers k ⩾ 0, we define

ak+1 = ak · a.

For integers l ⩽ −1, we define al =
1

a−l
.

Remark. Note that with this definition a1 = a and a2 = a ·a (as we’d want).

Lemma 2. For a ∈ R \ {0} we have aman = am+n for m, n ∈ Z.

Proof. Exercise (see Sheet 1).

This finishes this section on arithmetic in R. In the next section, we’ll go

on to explore more key properties of R, in addition to it being a field.

4 Ordering the real numbers

When we picture R in our minds, typically it is not as a scattered collection

of numbers. Rather, we often picture them as lying along a number line,

usually running from left to right, with 0 in the ‘middle’; positive numbers

on the right, increasing as we move away from 0; and negative numbers on
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the left, getting smaller as we move left away from 0. Even in writing that

description, I have made assumptions about R: I have assumed that we have

notions of ‘positive’ and ‘negative’, and that we can compare the sizes of two

real numbers. This section is about formalising those assumptions.

Here are our axioms for the usual ordering on R.

There is a subset P of R such that for a, b ∈ R

� if a, b ∈ P then a+ b ∈ P (+ and ordering)

� if a, b ∈ P then a · b ∈ P (· and ordering)

� exactly one of a ∈ P, a = 0 and −a ∈ P holds (positive, negative or 0).

The elements of P are called the positive numbers. The elements of P∪{0}

are called the non-negative numbers.

We write a < b, or b > a, exactly when b− a ∈ P.

We write a ⩽ b, or b ⩾ a, exactly when b− a ∈ P ∪ {0}.

Now, just as with the axioms for arithmetic, we can infer useful properties

from these axioms. First, some important properties of the ordering.

Proposition 3. Take a, b, c ∈ R. Then

(i) a ⩽ a; (reflexivity)

(ii) if a ⩽ b and b ⩽ a then a = b; (antisymmetry)

(iii) if a ⩽ b and b ⩽ c then a ⩽ c, and similarly with < in place of ⩽;

(transitivity)

(iv) exactly one of a < b, a = b and a > b holds. (trichotomy)

Proof. (i) We have a− a = 0 ∈ P ∪ {0} (additive inverses).
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(ii) Suppose that a ⩽ b and b ⩽ a.

If a− b = 0 or b− a = 0 then a = b (properties of +) and we are done.

If not, then b− a ∈ P and a− b ∈ P.

But b− a = −(a− b) (properties of +),

so then a − b ∈ P and −(a − b) ∈ P, contradicting ‘positive, negative

or 0’.

(iii) Note that c − a = c + (−a) = c + 0 + (−a) = c + (−b) + b + (−a) =

(c− b) + (b− a) (properties of +)

so if a < b and b < c then a < c (+ and ordering).

The cases where a = b and/or b = c are straightforward, and give the

result for ⩽.

(iv) This follows from ‘positive, negative or 0’.

In the next section, we’ll explore the interaction between the ordering

and basic arithmetic.

5 Inequalities and arithmetic

The next result has some useful results about inequalities and arithmetic,

which will save us from having to go back to the axioms every time.

Proposition 4. Take a, b, c ∈ R.

(i) 0 < 1.

(ii) a < b if and only if −b < −a. In particular, a > 0 if and only if

−a < 0.
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(iii) If a < b then a+ c < b+ c.

(iv) If a < b and 0 < c then ac < bc.

(v) a2 ⩾ 0, with equality if and only if a = 0.

(vi) a > 0 if and only if 1
a
> 0.

(vii) If a, b > 0 and a < b then
1

b
<

1

a
.

Furthermore, (ii), (iii) and (iv) hold with ⩽ in place of <.

Proof. (i) By trichotomy, we have 0 < 1 or 0 = 1 or 0 > 1.

But ‘to avoid total collapse’ 0 ̸= 1. So it suffices to rule out 0 > 1.

Suppose, for a contradiction, that 0 > 1.

Then −1 ∈ P (by definition of >) so (−1) · (−1) ∈ P (· and ordering).

But (−1) · (−1) = 1 (Proposition 1 (xii)),

so 0 < 1 — but this contradicts trichotomy.

So 0 < 1.

(ii) Using properties of addition, we have

a < b ⇔ b− a ∈ P

⇔ (−a)− (−b) ∈ P

⇔ −a > −b.

(iii) Assume that a < b.

Then (b+ c)− (a+ c) = b− a > 0 so a+ c < b+ c.

(iv) Assume that a < b and 0 < c.

Then bc− ac = (b− a)c > 0 (· and ordering).
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(v) Certainly a2 = 0 if and only if a = 0 (Proposition 1 (x) and (xiii)).

If a ̸= 0, then exactly one of a and −a is positive, and either way

a2 = a · a = (−a) · (−a) > 0 (· and ordering).

(vi) Suppose, for a contradiction, that a > 0 and 1
a
< 0, so a > 0 and

− 1
a
> 0.

Then −1 = −
(
a · 1

a

)
= a ·

(
−1

a

)
> 0. But this contradicts (i).

Similarly if a < 0 and 1
a
> 0.

(vii) Suppose that a, b > 0 and a < b.

Then 1
a
, 1

b
> 0 by (vi),

so a · 1
a
· 1
b
< b · 1

a
· 1
b
by (iv),

so 1
b
< 1

a
.

Now we can prove a useful inequality (you’ll have an opportunity to apply

it on Sheet 1).

Theorem 5 (Bernoulli’s Inequality). Let x be a real number with x > −1.

Let n be a positive integer. Then (1 + x)n ⩾ 1 + nx.

Proof. By induction on n. Fix x > −1.

n = 1: clear.

induction step: suppose the result holds for some n ⩾ 1, that is, (1 + x)n ⩾

1 + nx.

Note that 1+x > 0, and nx2 ⩾ 0 (since n > 0 and x2 ⩾ 0 by Proposition

4 (v)).
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Then

(1 + x)n+1 = (1 + x)(1 + x)n (by definition)

⩾ (1 + x)(1 + nx) (induction hypothesis and Prop 4 (iv))

= 1 + (n+ 1)x+ nx2 (properties of arithmetic)

⩾ 1 + (n+ 1)x (since nx2 ⩾ 0).

So, by induction, the result holds.

In the next section, we’ll move on to consider the modulus of a real

number.

6 The modulus of a real number

Definition. Let a ∈ R. The modulus |a| of a is defined to be

|a| :=


a if a > 0

0 if a = 0

−a if a < 0.

(It is also sometimes called the absolute value of a.)

Remark. The modulus is well defined (that is, this is a legitimate definition)

thanks to the ‘positive, negative or 0’ property (essentially trichotomy).

Here are some basic properties of the modulus.

Proposition 6. Take a, b, c ∈ R. Then

(i) | − a| = |a|;

(ii) |a| ⩾ 0;
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(iii) |a|2 = a2;

(iv) |ab| = |a||b|;

(v) −|a| ⩽ a ⩽ |a|;

(vi) if c ⩾ 0, then |a| ⩽ c if and only if −c ⩽ a ⩽ c; and similarly with

weak inequalities (⩽, ⩾) replaced by strict (<, >).

Proof.(i), (ii) Immediate from the definition, since a > 0 if and only if −a < 0.

(iii) Check using the definition and trichotomy – go through the cases and

also use (−a)(−a) = a2.

(iv) Check the cases using the definition and trichotomy.

(v) If a ⩾ 0, then −|a| ⩽ 0 ⩽ a = |a|.

If a < 0, then −|a| = a < 0 ⩽ |a|.

(vi) Assume that c ⩾ 0.

(⇒) Suppose that |a| ⩽ c. Then, by (v), −c ⩽ −|a| ⩽ a ⩽ |a| ⩽ c, and

we’re done by transitivity (Proposition 3).

(⇐) Suppose that −c ⩽ a ⩽ c. Then −a ⩽ c and a ⩽ c. But |a| is a

or −a, so |a| ⩽ c.

Similarly for the version with strict inequalities.

Theorem 7 (Triangle Inequality). Take a, b ∈ R. Then

(i) |a+ b| ⩽ |a|+ |b|;

(ii) |a+ b| ⩾ ||a| − |b||.
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Remark. (ii) is called the Reverse Triangle Inequality.

Proof. (i) We have −|a| ⩽ a ⩽ |a| and −|b| ⩽ b ⩽ |b|, by Proposition 6.

We can add these (see Sheet 1 Q2); using properties of addition, we

get − (|a|+ |b|) ⩽ a+ b ⩽ |a|+ |b|.

By Proposition 6 (vi) (with c = |a|+|b| ⩾ 0), this gives |a+b| ⩽ |a|+|b|.

(ii) By (i), we have |a| = |a+ b+ (−b)| ⩽ |a+ b|+ | − b| = |a+ b|+ |b|,

so |a+ b| ⩾ |a| − |b|.

Similarly (swap a and b), |a+ b| ⩾ |b| − |a|.

Now ||a| − |b|| is |a| − |b| or |b| − |a|, so |a+ b| ⩾ ||a| − |b||.

7 The complex numbers

You met (or renewed your acquaintance with) the set C of complex numbers

in the course Introduction to Complex Numbers ???, so we shan’t repeat much

of that material here. We’ll just focus on revisiting the complex numbers with

the new perspective of having considered axioms for R.

In particular, as we said earlier, C is a field (under the usual addition and

multiplication). If you are feeling enthusiastic, then check the axioms!

But C is fundamentally different from R because there is no ordering on

C that satisfies the ordering axioms.

Exercise. Prove this!

As you saw in the Complex Numbers course, the Triangle Inequality holds

in C, and so does the Reverse Triangle Inequality.
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So far, we know that R is an ordered field. But we still haven’t captured

everything that’s important about R. The rational numbers Q also form

an ordered field, but there are fundamental differences between Q and R.

Intuitively, in Q there are ‘gaps’ in the number line (such as at
√
2), whereas

this is not the case in R. In the next chunk of the course, we’ll explore this

in detail, to try to identify what additional property or properties we need

to assume hold in R.

8 Upper and lower bounds

In the next few sections of the course, we going to explore the difference

between Q and R, as discussed in the last paragraph of the previous section.

One helpful example to have in mind is the square root of two. We know

that
√
2 is not in Q (you have probably seen a proof of this elsewhere). But

there is a positive real number that squares to give 2. One goal of these

sections of the course is to prove the existence of this positive real number

(which we call
√
2).

The key property, which R has and Q does not, is called completeness.

But before we get there, we need a few preliminary definitions.

Definition. Let S ⊆ R. Take b ∈ R. We say that

� b is an upper bound of S if s ⩽ b for all s ∈ S;

� b is a lower bound of S if s ⩾ b for all s ∈ S;

� S is bounded above if S has an upper bound;

� S is bounded below if S has a lower bound;

� S is bounded if S is bounded above and below.
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Example. I could have put various examples and non-examples here, but

instead I’ve put them in a short Moodle quiz for you to try. You’ll get

immediate feedback on your answers, to help you explore and check your

understanding of the definitions. Please go to the Moodle course page for

Analysis I, and try quiz 8.1, before you read on to the next section.

9 The (nearly) empty section

Sorry, this is here just to resolve section/video numbering issues!

10 Supremum, infimum and completeness

Some upper bounds are more interesting than others. The set [0, 1] has

upper bounds including 15, 1, 1.7 and infinitely many more. Of these, 1 feels

special. This is the focus of our next definition.

Definition. Let S ⊆ R. We say that α ∈ R is the supremum of S, written

supS, if

(i) s ⩽ α for all s ∈ S; (α is an upper bound of S)

(ii) if s ⩽ b for all s ∈ S then α ⩽ b (α is the least upper bound of S).

Remark. If S has a supremum, then supS is unique. (Check you can show

this!)

Now that we have defined the supremum, we can state our final key

property of R (in addition to the properties that make it an ordered field).

Completeness axiom for the real numbers Let S be a non-empty subset

of R that is bounded above. Then S has a supremum.
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Remark. There are two conditions on S here: non-empty, and bounded

above. They are both crucial!

It is easy to forget the non-empty condition, but it has to be there: the

empty set does not have a supremum, because every real number is an upper

bound for the empty set — there is no least upper bound.

The condition that S is bounded above is also necessary: a set with no

upper bound certainly has no supremum.

Example. � Let S = [1, 2). Then 2 is an upper bound, and is the

least upper bound: if b < 2 then b is not an upper bound because

max(1, 1 + b
2
) ∈ S and max(1, 1 + b

2
) > b. Note that in this case

supS ̸∈ S.

� Let S = (1, 2]. Then we again have supS = 2, and this time supS ∈ S.

The supremum is the least upper bound of a set. There’s an analogous

definition for lower bounds.

Definition. Let S ⊆ R. We say that α ∈ R is the infimum of S, written

inf S, if

� s ⩾ α for all s ∈ S; (α is a lower bound of S)

� if s ⩾ b for all s ∈ S then α ⩾ b (α is the greatest lower bound of S).

Let’s explore some useful properties of sup and inf.

Proposition 8. (i) Let S, T be non-empty subsets of R, with S ⊆ T and

with T bounded above. Then S is bounded above, and supS ⩽ supT .

(ii) Let T ⊆ R be non-empty and bounded below. Let S = {−t : t ∈ T}.

Then S is non-empty and bounded above. Furthermore, inf T exists,

and inf T = − supS.
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Remark. (ii) and a similar result with sup and inf swapped essentially tell

us that we can pass between sups and infs. Any result we prove about sup

will have an analogue for inf. Also, we could have phrased the Completeness

Axiom in terms of inf instead of sup. Proposition 8(ii) tells us that we don’t

need separate axioms for sup and inf.

Proof. (i) Since T is bounded above, it has an upper bound, say b.

Then t ⩽ b for all t ∈ T , so certainly t ⩽ b for all t ∈ S, so b is an

upper bound for S.

Now S, T are non-empty and bounded above, so by completeness each

has a supremum.

Note that supT is an upper bound for T and hence also for S, so

supT ⩾ supS (since supS is the least upper bound for S).

(ii) Since T is non-empty, so is S.

Let b be a lower bound for T , so t ⩾ b for all t ∈ T .

Then −t ⩽ −b for all t ∈ T , so s ⩽ −b for all s ∈ S, so −b is an upper

bound for S.

Now S is non-empty and bounded above, so by completeness it has a

supremum.

Then s ⩽ supS for all s ∈ S, so t ⩾ − supS for all t ∈ T , so − supS

is a lower bound for T .

Also, we saw before that if b is a lower bound for T then −b is an upper

bound for S.

Then −b ⩾ supS (since supS is the least upper bound),

so b ⩽ − supS.
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So − supS is the greatest lower bound.

So inf T exists and inf T = − supS.

You might be wondering how all this relates to familiar notions of maxi-

mum and minimum so let’s explore that.

Definition. Let S ⊆ R be non-empty. Take M ∈ R. We say that M is the

maximum of S if

(i) M ∈ S; (M is an element of S)

(ii) s ⩽ M for all s ∈ S (M is an upper bound for S).

Remark. � If S is empty or S is not bounded above then S does not

have a maximum. (Check this!)

� Let S ⊆ R be non-empty and bounded above, so (by completeness)

supS exists.

Then S has a maximum if and only if supS ∈ S.

Also, if S has a maximum then maxS = supS.

(Check this!)

Definition. Let S ⊆ R be non-empty. Take m ∈ R. We say that m is the

minimum of S if

(i) m ∈ S; (m is an element of S)

(ii) s ⩾ m for all s ∈ S (m is a lower bound for S).

Here is a key result about the supremum, which we’ll use a lot. It is a

quick consequence of the definition, but it will be useful to have formulated

it in this way.
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Proposition 9 (Approximation Property). Let S ⊆ R be non-empty and

bounded above. For any ε > 0, there is sε ∈ S such that supS − ε < sε ⩽

supS.

Proof. Take ε > 0.

Note that by definition of the supremum we have s ⩽ supS for all s ∈ S.

Suppose, for a contradiction, that supS − ε ⩾ s for all s ∈ S.

Then supS − ε is an upper bound for S, but supS − ε < supS. Contra-

diction.

So there is sε ∈ S with supS − ε < sε.

11 Existence of roots

Now that we have identified the completeness property of R, we are ready to

prove that R contains a square root of 2.

Theorem 10. There exists a unique positive real number α such that α2 = 2.

Proof. Existence Let S = {s ∈ R : s > 0, s2 < 2}.

Idea: argue that S has a supremum, and show that supS has the required

properties.

Note that S is non-empty (eg 1 ∈ S)

and S is bounded above, because if x > 2 then x2 > 4 (properties of

ordering) so x ̸∈ S, so 2 is an upper bound for S.

So, by completeness, S has a supremum. Let α = supS.

Note that certainly α > 0 (since 1 ∈ S so α ⩾ 1).

By trichotomy, we have α2 < 2 or α2 = 2 or α2 > 2.

Idea: show that if α2 < 2 or α2 > 2 then we get a contradiction.

Case 1 Suppose, for a contradiction, that α2 < 2.

27



Then α2 = 2− ε for some ε > 0.

Idea: consider α + h for a small h > 0. Later on, we’ll choose h small

enough that (α+h)2 < 2, and that will be a contradiction because α+h ∈ S

and α + h > supS.

Note that α ⩽ 2 (we said earlier that 2 is an upper bound for S).

For h ∈ (0, 1) we have

(α + h)2 = α2 + 2αh+ h2

= 2− ε+ 2αh+ h2

⩽ 2− ε+ 4h+ h

⩽ 2− ε+ 5h

so let h = min( ε
10
, 1
2
) and then (α + h)2 < 2.

Now α + h ∈ S and α + h > supS. This is a contradiction.

So it is not the case that α2 < 2.

Case 2 Suppose, for a contradiction, that α2 > 2.

Then α2 = 2 + ε for some ε > 0.

Idea: consider α − h for a small h > 0. Later on, we’ll choose h small

enough that (α − h)2 > 2, and that will lead to a contradiction because

α− h < supS.

For h ∈ (0, 1) we have

(α− h)2 = α2 − 2αh+ h2

= 2 + ε− 2αh+ h2

⩾ 2 + ε− 4h

so choose h = min( ε
8
, 1
2
, α
2
) and then (α− h)2 > 2 (and also α− h > 0).

Now α − h < supS, so by the Approximation property there is s ∈ S

with α− h < s.
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But then 2 < (α− h)2 < s2 < 2, which is a contradiction.

So it is not the case that α2 > 2.

Hence, by trichotomy, α2 = 2.

Uniqueness Suppose that β is also a positive real number such that β2 = 2.

Aim: α = β.

Then 0 = α2 − β2 = (α− β)(α + β)

and α + β > 0, so α = β.

Proposition 11. Q is not complete (with the ordering inherited from R).

Proof. If Q were complete, then the proof of Theorem 10 would work just as

well in Q. But we know that there is not an element of Q that squares to 2.

So Q is not complete.

Theorem 12. Let n be an integer with n ⩾ 2, and take a positive real number

r. Then r has a real nth root.

Proof. Exercise. (See Sheet 2 for the case of the cube root of 2.)

12 More consequences of completeness

In this course, we write N for the set of positive integers, so N = Z>0.

Theorem 13 (Archimedean property of N). N is not bounded above.

Proof. Idea: if there’s an upper bound then we can find a natural number

just less than it, and add 1.

Suppose, for a contradiction, that N is bounded above.

Then N is non-empty and bounded above, so by completeness (of R) N

has a supremum.
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By the Approximation property with ε = 1
2
, there is a natural number

n ∈ N such that supN− 1
2
< n ⩽ supN.

Now n+ 1 ∈ N and n+ 1 > supN. This is a contradiction.

Corollary 14. Let ε > 0. Then there is n ∈ N such that 0 < 1
n
< ε.

Proof. If not, then 1
ε
would be an upper bound for N. This would contradict

Theorem 13.

Theorem 15. Let S be a non-empty subset of Z.

(i) If S is bounded below, then S has a minimum.

(ii) If S is bounded above, then S has a maximum.

Proof. (i) Assume that S is bounded below.

Then, by completeness (applied to {−s : s ∈ S}), S has an infimum.

Secret aim: inf S ∈ S.

By the Approximation property (with ε = 1), there is n ∈ S such that

inf S ⩽ n < inf S + 1. Aim: inf S = n.

Suppose, for a contradiction, that inf S < n.

Write n = inf S + δ, where 0 < δ < 1.

By the Approximation property (with ε = δ), there is m ∈ S such that

inf S ⩽ m < inf S + ε = n.

Now m < n so n−m > 0

but n−m is an integer, so n−m ⩾ 1.

Now n ⩾ m+ 1 ⩾ inf S + 1. This is a contradiction.

So n = inf S ∈ S so inf S = minS.
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(ii) Similar.

Proposition 16. Take a, b ∈ R with a < b. Then

(i) there is x ∈ Q such that a < x < b (the rationals are dense in the

reals); and

(ii) there is y ∈ R \Q such that a < y < b (the irrationals are dense in the

reals).

Proof. Exercise (see Sheet 2).

Summary of our work so far

R is a complete ordered field.

This sums up the key properties we have identified as our assumptions

about R. From this, we shall develop the theory of real analysis.

13 Countability

The concept of countability gives us a way to distinguish between sets by

comparing their ‘sizes’. This will be a quick introduction. You can find

more information in the supplementary notes by Dr Hilary Priestley, on the

Moodle Analysis I course.

Our main tool for comparing the ‘sizes’ of two sets is to ask whether there

is a bijection between them. In this section and the next, we’ll often be using

the notions of bijection, injection and surjection. If you don’t feel confident

with the definitions of these, then I recommend you remind yourself of the

definitions before you continue with this section.
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Definition. Let A be a set. We say that A is finite if A = ∅ or there exists

n ∈ N such that there is a bijection f : A → {1, 2, . . . , n}. We say that A is

infinite if it is not finite

Remark. � A subset of a finite set is finite.

� A non-empty finite subset of R is bounded above (in fact, has a maxi-

mum) and so a subset of R that is not bounded above is infinite.

� N is not bounded above (by the Archimedean property) so is infinite.

Definition. Let A be a set. We say that A is

� countably infinite if there is a bijection f : A → N;

� countable if there is an injection f : A → N;

� uncountable if A is not countable.

Remark. There are variations on the details of these definitions, so it’s worth

checking carefully if you’re looking at a book or other source. For example,

some people say ‘countable’ where we are using ‘countably infinite’.

Here are a couple of useful properties.

Proposition 17. Let A be a set.

(i) A is countable if and only if A is countably infinite or finite.

(ii) If there is an injection f : A → B and an injection g : B → A, then

there is a bijection h : A → B.

Proof. Not in this course. See Priestley’s supplementary notes on countabil-

ity.
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Proposition 18. Each of the following sets is countably infinite.

(i) N

(ii) N ∪ {0}

(iii) {2k − 1 : k ∈ N}

(iv) Z

(v) N× N.

Remark. It might feel surprising that the set of odd natural numbers ‘has

the same size as’ the set of all natural numbers!

Proof. (i) Clear.

(ii) Define f : N ∪ {0} → N by f(n) = n+ 1. This is a bijection.

(iii) Define f : N → {2k − 1 : k ∈ N} by f(n) = 2n− 1.

(iv) Idea: line up the integers as 0, 1, −1, 2, −2, 3, −3, . . . .

Define f : Z → N by

f(k) =

2k if k ⩾ 1

1− 2k if k ⩽ 0.

This is a bijection.

(v) Define f : N× N → N by f((m,n)) = 2m−1(2n− 1).

Claim f is a bijection.

Proof of claim

injective: If f((m1, n1)) = f((m2, n2)) then

2m1−1(2n1 − 1) = 2m2−1(2n2 − 1),
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so, by uniqueness of prime factorisation in N, 2m1−1 = 2m2−1 and 2n1−

1 = 2n2 − 1,

so m1 = m2 and n1 = n2.

surjective: Take k ∈ N.

Then k = 2r(2s+ 1) for some r, s ⩾ 0

(consider the set T = {t ∈ Z⩾0 : k
2t

∈ N} — this is non-empty and

bounded above so has a maximum).

Then k = f(r + 1, s+ 1).

14 More on countability

We can build new countable sets from old. This is a very helpful way to

prove that a set is countable!

Proposition 19. Let A, B be countable sets.

(i) If A and B are disjoint, then A ∪B is countable.

(ii) A×B is countable.

Remark. In (i), we don’t need the condition that A and B are disjoint, but

it makes life easier for our proof.

Proof. Since A and B are countable, there are injections f : A → N and

g : B → N.

(i) Idea: to list elements of A ∪B, alternate taking elements from A, B.
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Define h : A ∪B → N by

h(x) =

2f(x)− 1 if x ∈ A

2g(x) if x ∈ B.

This is an injection (because f and g are).

(ii) Define h : A×B → N by h((a, b)) = 2f(a)3g(b).

By the uniqueness of prime factorisation in N, this is an injection.

Theorem 20. Q>0 is countable.

Proof. Define f : Q>0 → N by f(p
q
) = 2p3q where p, q ∈ Z>0 and hcf(p, q) =

1.

This is an injection (by uniqueness of prime factorisation in N).

Corollary 21. Q is countable.

Proof. We can write Q = Q>0 ∪ {0} ∪Q<0. This is a disjoint union.

We have just seen that Q>0 is countable, and similarly so is Q<0, and {0}

is finite and hence countable.

Hence, by Proposition 19, Q is countable.

Our next task will be to show that R is uncountable. We’re going to do

this using decimal expansions. That means that we need to know that deci-

mal expansions exist. Ideally we’d study sequences and series for a bit, then

look at decimal expansions, then prove that R is uncountable. But I’d like

to wrap up this section on countability now. So we’re going to assume a fact

about decimal expansions, and deduce that R is uncountable. I encourage

you to revisit the fact later in the course — I’ll let you know when we’ve cov-

ered the relevant theory. You could also (now) look at Dr Hilary Priestley’s
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supplementary notes on decimal expansions and the uncountability of R (on

the Moodle Analysis I page).

Fact Every real number has a decimal expansion, and if we require that we

choose a non-terminating expansion (such as 0.24999 . . . for 1
4
) rather than a

terminating one (such as 0.25 for 1
4
) where there is a choice, then this decimal

expansion is unique.

Theorem 22. R is uncountable.

Remark. The proof strategy we are going to use is called Cantor’s diagonal

argument.

Proof. It suffices to show that (0, 1] is uncountable.

Note that certainly (0, 1] is not finite (by Corollary 14 of the Archimedean

property).

Suppose, for a contradiction, that (0, 1] is countably infinite. List the

elements as x1, x2, x3, . . . . (If you like, we have a bijection N → (0, 1], and

x1 = f(1), x2 = f(2), x3 = f(3), . . . .)

Each has a non-terminating decimal expansion (where relevant choosing

the non-terminating option):

x1 = 0.a11a12a13a14 . . .

x2 = 0.a21a22a23a24 . . .

x3 = 0.a31a32a33a34 . . .

...

xk = 0.ak1ak2ak3ak4 . . .

...

Construct a real number x ∈ (0, 1] with decimal expansion 0.b1b2b3 . . .
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where

bk =

5 if akk = 6

6 if akk ̸= 6.

Then x ̸= xk for all k, because x differs from xk in the kth decimal place,

so x is not on our list, which supposedly contained all elements of (0, 1]. This

is a contradiction.

Remark. The only significance of the choice of 5 and 6 as the key digits when

defining x was that we didn’t involve 0 or 9, to avoid issues with non-unique

decimal expansions.

There are many further interesting things to say about countability, but

not in this course. We need to move on to consider sequences. Before you

continue to the next section, try to come up with a collection of examples

of sequences that you can use as your personal repertoire for testing the

definitions and results we’ll look at. Try to find some ‘typical’ and some

‘extreme’ examples of sequences that you think converge, and of sequences

that you think don’t converge.

15 Introduction to sequences

Remark. You are already familiar with the sine and cosine, exponential and

logarithm functions, and with raising a number to a non-integer power. At

the moment, though, we haven’t formally defined these. We’ll do so later in

the course (using infinite series—that’s why it needs to wait till later), and

this term and later in other Analysis courses you’ll explore and prove the

familiar properties of these function.
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All this means that at the moment our collection of functions we’ve de-

fined is rather small, and doesn’t give the richness we’d like when exploring

examples of sequences. So for now we’ll work with these familiar functions

(trig, exponential, log)—we’ll assume that they exist and have the properties

we expect. You can do this on the problems sheets too. When we come to

defining them later on, you can watch out to see that we don’t have any

circular arguments!

Notation. When we use logarithms, these will all be to the base e. We write

log x for loge(x). We don’t write ln x.

For a > 0 and x ∈ R, we define ax = ex log a. (Of course this relies

on definitions of the exponential and logarithm functions, which will come

later.)

Remark. Examples can be really useful. I don’t mean worked examples

(although these can also be really useful), I mean examples of objects that

do or don’t have certain properties. I’ll include some examples in these

notes and the accompanying videos. You’ll find additional examples in Dr

Hilary Priestley’s lecture notes, on the Moodle page for Analysis I, and I

encourage you to work through those too. I also encourage you to try your

own examples (and non-examples), to help you to deepen your experience

and understanding of the definitions and results we’ll meet.

Example. Here are some informal examples of sequences.

�

3

10
,
33

100
,
333

1000
,
3333

10000
, . . . are approximations to 1

3
, each better than the

previous.

�

14

10
,
141

100
,
1414

1000
,
14142

10000
, . . . are approximations to

√
2, each better than

the previous.
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� Take ε > 0. Then, by the Archimedean property, there is N ⩾ 1 such

that 0 < 1
N

< ε. Now for all n ⩾ N we have 0 < 1
n
⩽ 1

N
< ε. We

see that apart from finitely many terms at the start, the terms of the

sequence 1, 1
2
, 1
3
, 1
4
, 1
5
, . . . all lie within distance ε of 0. This is the case

for any positive real number ε.

� 1,−1, 2,−2, 3,−4, 4,−4, . . . is another sequence, and intuitively it feels

as though it does not tend to a limit.

� 7, 1.2,−5, 2, 324,−9235.32, . . . is another sequence—there is no clear

pattern to the terms (I just typed them wherever my fingers landed),

but it is still a sequence.

What exactly is a sequence?

Definition. A real sequence, or sequence of real numbers, is a function

α : N → R. We call α(n) the nth term of the sequence.

We usually write an for α(n), and say that α defines the sequence (an)

with terms a1, a2, a3, a4, . . . . We might also write this as (an)n⩾1 or (an)
∞
n=1.

Similarly, a complex sequence is formally a function α : N → C, and we

write it as (an), where now an ∈ C for n ⩾ 1.

Remark. � The order of the terms in a sequence matters!

� We write (an) for the sequence, and an for a term of the sequence.

� Much of the theory relating to sequences applies to both real and com-

plex sequences. Sometimes, though, we’ll need to focus only on real

sequences—for example if we’re using inequalities. In this case we’ll

carefully specify that we’re working with real sequences. If we don’t
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specify, and just say ‘sequences’, then it applies equally to real and com-

plex sequences. We’ll also have a section (and corresponding video) at

the end of this block concentrating on complex sequences.

Example. � Let an = (−1)n. Then the first few terms of the sequence

are −1, 1,−1, 1,−1, 1, . . . .

� Let an = sinn
2n+1

. Then the first few terms of the sequence are

1

3
sin 1,

1

5
sin 2,

1

7
sin 3, . . . .

� Let

an =

0 if n is prime

1 + 1
n

otherwise.

Then the first few terms of the sequence are 2, 0, 0, 5
4
, 0, 7

6
, 0, 9

8
, . . . .

� Let an = n. Then the first few terms of the sequence are 1, 2, 3, 4, 5, . . . .

Definition. We can make new sequences from old. Let (an), (bn) be se-

quences and let c be a constant. Then we can define new sequences ‘termwise’:

(an + bn), (−an), (anbn), (can), (|an|). If bn ̸= 0 for all n, then we can also

define a sequence (an
bn
).

Example. Let an = (−1)n and bn = 1 for n ⩾ 1.

Then the first few terms of (an + bn) are 0, 2, 0, 2, 0, 2, . . . ; and (−an) =

((−1)n+1); and (|an|) = (bn).

16 Convergence of a sequence

Before we see a formal definition of convergence, let’s consider some examples

informally. Here’s one way I like to visualise a sequence. These are examples

from the previous section. Each graph plots the points (n, an) for 1 ⩽ n ⩽ 10.
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� an = (−1)n

� an =

0 if n is prime

1 + 1
n

otherwise
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� an = sinn
2n+1

� an = n

42



Here is an unofficial picture of the definition of convergence.

Definition. Let (an) be a real sequence, let L ∈ R. We say that (an)

converges to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |an − L| < ε.

In this case we write an → L as n → ∞, and we say that L is the limit of

(an).

Remark. � We might also say that (an) tends to L as n → ∞, and we

might also write that lim
n→∞

an = L.

� N can depend on ε, and almost always will.

� The ‘order of the quantifiers’ matters. We wrote “∀ε > 0 ∃N ∈

N . . .”. This order allows N to depend on ε. If we wrote “∃N ∈

N such that ∀ε > 0 . . .” that would be something quite different.

We could replace n ⩾ N in the definition by n > N , and |an − L| < ε

by |an − L| ⩽ ε, without changing the definition. (Check this!) But

it’s crucial that we have ε > 0 not ε ⩾ 0. (Check this!)
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� I put ‘the’ limit in the definition. We’ll see later that if it exists then

it’s unique.

Definition. Let (an) be a real sequence. We say that (an) converges, or is

convergent, if there is L ∈ R such that an → L as n → ∞. If (an) does not

converge, then we say that it diverges, or is divergent.

Intuitively, the first thousand or million terms of a sequence shouldn’t

affect whether it converges. We’ll prove a result that makes this precise, but

first we need a quick definition.

Definition. Let (an) be a sequence. A tail of (an) is a sequence (bn), where

for some natural number k we have bn = an+k for n ⩾ 1. That is, (bn) is the

sequence obtained by deleting the first k terms of (an).

Lemma 23 (Tails Lemma). Let (an) be a sequence.

(i) If (an) converges to a limit L, then every tail of (an) also converges,

and to this same limit L.

(ii) If a tail (bn) = (an+k) of (an) converges, then (an) converges.

Proof. (i) Take a tail of (an): take k ⩾ 1 and let bn = an+k for n ⩾ 1.

Assume that (an) converges to a limit L.

Take ε > 0.

Then there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then n+ k ⩾ N so |an+k − L| < ε, that is, |bn − L| < ε.

So (bn) converges and bn → L as n → ∞.

(ii) Assume that (bn) = (an+k) converges.

Then there is L ∈ R such that bn → L as n → ∞.
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Take ε > 0.

Then there is N such that if m ⩾ N then |bm − L| < ε, that is,

|am+k − L| < ε.

Now if n ⩾ N + k then n = m+ k where m ⩾ N , and so |an − L| < ε.

So (an) converges and an → L as n → ∞.

Example. We’ll see later (soon!) that there are other ways to prove con-

vergence, not only directly from the definition. But for now we’ve only got

the definition (and the Tails Lemma), so let’s get some practice using what

we’ve got so far.

�

Claim. 1
n
→ 0 as n → ∞.

Proof. Take ε > 0.

Then there is N ∈ N such that 1
N

< ε (by the Archimedean property).

For n ⩾ N we have | 1
n
− 0| = 1

n
⩽ 1

N
< ε.

So 1
n
→ 0 as n → ∞.

�

Claim. Let an = 1 + (−1)n 1√
n
for n ⩾ 1. Then an → 1 as n → ∞.

Proof. Take ε > 0.

Aim: want N such that if n ⩾ N then |an − 1| < ε

that is, |(1 + (−1)n 1√
n
)− 1| < ε

that is, 1√
n
< ε,
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that is, 1
ε
<

√
n.

Take N = ⌈ 1
ε2
⌉+ 1.

Here ⌈x⌉ denotes the ceiling function: it is defined to be the smallest

integer greater than or equal to x. Informally, if x is an integer then

take that value; otherwise, round up to the next integer.

If n ⩾ N , then

n >
1

ε2

so
√
n >

1

ε

so
1√
n
< ε

so |an − 1| < ε.

So an → 1 as n → ∞.

�

Claim. Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1. Then an → 0 as n → ∞.

Proof. Take ε > 0.

Aim: want N such that if n ⩾ N then |an − 0| < ε,

that is,

∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ < ε

but | cos(n3 + 1)| ⩽ 1 so it’s enough to ensure that

∣∣∣∣ n

5n2 + 1

∣∣∣∣ < ε

and 5n2 + 1 ⩾ 5n2 so it’s enough to ensure that
∣∣ n
5n2

∣∣ < ε

that is, 1
5n

< ε, that is, n > 1
5ε
.

Take N = ⌈1
ε
⌉+ 1.
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If n ⩾ N , then n > 1
5ε

so

|an| =
∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
< ε.

So an → 0 as n → ∞.

Remark. Here are some top tips!

� We don’t need the smallest possible N . It’s (almost always) not even

interesting to know what it is. So make your life easier! If an inequality

(in the right direction) helps, then go for it.

� Be careful to make sure that the logic flows in the right direction, and

that you’ve set out the logic explicitly. Hopefully the examples we’ve

just seen help you to have ideas of how to do this.

� The definition officially says N ∈ N, but we don’t really care whether

N is a natural number. If we have a value that works, then we can

always choose a natural number larger than it.

� We think of ε as a small positive real number, but we are obliged to

prove it for all ε > 0. But if we can prove it for say 0 < ε < 1

then that’s enough—if N works for a certain ε then it works for all

larger values too. So you can work with a smaller range of ε, such as

0 < ε < 1, if that is most convenient (but it would be a good idea to

mention briefly why this is sufficient).

� It’s really worth becoming comfortable with inequalities and modulus.

In the examples, it was nicer to use the absolute values to write things

like |an−L| < ε, rather than −ε < an−L < ε. If you prefer the second

at the moment, then I recommend practising to get used to the first!
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Working directly from the definition is often painful or impractical. Our

next goal is to prove a result that will give a more convenient strategy for

proving convergence in some circumstances.

17 Limits: first key results

The next result is extremely useful in practice! We’ll see a more general

version later, but even this version is strong enough to be useful.

Proposition 24 (Sandwiching, first version). Let (an) and (bn) be real se-

quences with 0 ⩽ an ⩽ bn for all n ⩾ 1. If bn → 0 as n → ∞, then an → 0

as n → ∞.

Remark. You might like to draw yourself a diagram to develop your intuition

for what this result says.

Proof. Idea: if N works for bn then it works for an too.

Assume that 0 ⩽ an ⩽ bn for all n, and that bn → 0 as n → ∞.

Take ε > 0.

Since bn → 0, there exists N such that if n ⩾ N then |bn| < ε.

Now if n ⩾ N then 0 ⩽ an ⩽ bn < ε, so |an| < ε.

So an → 0 as n → ∞.

Example. �

Claim. 1
2n

→ 0 as n → ∞.

Proof. We have 2n ⩾ n for n ⩾ 1 (can prove this by induction),

so 0 ⩽ 1
2n

⩽ 1
n
for n ⩾ 1, and 1

n
→ 0,

so by Sandwiching 1
2n

→ 0 as n → ∞.
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�

Claim. Let an =
n cos(n3 + 1)

5n2 + 1
for n ⩾ 1 (we saw this example earlier).

Then an → 0 as n → ∞.

Proof. Idea: apply Sandwiching to (|an|).

We have

0 ⩽

∣∣∣∣n cos(n3 + 1)

5n2 + 1

∣∣∣∣ ⩽ 1

5n
⩽

1

n

for n ⩾ 1,

and 1
n
→ 0 as n → ∞,

so, by Sandwiching, |an| → 0 as n → ∞.

But (looking back at the definition) we see that |an| → 0 if and only if

an → 0.

Here are two key sequences; it will be useful later to have studied them.

(You can also think of them as further worked examples.)

Lemma 25. (i) Take c ∈ R with |c| < 1. Then cn → 0 as n → ∞.

(ii) Let an = n
2n

for n ⩾ 1. Then an → 0 as n → ∞.

Proof. (i) Write |c| = 1
1+y

where y > 0.

Take ε > 0.

Let N = ⌈ 1
yε
⌉ + 1. (When writing this proof, we might leave this line

blank and fill it in at the end!)

Take n ⩾ N .
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By Bernoulli’s inequality (since y > 0 and n ⩾ 1) we have (1 + y)n ⩾

1 + ny, so

|cn| = 1

(1 + y)n
⩽

1

1 + ny
⩽

1

Ny
< ε.

So cn → 0 as n → ∞.

(ii) Note that if n ⩾ 2 then 2n = (1+1)n ⩾
(
n
2

)
(by the binomial theorem).

Take ε > 0.

Let N = ⌈2 + 2
ε
⌉.

For n ⩾ N , we have

|an − 0| = n

2n
⩽

n(
n
2

) =
2

n− 1
⩽

2

N − 1
< ε.

So an → 0 as n → ∞.

As promised earlier, let’s show that if a sequence converges, then its limit

is unique.

Theorem 26 (Uniqueness of limits). Let (an) be a convergent sequence.

Then the limit is unique.

Proof. Assume that an → L1 and an → L2 as n → ∞. Aim: L1 = L2.

Idea: contradiction. If L1 ̸= L2, then eventually all the terms are really

close to L1, and also to L2, and that’s not possible.
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Suppose, for a contradiction, that L1 ̸= L2.

Let ε =
|L1 − L2|

2
> 0.

Since an → L1 as n → ∞, there is N1 such that if n ⩾ N1 then |an−L1| <

ε.

Also, since an → L2 as n → ∞, there is N2 such that if n ⩾ N2 then

|an − L2| < ε.

For n ⩾ max{N1, N2} we have |an − L1| < ε and |an − L2| < ε, so

|L1 − L2| = |(L1 − an) + (an − L2)|

⩽ |L1 − an|+ |an − L2| by the triangle inequality

< 2ε = |L1 − L2|.

This is a contradiction.

So L1 = L2.

18 Limits: modulus and inequalities

Proposition 27. Let (an) be a convergent sequence. Then (|an|) also con-

verges. Moreover, if an → L as n → ∞ then |an| → |L| as n → ∞.
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Proof. Say an → L as n → ∞.

Take ε > 0.

Then there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then, by the Reverse Triangle Inequality, we have

||an| − |L|| ⩽ |an − L| < ε.

So (|an|) converges, and |an| → |L| as n → ∞.

Remark. We could instead have proved Proposition 27 using the Sandwich-

ing Lemma, since an → L as n → ∞ if and only if |an − L| → 0 as n → ∞

(check this using the definition of convergence).

Now let’s think about inequalities. If (an) is a convergent sequence and

an > 0 for all n, then what can we say about the limit? It’s not the case that

the limit must be positive. For example, if an = 1
n
then an > 0 for all n but

an → 0. But it’s hard to see how a sequence of positive terms could have a

negative limit.

Proposition 28 (Limits preserve weak inequalities). Let (an) and (bn) be

real sequences, and assume that an → L and bn → M as n → ∞, and that

an ⩽ bn for all n. Then L ⩽ M .

Remark. � This includes the special case where an = 0 for all n: Propo-

sition 28 says that if bn ⩾ 0 for all n, and bn → M as n → ∞, then

M ⩾ 0. (This is because the constant sequence 0, 0, 0, . . . certainly

converges to 0.)

� A common mistake is to use the non-result that limits preserve strict

inequalities. As we’ve seen, this is not true. Please try not to do this!
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Proof. Suppose, for a contradiction, that it is not the case that L ⩽ M , so

(by trichotomy) L > M .

Let ε = 1
2
(L−M) > 0.

Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then |an−L| < ε.

Since bn → M as n → ∞, there is N2 such that if n ⩾ N2 then |bn−M | <

ε.

Now for n ⩾ max{N1, N2} we have an > L− ε and bn < M + ε,

so L− ε < an ⩽ bn < M + ε,

so L−M < 2ε = L−M . This is a contradiction.

We saw a sandwiching result earlier. Here is a generalisation.

Proposition 29 (Sandwiching). Let (an), (bn) and (cn) be real sequences

with an ⩽ bn ⩽ cn for all n ⩾ 1. If an → L and cn → L as n → ∞, then

bn → L as n → ∞.

Proof. Take ε > 0.

Since an → L as n → ∞, there is N1 such that if n ⩾ N1 then |an−L| < ε.

Since cn → L as n → ∞, there is N2 such that if n ⩾ N2 then |cn−L| < ε.

Then for n ⩾ max{N1, N2} we have L− ε ⩽ an ⩽ bn ⩽ cn ⩽ L+ ε,

so |bn − L| < ε.

So bn → L as n → ∞.
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19 Bounded and unbounded sequences

Definition. Let (an) be a sequence. We say that (an) is bounded if the set

{an : n ⩾ 1} is bounded, that is, there is M such that |an| ⩽ M for all n ⩾ 1.

If (an) is not bounded then we say that it is unbounded.

Proposition 30 (A convergent sequence is bounded). Let (an) be a conver-

gent sequence. Then (an) is bounded.

Remark. Proposition 30 tells us that if (an) is unbounded then (an) diverges.

Proof.

Assume that an → L as n → ∞.

Then (taking ε = 1) there is N such that if n ⩾ N then |an − L| < 1 so

|an| = |(an − L) + L| ⩽ |an − L|+ |L| < 1 + |L|.

Let M = max{|a1|, |a2|, . . . , |aN |, |L|+ 1}.

Then |an| ⩽ M for all n ⩾ 1.

Remark. � As remarked earlier, if (an) is unbounded then (an) diverges.

So, for example, (2n) diverges.

� Unboundedness is not the same as divergence. The converse of Propo-

sition 30 is not true. A bounded sequence can diverge. For example,

let an = (−1)n. Then |an| ⩽ 1 for all n ⩾ 1, so (an) is bounded.

Claim. ((−1)n) does not converge.
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Proof. Suppose, for a contradiction, that (−1)n → L as n → ∞.

Then (taking ε = 1) there is N such that if n ⩾ N then |(−1)n−L| < 1.

In particular (n = 2N) we have |L− 1| < 1 so L > 0,

and (n = 2N + 1) we have |L+ 1| < 1 so L < 0.

This is a contradiction.

What would it mean to say that a sequence tends to infinity?

Definition. Let (an) be a real sequence. We say that (an) tends to infinity

as n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an > M.

In this case we write an → ∞ as n → ∞.

Similarly, we say that (an) tends to negative infinity as n → ∞ if

∀M ∈ R ∃N ∈ N such that ∀n ⩾ N, an < M.

In this case we write an → −∞ as n → ∞.
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Remark. This is a separate definition from our earlier definition of conver-

gence, and ∞ is definitely not a real number. Results about convergence to

a real number L cannot just be applied by ‘taking L = ∞’—this would be

highly illegal!

Example. � Let an = n2 − 6n for n ⩾ 1.

Claim. an → ∞ as n → ∞.

Proof. Fix M > 0. (It suffices to prove the result for M > 0.)

We want N such that if n ⩾ N then n2 − 6n ⩾ M

but n2 − 6n = (n− 3)2 − 9

so we are done if (n− 3)2 ⩾ M + 9

that is, we are done if n− 3 ⩾
√
M + 9

Let N = ⌈4 +
√
M + 9⌉.

If n ⩾ N , then n− 3 ⩾
√
M + 9 > 0,

so (n− 3)2 ⩾ M + 9,

so n2 − 6n ⩾ M .

So an → ∞ as n → ∞.

� Let an =

0 if n prime

n otherwise.

Then (an) does not tend to infinity, because there are infinitely many

primes: for any N ∈ N, there is a prime n with n > N , and then

an = 0.

Lemma 31. (i) If α < 0, then nα → 0 as n → ∞.
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(ii) If α > 0, then nα → ∞ as n → ∞.

Proof. (i) Take ε ∈ (0, 1). We have

nα < ε

⇔ eα logn < ε

⇔ α log n < log ε

⇔ log n >
1

α
log ε (note α < 0)

⇔ n > e
1
α
log ε

so we can take N = 1 + ⌈e 1
α
log ε⌉.

(ii) Take M > 0. We have

nα > M

⇔ eα logn > M

⇔ α log n > logM

⇔ log n >
1

α
logM (note α > 0)

⇔ n > e
1
α
logM

so we can take N = 1 + ⌈e 1
α
logM⌉.

Lemma 32. Let c ∈ R>0.

(i) If c < 1, then cn → 0 as n → ∞.

(ii) If c = 1, then cn → 1 as n → ∞.

(iii) If c > 1, then cn → ∞ as n → ∞.

Proof. (i) This was Lemma 25.
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(ii) This is clear from the definition of convergence.

(iii) Exercise. (You could adapt the argument from (i), or use logarithms.)

20 Complex sequences

A lot of the theory we have just seen applies equally to complex sequences,

but there are some differences. Let’s spell out the definition of convergence

explicitly.

Definition. Let (zn) be a complex sequence, let L ∈ C. We say that (zn)

converges to L as n → ∞ if

∀ε > 0 ∃N ∈ N such that ∀n ⩾ N, |zn − L| < ε.

Remark. � If (zn) tends to a limit, then this limit is unique, exactly as

in Theorem 26.

� We can have a sort of sandwiching for complex sequences, if we use the

modulus. If (zn) and (wn) are complex sequences, and |wn| ⩽ |zn| for

all n ⩾ 1, and zn → 0 as n → ∞, then wn → 0 as n → ∞.

Given a complex sequence (zn), there are two associated real sequences

(Re(zn)) and (Im(zn)). The next result relates convergence of (zn) to con-

vergence of (Re(zn)) and (Im(zn)).

Theorem 33 (Convergence of complex sequences). Let (zn) be a complex

sequence. Write zn = xn + iyn with xn, yn ∈ R, so that (xn) and (yn)

are real sequences. Then (zn) converges if and only if both (xn) and (yn)

converge. Moreover, in the case where (zn) converges, we have lim
n→∞

zn =

lim
n→∞

xn + i lim
n→∞

yn.
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Proof. Exercise.

Example. � Let zn = in

n
. Then |zn| = 1

n
→ 0 as n → ∞ so zn → 0 as

n → ∞.

� Let zn = (1 + i)n. The sequence is

1 + i, 2i,−2 + 2i,−4,−4− 4i,−8i, 8− 8i, 16, . . . .

The real parts are 1, 0,−2,−4,−4, 0, 8, 16, . . .—this sequence doesn’t

converge, and hence neither does (zn).

21 Subsequences

We can make a good informal guess as to what we mean by a subsequence.

Let (an)n⩾1 be a sequence. Then a subsequence is a sequence (br)r⩾1,

where each br is in (an), and the terms are in the right order.

Example. Let an = n for n ⩾ 1. The following are subsequences of (an).

� 2, 4, 6, 8, . . . — the subsequence (a2n)

� 2, 4, 8, 16, . . . — the subsequence (a2n)

The following are not subsequences of (an).

� 6, 4, 8, . . . — the terms are not in the right order

� 2, 4, 0, . . . — not all the terms are in (an)

� 1, 2, 3, . . . , 2020 — finite so not a sequence.

Now let’s give a formal definition of a subsequence.
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Definition. Let (an)n⩾1 be a sequence. A subsequence (br)r⩾1 of (an)n⩾1 is

defined by a function f : N → N such that f is strictly increasing (if p < q

then f(p) < f(q)), and br = af(r) for r ⩾ 1.

We often write f(r) as nr. Then n1 < n2 < n3 < · · · is a strictly

increasing sequence of natural numbers, and br = anr so the sequence (br)

has terms an1 , an2 , an3 , . . . .

Remark. � Formally, (an) corresponds to a function α : N → R or

α : N → C. Then a subsequence of (an) corresponds to a function

α ◦ f , where f : N → N is strictly increasing.

� Subscripts are ‘dummy variables’. We can write (an) as (ar) or (am)

or (aα) or (ax). It is conventional to use a letter close to n in the

alphabet, to help us remember that it is a natural number. We can

use any letter for the subscripts in the subsequence (br), except that if

we write our original sequence as (an) then we should avoid using n for

the subsequence too.

� It’s sometimes useful to know that nr ⩾ r for r ⩾ 1. (Exercise: prove

this inequality, using induction.)

Proposition 34 (Subsequences of a convergent sequence). Let (an) be a

sequence. If (an) converges, then every subsequence (anr) of (an) converges.

Moreover, if an → L as n → ∞ then every subsequence also converges to L.

Remark. So if (an) is a sequence, and it has two subsequences that tend

to different limits, then (an) does not converge. This follows from Proposi-

tion 34, and can be a useful strategy for showing that a sequence does not

converge.

Proof. Assume that (an) converges to L.
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Let (anr) be a subsequence of (an).

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε.

If r ⩾ N , then nr ⩾ r ⩾ N (see remark before this result),

so |anr − L| < ε.

So anr → L as r → ∞.

Example. Let an =

0 if n is prime

1 + 1
n

otherwise

.

Claim. (an) does not converge.

Proof. Idea: the subsequence of terms with prime subscripts tends to 0,

and the subsequence of terms with non-prime subscripts tends to 1, so (an)

doesn’t converge.

Let the primes be p1 < p2 < p3 < · · · . Let P = {p1, p2, p3, . . . }.

Note that there are infinitely many primes, so (apr)r⩾1 is a subsequence.

We have apr = 0 for all r ⩾ 1, so apr → 0 as r → ∞.

Let the elements of N \ P be n1 < n2 < n3 < · · · .

Note that there are infinitely many non-primes, so (anr)r⩾1 is a subse-

quence.

We have anr = 1 + 1
nr

for r ⩾ 1, and so we see that anr → 1 as r → ∞.

So (an) has subsequences that converge to different limits, so, by Propo-

sition 34, (an) does not converge.

22 Algebra of Limits — part one

Example. This is an unofficial example. We’ll return to it once we’ve proved

some results.
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Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n+ 2
.

What can we say about (an)?

Intuitively...

- the numerator grows like 7n5 — the other terms are much smaller for

large n, which is all we care about;

- the denominator grows like 4n5

so we might conjecture that an → 7
4
as n → ∞.

To prove this (and lots more!), we’ll prove a bunch of results that are

extremely useful in practice. Collectively, these are known as the ‘Algebra of

Limits’, and we’ll quote “by AOL” in arguments.

Theorem 35 (Algebra of Limits, part 1). Let (an) and (bn) be sequences

with an → L and bn → M as n → ∞. Let c be a constant.

(i) (constant) If an = c, so (an) is a constant sequence, then an → c as

n → ∞.

(ii) (scalar multiplication) The sequence (can) converges, and can → cL as

n → ∞.

(iii) (addition) The sequence (an + bn) converges, and an + bn → L+M as

n → ∞.

(iv) (subtraction) The sequence (an − bn) converges, and an − bn → L−M

as n → ∞.

(v) (modulus) The sequence (|an|) converges, and |an| → |L| as n → ∞.

Proof. (i) This is immediate from the definition.
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(ii) If c = 0, then we’re done by (i). So assume that c ̸= 0.

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε.

Now if n ⩾ N then |can − cL| = |c||an − L| < |c|ε.

So (can) converges to cL.

OR...

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε
|c| .

Now if n ⩾ N then |can − cL| = |c||an − L| < ε.

So (can) converges to cL.

(iii) Take ε > 0.

Since an → L as n → ∞ there is N1 such that if n ⩾ N1 then |an−L| <

ε.

Since bn → M as n → ∞ there is N2 such that if n ⩾ N2 then

|bn −M | < ε.

Let N = max{N1, N2}. If n ⩾ N , then |an − L| < ε and |bn −M | < ε,

so

|(an + bn)− (L+M)| ⩽ |an − L|+ |bn −M | (by triangle inequality)

< 2ε.

So (an + bn) converges to L+M .

(iv) This follows from (ii) and (iii).

(v) This was Proposition 27.
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Remark. In (iii), I ended up showing that we can make |(an+bn)−(L+M)|

less than 2ε by going far enough along the sequence. But the definition says

ε, not 2ε, so isn’t this a problem?

Well, no, it’s not a problem. We need to show that we can make |(an +

bn)− (L+M)| less than any positive real number — and that’s what we’ve

done. The important thing is that 2 was a (positive) constant: it didn’t

depend on n.

We could instead have chosen N1 and N2 corresponding to
ε
2
(so if n ⩾ N1

then |an −L| < ε
2
and similarly for bn), and then we’d have got ε at the end.

But if I’d done that then it might have seemed more mysterious: you might

have wondered “how would I have known to choose ε
2
?”

In practice, sometimes I doodle on scrap paper and consequently know

what to choose at the start, and sometimes I just work through and see

what happens, and if I get 2ε or 1000ε at the end then it doesn’t matter. I

illustrated these two alternative approaches in (ii) — but really they’re the

same, and both are fine.

Example.

Claim. Let an =
1

2n
+

(
1 + (−1)n

1√
n

)
+

n cos(n3 + 1)

5n2 + 1
. Then an → 1 as

n → ∞.

Proof. We showed earlier that
1

2n
→ 0 and 1 + (−1)n

1√
n

→ 1 and also

n cos(n3 + 1)

5n2 + 1
→ 0 as n → ∞ (see Section 16).

So, by AOL, (an) converges, and an → 0 + 1 + 0 = 1 as n → ∞.

Example.

Claim. Let an = (−1)n + n
2n

for n ⩾ 1. Then (an) does not converge.
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Proof. Suppose, for a contradiction, that (an) converges.

Note that
(

n
2n

)
converges (this was an earlier example).

So, by AOL, the sequence with nth term (−1)n = an − n
2n

converges.

But we showed earlier that ((−1)n) does not converge (or we could now

note that it has subsequences tending to different limits 1 and −1). This is

a contradiction.

23 Algebra of Limits — part two

Theorem 36 (Algebra of Limits, part 2). Let (an) and (bn) be sequences

with an → L and bn → M as n → ∞.

(vi) (product) The sequence (anbn) converges, and anbn → LM as n → ∞.

(vii) (reciprocal) If M ̸= 0, then the sequence
(

1
bn

)
converges, and 1

bn
→ 1

M

as n → ∞.

(viii) (quotient) If M ̸= 0, then the sequence
(

an
bn

)
converges, and an

bn
→ L

M

as n → ∞.

Remark. You might wonder whether the sequences
(

1
bn

)
and

(
an
bn

)
in (vii)

and (viii) are defined. This is a good question. The answer is that — as we’ll

show in the proof — if M ̸= 0 then a tail of (bn) has all its terms nonzero,

and hence there’s a tail of
(

1
bn

)
that exists, and similarly for

(
an
bn

)
. When

we talk about convergence of these sequences, it’s enough to consider a tail.

Proof. (vi) We’re going to want to study

|anbn − LM | = |an(bn −M) +M(an − L)|

⩽ |an||bn −M |+ |M ||an − L|
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— this use of the triangle inequality can help us to see how to proceed.

Take ε > 0. We may assume that ε < 1.

Since an → L, there is N1 such that if n ⩾ N1 then |an − L| < ε.

Since bn → M , there is N2 such that if n ⩾ N2 then |bn −M | < ε.

Let N = max{N1, N2}.

If n ⩾ N , then |an − L| < ε and |bn −M | < ε and |an| < |L|+ ε, so

|anbn − LM | = |an(bn −M) +M(an − L)|

⩽ |an||bn −M |+ |M ||an − L|

< (|L|+ ε) · ε+ |M | · ε

< ε(1 + |L|+ |M |).

Since 1 + |L| + |M | is constant, this is enough to show that (anbn)

converges, and the limit is LM .

(vii) Assume that M ̸= 0.

Idea: (1) eventually bn is close to M , so can’t be 0. (2)

∣∣∣∣ 1bn − 1

M

∣∣∣∣ =
|bn −M |
|M ||bn|

– eventually the numerator is small, and |bn| is close to |M |.

Take ε > 0.

Since bn → M and |M | > 0, there is N1 such that if n ⩾ N1 then

|bn −M | < |M |
2
, so (by the Reverse Triangle Inequality)

|bn| ⩾ ||bn + (M − bn)| − |M − bn|| >
|M |
2

> 0.

So the tail (bn)n⩾N1 has all terms nonzero, so we can consider the se-

quence
(

1
bn

)
n⩾N1

.

Also, there is N2 such that if n ⩾ N2 then |bn −M | < ε.
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Let N = max{N1, N2}. If n ⩾ N , then∣∣∣∣ 1bn − 1

M

∣∣∣∣ = |M − bn|
|M ||bn|

<
ε

|M |
· 2

|M |
.

Since 2
|M |2 is a positive constant, this shows that

(
1
bn

)
n⩾N1

converges,

and the limit is 1
M
.

(viii) This follows from (vi) and (vii).

Example. Let an =
7n5 − n sin(n2 + 5n) + 3

4n5 − 3n2 + n+ 2
(we saw this example at the

start of Section 22).

Claim. an → 7
4
as n → ∞.

Proof. Idea: the important terms (for large n) are 7n5 and 4n5.

We have

an =
7− 1

n4 sin(n
2 + 5n) + 3

n5

4− 3
n3 +

1
n4 +

2
n5

.

Now

0 ⩽

∣∣∣∣ 1n4
sin(n2 + 5n)

∣∣∣∣ ⩽ 1

n4
⩽

1

n

and 1
n
→ 0, so by Sandwiching 1

n4 sin(n
2 + 5n) → 0, and several other terms

also tend to 0 (eg by Sandwiching),

so, by AOL, (an) converges, and

an → 7− 0 + 0

4− 0 + 0 + 0
=

7

4

as n → ∞.

Proposition 37 (Reciprocals and infinite/zero limits). Let (an) be a se-

quence of positive real numbers. Then an → ∞ as n → ∞ if and only if

1
an

→ 0 as n → ∞.

Proof. Exercise (using the definitions).
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24 Orders of magnitude

When we’re studying a sequence (an), it can be really useful to develop some

intuition about the behaviour of an for large n, in order to make a conjecture

about the convergence (or otherwise) of the sequence, and to select a proof

strategy. (This is what we did in the example at the end of the last section,

for example.)

Example. � Let an =
8n2 + 1000000n+ 1000000

14n6 + n3 + n
.

Intuitively, the key term in the numerator is 8n2, and the key term in

the denominator is 14n6. Even with the amusingly large coefficients in

the numerator, when n is large these terms will be much smaller than

8n2.

So it feels like the sequence grows roughly like 8
14n4 , so should tend to

0.

We can formalise this using AOL. Dividing through top and bottom by

n6 (since this is the key term), we get

an =
8
n4 +

1000000
n5 + 1000000

n6

14 + 1
n3 +

1
n5

→ 0 + 0 + 0

14 + 0 + 0
= 0

as n → ∞.

� We showed in Lemma 25 that n
2n

→ 0 as n → ∞.

This is an example of the idea that ‘exponentials beat polynomials’.

But while ‘exponentials beat polynomials’ is a useful slogan for intu-

ition, it is not suitable for rigorous proofs!

� We’ve seen a couple of examples where we used that | cosx| ⩽ 1 and

| sinx| ⩽ 1 for all x — this can be useful.
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� We’ll show in the next section that logn
n

→ 0 as n → ∞. Intuitively,

polynomials grow faster than logarithms.

Definition. Let (an) and (bn) be sequences. We write an = O(bn) as n → ∞

if there is a constant C ∈ R>0 and there is N such that if n ⩾ N then

|an| ⩽ C|bn|. This is ‘big O’ notation.

If bn ̸= 0 for all n (or all sufficiently large n), then we write an = o(bn) as

n → ∞ if an
bn

→ 0 as n → ∞. This is ‘little o’ notation.

Remark. � Sandwiching tells us that if an = O(bn) and bn → 0 as

n → ∞ then an → 0 as n → ∞.

� Big O and little o notation give us precise ways to make precise state-

ments about comparative rates of growth of sequences. Please use them

precisely!

Example. This example is in a Moodle quiz. Before you read on to the next

section, please go to the Moodle course page for Analysis I, and try the quiz

for section 24 (it’s a short multiple choice quiz).

25 Monotonic sequences

Definition. Let (an) be a real sequence.

� We say that (an) is monotonic increasing, or monotone increasing, or

increasing, if an ⩽ an+1 for all n.

� We say that (an) is strictly increasing if an < an+1 for all n.

� We say that (an) is monotonic decreasing, or monotone decreasing, or

decreasing, if an ⩾ an+1 for all n.
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� We say that (an) is strictly decreasing if an > an+1 for all n.

� We say that (an) is monotonic, or monotone, if it is increasing or de-

creasing.

Example. Notice that a constant sequence is both increasing and decreasing.

This might seem counterintuitive!

We know that a convergent sequence is bounded. What can we say about

a bounded monotone sequence?

Theorem 38 (Monotone Sequences Theorem). Let (an) be a real sequence.

(i) If (an) is increasing and bounded above, then (an) converges.

(ii) If (an) is decreasing and bounded below, then (an) converges.

Remark. � So ‘a bounded monotone sequence converges’.

� The result applies to tails of sequences too: if (an) has a tail that is

monotone and bounded, then it converges.

Proof. (i) Assume that (an) is increasing and bounded above.
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Idea: {an : n ⩾ 1} has a supremum, and (an) converges to this.

The set S = {an : n ⩾ 1} is non-empty and bounded above, so, by

Completeness, it has a supremum.

Take ε > 0.

By the Approximation Property, there is N such that supS−ε < aN ⩽

supS.

If n ⩾ N , then supS − ε < aN ⩽ an ⩽ supS,

so |an − supS| < ε.

So (an) converges, and an → supS as n → ∞.

(ii) If (an) is decreasing and bounded below, then (−an) is increasing and

bounded above, so (ii) follows from (i).

Lemma 39. Let (an) be a real sequence that is increasing and not bounded

above. Then an → ∞ as n → ∞.

Proof. Take M ∈ R.

Since (an) is not bounded above, there is N such that aN > M .

Then, since (an) is increasing, if n ⩾ N then an ⩾ aN > M .
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Example. Let an =

(
1 +

1

n

)n

.

On Sheet 1, you proved that (an) is increasing and that (an) is bounded

above (by 3). So, by the Monotone Sequences Theorem, (an) converges. Say

an → L as n → ∞. Then, since limits preserve weak inequalities, we see that

2 ⩽ L ⩽ 3.

(Secretly, we know more about L, but that’s strictly unofficial for now.)

Example. Let c ⩾ 0. In this example, we’ll show that
√
c exists. (This

generalises earlier work on
√
2, and uses a different strategy.)

Define (an) by a1 = 1 and an+1 =
1

2

(
an +

c

an

)
for n ⩾ 1.

This is a legitimate definition, since (by induction) an ̸= 0 for n ⩾ 1.

Claim. (an) converges, and if an → L then L2 = c.

Proof. � (an) bounded below:

by a straightforward induction argument, we have an > 0 for all n.

� study a2n − c:

for n ⩾ 1, we have

a2n+1 − c =
1

4

(
an +

c

an

)2

− c

=
1

4

(
a2n + 2c+

c2

a2n

)
− c

=
1

4

(
a2n − 2c+

c2

a2n

)
=

1

4

(
an −

c

an

)2

⩾ 0,

so a2n+1 ⩾ c for n ⩾ 1.
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� (an)n⩾2 decreasing:

for n ⩾ 2, we have

an+1 − an =
1

2

(
an +

c

an

)
− an =

1

2

(
c

an
− an

)
=

1

2an
(c− a2n) ⩽ 0,

so an+1 ⩽ an for n ⩾ 2.

So, by the Monotone Sequences Theorem, (an) converges.

Say an → L as n → ∞.

Then also an+1 → L as n → ∞ (it’s a tail of the sequence).

But if L ̸= 0 then

an+1 =
1

2

(
an +

c

an

)
→ 1

2

(
L+

c

L

)
by AOL.

Since limits are unique, we have L = 1
2

(
L+ c

L

)
,

so, rearranging, L2 = c.

Also, we have an > 0 for all n, and limits preserve weak inequalities, so

L ⩾ 0.

So
√
c exists (L =

√
c).

In the case that L = 0, since limits preserve weak inequalities and a2n ⩾ c

for n ⩾ 2 we have c ⩽ 0, so c = 0 and L2 = c.

Lemma 40. We have logn
n

→ 0 as n → ∞.

Proof. Let an = logn
n

.

Then an ⩾ 0 for all n, so (an) is bounded below.

Also, by properties of log we see that (an)n⩾100 is decreasing.

So, by the Monotone Sequences Theorem, (an) converges. Say
logn
n

→ L

as n → ∞.

Since limits preserve weak inequalities, we have L ⩾ 0.
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Now

a2n =
log(2n)

2n
=

log 2 + log n

2n
→ 0 +

L

2

by AOL,

but also (a2n) is a subsequence of (an) so a2n → L as n → ∞.

So, by uniqueness of limits, L
2
= L, so L = 0.

26 Convergent subsequences

Theorem 41 (Scenic Viewpoints Theorem). Let (an) be a real sequence.

Then (an) has a monotone subsequence.

Proof. Idea: consider the ‘peaks’ of the sequence.

Let V = {k ∈ N : if m > k then am < ak}. (The elements of V are

‘peaks’ or ‘scenic viewpoints’: if k ∈ V then ak is higher than all subsequent

terms.)

Case 1: V is infinite.

Say the elements of V are k1 < k2 < · · · .

Then (akr)r is a subsequence of (an)

and it is monotone decreasing (if r < s then kr < ks so akr > aks).

Case 2: V is finite.

Then there is N such that if k ∈ V then k < N .
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Let m1 = N . Then m1 ̸∈ V so there is m2 > m1 with am2 ⩾ am1 .

Also, m2 ̸∈ V so there is m3 > m2 with am3 ⩾ am2 .

Continuing inductively, we construct m1 < m2 < m3 < · · · such that

am1 ⩽ am2 ⩽ am3 ⩽ · · · .

Then (amr)r is an increasing subsequence of (an).

Theorem 42 (Bolzano-Weierstrass Theorem). Let (an) be a bounded real

sequence. Then (an) has a convergent subsequence.

Proof. By the Scenic Viewpoints Theorem, (an) has a monotone subsequence.

This monotone subsequence is bounded (because the whole sequence is),

so by the Monotone Sequences Theorem (Theorem 38) it converges.

Remark. � This proof of the Bolzano-Weierstrass Theorem was very

short, because we did all the work in the Monotone Sequences Theorem

and Scenic Viewpoints Theorem! I have another favourite proof of

Bolzano-Weierstrass. I’ve turned it into a quiz ‘proof sorter’ activity

on Moodle.

� The Monotone Sequences Theorem and Scenic Viewpoints Theorem

don’t make sense for complex sequences. But Bolzano-Weierstrass po-

tentially could . . .

Corollary 43 (Bolzano-Weierstrass Theorem for complex sequences). Let

(zn) be a bounded complex sequence. Then (zn) has a convergent subsequence.

Proof. Study real and imaginary parts, and repeatedly pass to subsequences

Write zn = xn + iyn where xn, yn ∈ R.

Say (zn) is bounded by M , so |zn| ⩽ M for all n.

Then (xn) and (yn) are also bounded by M , and they are real sequences.

By Bolzano-Weierstrass, (xn) has a convergent subsequence, say (xnr)r.
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Now (ynr)r is a bounded real sequence, so by Bolzano-Weierstrass it has

a convergent subsequence, say (ynrs
)s.

Note that (xnrs
)s is a subsequence of the convergent sequence (xnr)r and

hence converges.

So, by Theorem 33, (znrs
)s converges (since its real and imaginary parts

converge).

27 Cauchy sequences

Example. Let (an) be a convergent sequence.

Then an+1 − an → 0 as n → ∞.

We can prove this directly from the definition (with the triangle inequal-

ity), or using tails and the Algebra of Limits.

But it is not the case that if an+1−an → 0 as n → ∞ then (an) converges.

For example, consider an =
√
n. Certainly (an) does not converge. But

an+1 − an =
√
n+ 1−

√
n =

(n+ 1)− n√
n+ 1 +

√
n
=

1√
n+ 1 +

√
n
→ 0

as n → ∞.

Nonetheless, intuitively it seems that if eventually all the terms of a se-

quence are bunched up close together then the sequence might converge.

Definition. Let (an) be a sequence. We say that (an) is a Cauchy sequence

if

∀ε > 0 ∃N ∈ N such that ∀m,n ⩾ N |an − am| < ε.

Remark. Note that this definition makes sense for complex sequences as

well as for real sequences.

Proposition 44. Let (an) be a convergent sequence. Then (an) is Cauchy.
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Proof. Say an → L as n → ∞.

Take ε > 0.

Since an → L, there is N such that if n ⩾ N then |an − L| < ε
2
.

Take m,n ⩾ N . Then |am − L| < ε
2
and |an − L| < ε

2
,

so, by the triangle inequality,

|am − an| = |(am − L) + (L− an)|

⩽ |am − L|+ |an − L| < ε.

So (an) is Cauchy.

Proposition 45. Let (an) be a Cauchy sequence. Then (an) is bounded.

Proof. Idea: use a similar strategy to Proposition 30, where we showed that

a convergent sequence is bounded.

Since (an) is Cauchy, there is (applying the definition with ε = 1) N such

that if m,n ⩾ N then |am − an| < 1.

Now for n ⩾ N we have |an − aN | < 1,

so |an| = |(an − aN) + aN | ⩽ 1 + |aN |.

Let K = max{|a1|, |a2|, . . . , |aN−1|, 1 + |aN |}.

Then |an| ⩽ K for all n ⩾ 1.

So (an) is bounded.

77



Proposition 46. Let (an) be a Cauchy sequence. Suppose that the subse-

quence (anr)r converges. Then (an) converges.

Proof. Idea: eventually all the terms of (anr) are really close to the limit L,

and eventually all the terms of (an) are really close to terms in the subse-

quence and hence also really close to L.

Say that anr → L as r → ∞.

Take ε > 0.

Then there is N1 such that if r ⩾ N1 then |anr − L| < ε
2
.

Also, since (an) is Cauchy there is N2 such that if m,n ⩾ N2 then |am −

an| < ε
2
.

Let N = max{N1, N2}.

Let r = N . Then nr ⩾ r ⩾ N1 so |anr − L| < ε
2

and if n ⩾ N then n, nr ⩾ N2 so |anr − an| < ε
2
,

so

|an − L| = |(an − anr) + (anr − L)|

⩽ |an − anr |+ |anr − L| < ε.

So an → L as n → ∞.

The following result is really useful! We’ll use it in later sections.

Theorem 47 (Cauchy Convergence Criterion). Let (an) be a sequence. Then

(an) converges if and only if (an) is Cauchy.

Proof. (⇒) This was Proposition 44.

(⇐) Assume that (an) is Cauchy.

Then (an) is bounded, by Proposition 45,

so by the Bolzano-Weierstrass Theorem (Theorem 42), (an) has a conver-

gent subsequence, say (anr).
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Then, by Proposition 46, (an) converges.

Remark. One reason this is so useful is that it gives us a way to show that

a sequence converges without needing to know in advance what the limit is.

28 Convergence for series

Example. Here are some informal examples of series to set the scene.

� For suitable r, we can consider the geometric series
∞∑
n=0

rn (you might

already have some ideas about this series).

� Decimal expansions. When we write 1
9
= 0.111 . . . or 1

9
= 0.1̇, we mean

∞∑
n=1

1

10n
.

� We’ll define e =
∞∑
n=0

1

n!
.

� We’ll define ex =
∞∑
n=0

xn

n!
.

We’ll revisit these examples once we’ve explored some theory.

Definition. Let (ak) be a sequence. For n ⩾ 1, let

sn = a1 + a2 + · · ·+ an =
n∑

k=1

ak.

This is called a partial sum of the series
∞∑
k=1

ak.

We say that the series
∞∑
k=1

ak converges if the sequence (sn) of partial

sums converges. If sn → s as n → ∞, then we write
∞∑
k=1

ak = s.

If (sn) does not converge, then we say that
∞∑
k=1

ak diverges.
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Remark. � So convergence of series is really a special case of convergence

of sequences, rather than a new concept.

� A series is a limit.

� We might sometimes write
∑
k⩾1

ak or even
∑

ak instead of
∞∑
k=1

ak.

� It would be highly illegal to write something like
n∑

n=1

an — we need to

use different letters for quantities that can be different. That’s why

I’ve put k as the dummy variable in the sums, because it isn’t n (and

is still a good letter for a natural number).

� It’s sometimes helpful to note that (with the notation above) ak =

sk − sk−1 for k ⩾ 2.

Example. Geometric series. Take z ∈ C. Let ak = zk for k ⩾ 0, and let

sn =
n∑

k=0

zk. Then for n ⩾ 0 we have

sn =


1−zn+1

1−z
if z ̸= 1

n+ 1 if z = 1.

If |z| < 1, then sn → 1

1− z
as n → ∞, so

∞∑
n=0

zn exists and equals
1

1− z
.

If |z| ⩾ 1, then (sn) does not converge and so the series diverges. (One way

to see that (sn) does not converge is to note that if |z| ⩾ 1 then sn − sn−1 =

an = zn does not tend to 0 as n → ∞.)

Remark. Notice how we worked with partial sums, and determined that the

limit exists before writing down
∑

zn.

Example. A telescoping series. Let ak =
1

k(k + 1)
for k ⩾ 1.
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Let sn =
n∑

k=1

1

k(k + 1)
.

Then

sn =
n∑

k=1

(
1

k
− 1

k + 1

)
=

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
→ 1 as n → ∞

so
∞∑
k=1

1

k(k + 1)
exists and equals 1.

Remark. Notice how we worked with partial sums, and determined that the

limit exists before writing down
∑

1
k(k+1)

.

Example. Let ak = (−1)k, let sn =
n∑

k=1

(−1)k.

Then

sn =

−1 if n odd

0 if n even.

So (sn) does not converge, that is,
∞∑
k=1

(−1)k diverges.

Remark. Notice how we worked with partial sums, not the series, and in

fact the limit doesn’t exist. We definitely didn’t write anything dodgy like

∞∑
k=1

(−1)k = (−1 + 1) + (−1 + 1) + · · · = 0,

because this would be wrong.
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29 Series: first results and a first test for con-

vergence

Proposition 48. Consider the series
∞∑
k=1

ak. If
∞∑
k=1

ak converges, then ak →

0 as k → ∞.

Remark. So one way to show that a series diverges is to show that ak ̸→ 0.

This is disproportionately useful!

Proof. Let sn =
n∑

k=1

ak. Then (sn) converges by assumption. Say sn → s as

n → ∞.

Then also sn−1 → s as n → ∞,

so by AOL an = sn − sn−1 → s− s = 0 as n → ∞.

Remark. Proposition 48 does not say that if ak → 0 as k → ∞ then
∑

ak

converges. That’s because this is false. For example . . .

Example. For n ⩾ 1, let sn =
n∑

k=1

1

k
. The series

∞∑
k=1

1

k
is called the harmonic

series.

Claim. The harmonic series diverges.

Proof. Idea
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Show that (sn) is not Cauchy.

Consider |s2n+1 − s2n|. We have

|s2n+1 − s2n| =
2n+1∑

k=2n+1

1

k
⩾ 2n · 1

2n+1
=

1

2
.

So (sn) is not Cauchy, so (sn) does not converge.

Remark. It is interesting to study the partial sums of the harmonic series.

We’ll do this in more detail in a future section.

Proposition 49. Let (ak) be a sequence of non-negative real numbers, and let

sn =
n∑

k=1

ak. Suppose that (sn) is bounded. Then the series
∞∑
k=1

ak converges.

Proof. Since ak ⩾ 0 for all k, we see that (sn) is increasing.

So (sn) is monotone and bounded, so by the Monotone Sequences Theo-

rem (Theorem 38) it converges, that is,
∞∑
k=1

ak converges.

Remark. Proposition 49 is a result that can be useful in practice for showing

that a series converges. One particularly frequent way to apply it is to show

that the partial sums are bounded by comparing with another series that we

already know converges. We’ll record that as a separate result, but really it’s

just a special case of Proposition 49, which is in turn just a special case of

the Monotone Sequences Theorem.

Theorem 50 (Comparison Test). Let (ak) and (bk) be real sequences. As-

sume that 0 ⩽ ak ⩽ bk for all k ⩾ 1, and that
∞∑
k=1

bk converges. Then
∞∑
k=1

ak

converges.

Proof. Let sn =
n∑

k=1

ak.

Then (sn) is increasing, since ak ⩾ 0 for all k ⩾ 1.
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Also,

sn =
n∑

k=1

ak ⩽
n∑

k=1

bk ⩽
∞∑
k=1

bk

(since this last series converges),

so (sn) is bounded.

Hence, by the Monotone Sequences Theorem (or Proposition 49),
∞∑
k=1

ak

converges.

Remark. � More generally, if there is a positive constant C such that

0 ⩽ ak ⩽ Cbk for k ⩾ 1, and if
∞∑
k=1

bk converges, then
∞∑
k=1

ak converges,

by a small generalisation of the argument.

� The Comparison Test can also be used to show that a series diverges.

If 0 ⩽ ak ⩽ bk for all k and
∞∑
k=1

ak diverges, then
∞∑
k=1

bk diverges.

� We don’t need to know the value of
∑

bk to use the Comparison Test,

just that it exists.

� Please check the conditions of the Comparison Test very carefully be-

fore applying it. Please do not do this by writing things like
∞∑
k=1

ak ⩽

∞∑
k=1

bk. We can’t write down
∑

ak (which is, remember, a limit) until

we know that the limit exists. So either check the precise conditions of

the Comparison Test, or work with partial sums as in Proposition 49.

� The Comparison Test is great!

Example.

Claim.
∞∑
k=1

1

k2
converges.
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Proof. For k ⩾ 2, we have

0 ⩽
1

k2
⩽

1

k(k − 1)
,

and
∞∑
k=2

1

k(k − 1)
converges (we saw this previously),

so by the Comparison Test we have that
∞∑
k=1

1

k2
converges.

Remark. Note that this tells us nothing about the value of
∞∑
k=1

1

k2
! That is

an interesting, but more challenging, problem for another time (not in this

course). But we can still use
∑

1
k2

in future applications of the Comparison

Test, even without knowing the value.

Example. The series
∞∑
k=0

1

k!
converges. (As usual, we define 0! = 1.) This

is an exercise on Sheet 5.

We can then define e =
∞∑
k=0

1

k!
.

Example. Decimal expansions. I’m not going to go through this example,

but now is a good time to revisit it. You’ll find the details in Hilary Priestley’s

supplementary notes on the uncountability of the reals, on Moodle.

30 Series: more results and another test for

convergence

In Section 27, we met the Cauchy criterion for convergence (Theorem 47):

a sequence (an) converges if and only if it is Cauchy. That immediately

translates to a useful result for series.
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Theorem 51 (Cauchy Convergence Criterion for series). Let (ak) be a se-

quence, and write sn =
n∑

k=1

ak. Then
∞∑
k=1

ak converges if and only if

∀ε > 0 ∃N ∈ N such that ∀n > m ⩾ N |sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ < ε.

Proof. Immediate from the Cauchy Convergence Criterion (Theorem 47).

So far, we have mostly considered series where all the terms are non-

negative real numbers. We are interested in other series too, though. When

a series can have negative terms (or even non-real), it might be that they

enable enough cancellation that a series converges, or it might be that the

convergence is so robust that even
∑

|ak| converges. That’s what the next

definition and result are about.

Definition. Let (ak) be a sequence. We say that
∞∑
k=1

ak converges absolutely

if
∞∑
k=1

|ak| converges.

Remark. � This makes sense for real and complex series.

� The series
∑

|ak| is a series where all the terms are (real and) non-

negative. Such series are particularly nice!

Theorem 52 (Absolute convergence implies convergence). Let (ak) be a

sequence. If
∞∑
k=1

|ak| converges, then
∞∑
k=1

ak converges.

Proof. Idea: use partial sums and the Cauchy criterion.

Let

sn =
n∑

k=1

ak and Sn =
n∑

k=1

|ak|.
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So we are assuming that (Sn) converges, and want to deduce that (sn)

converges.

For n > m, we have

|sn − sm| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ⩽
n∑

k=m+1

|ak| = |Sn − Sm|.

Now
∑

|ak| converges by assumption,

so (Sn) is Cauchy by the Cauchy Convergence Criterion,

so (sn) is Cauchy by the inequality above,

so
∑

ak converges by the Cauchy Convergence Criterion.

Example. Let ak = (−1)3k
sin3(k2)

k2 + 1
.

Then 0 ⩽ |ak| ⩽ 1
k2

for k ⩾ 1,

and
∑

1
k2

converges,

so by the Comparison Test
∑

|ak| converges,

so
∑

ak converges since absolute convergence implies convergence.

Lemma 53. Take p ∈ R. Then
∞∑
k=1

k−p diverges for p ⩽ 1, and converges if

p > 1.

Proof. Case 1 p ⩽ 0. Then k−p ̸→ 0 as k → ∞, so the series does not

converge (by Proposition 48).

Case 2 p = 1. This is the harmonic series (see an example in Section 29).

Case 3 0 < p < 1. Note that then k−p > k−1 > 0, and we know that
∑

k−1

diverges, so by the Comparison Test
∑

k−p diverges.

Case 4 p ⩾ 2. We already know that
∑

1
k2

converges (this was an example

near the end of Section 29), and 0 ⩽ k−p ⩽ k−2, so, by the Comparison Test,∑
k−p converges.

Case 5 1 < p < 2. We’ll do this later, once we’ve developed some more

theory.
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Example. We know that
∑

1
n
diverges, and so

∑ (−1)n

n
does not converge

absolutely. But does it converge? The next result will give us a way to show

that it does.

Theorem 54 (Alternating Series Test). Let (uk) be a real sequence, and

consider the series
∞∑
k=1

(−1)k−1uk. If

� uk ⩾ 0 for k ⩾ 1; and

� (uk) is decreasing, that is, uk+1 ⩽ uk for k ⩾ 1; and

� uk → 0 as k → ∞,

then
∞∑
k=1

(−1)k−1uk converges.

Proof. Idea: consider partial sums, get subsequences that are monotone and

bounded.

Let sn =
n∑

k=1

(−1)k−1uk.

� (s2n) bounded above: We have

s2n = u1 − (u2 − u3)− (u4 − u5)− · · · − (u2n−2 − u2n−1)− u2n ⩽ u1,

so u1 is an upper bound for (s2n).

� (s2n) is increasing: We have

s2n+2 − s2n = u2n+1 − u2n+2 ⩾ 0.

So, by the Monotone Sequences Theorem, (s2n) converges. Say s2n → s

as n → ∞.

Now s2n+1 = s2n + u2n+1 → s+ 0 = s as n → ∞, by AOL.

So (s2n+1) also converges to s.

Then (by Sheet 4 Q2) (sn) converges.
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Example.

Claim.
∞∑
n=1

(−1)n

n
converges.

Proof. We have 1
n
⩾ 0 for all n,

and
(
1
n

)
n
is decreasing,

and 1
n
→ 0 as n → ∞.

Hence, by the Alternating Series Test,
∞∑
n=1

(−1)n−1 1

n
converges,

and so (by AOL)
∞∑
n=1

(−1)n

n
converges.

Example.

Claim.
∞∑
n=1

(−1)n√
n

converges.

Proof. Exercise.

Remark. This remark is not part of the course. A series such as
∑ (−1)n

n
that

converges but does not converge absolutely is said to converge conditionally.

Such series are delicate, when compared to more robust series that converge

absolutely!

31 More on the Comparison Test

Example. Let ak =
k2 + k + 1

4k4 − k2 − 1
and consider

∑
k

k2 + k + 1

4k4 − k2 − 1
.

For large enough k, the denominator is positive, so ak exists and ak ⩾ 0.

Can we apply the Comparison Test?

Idea: ak grows roughly like 1
4k2

, so try comparing with that.
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For sufficiently large k, we have

ak
1

4k2

=
4k2(k2 + k + 1)

4k4 − k2 − 1

=
4k4 + 4k3 + 4k2

4k4 − k2 − 1

=
1 + 1

k
+ 1

k2

1− 1
4k2

− 1
4k4

→ 1 as k → ∞,

so there is K such that if k ⩾ K then

0 ⩽
ak
1

4k2

⩽
3

2

so

0 ⩽ ak ⩽
3

2
· 1

4k2
.

Now
∑
k

3

8k2
converges,

so, by the Comparison Test,
∑

k ak converges.

(It doesn’t matter that we have the inequalities only for large enough k

— the first finitely many terms don’t affect convergence.)

Remark. Some people like to summarise this strategy in the following result.

Theorem 55 (Limit form of Comparison Test). Let (ak), (bk) be real se-

quences of positive terms, and assume that there is L > 0 such that ak
bk

→ L

as k → ∞. Then
∑

ak converges if and only if
∑

bk converges.

Proof. Since ak
bk

→ L as k → ∞ and L
2
> 0, there is K such that if k ⩾ K

then

∣∣∣∣akbk − L

∣∣∣∣ < L

2
, and so

L

2
<

ak
bk

<
3L

2
.

(⇐) Then for k ⩾ K we have 0 < ak < 3L
2
bk, so if

∑
bk converges then

so does
∑

3L
2
bk and hence, by the Comparison Test,

∑
ak converges.

(⇒) Also, for k ⩾ K we have 0 < bk < 2
L
ak (noting that L ̸= 0), so

if
∑

ak converges then so does
∑

2
L
ak and hence, by the Comparison Test,∑

bk converges.
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Remark. It was important that, at least for sufficiently large k, the terms

ak and bk are positive, and it was important that ak
bk

converges to a positive

real number.

Example. Let ak =
k2 + k + 1

4k4 − k2 − 1
.

Then (as before)

ak
1

4k2

→ 1 as k → ∞,

and ak > 0 for sufficiently large k

and 1
4k2

> 0 for k ⩾ 1

and
∑

1
4k2

converges

so, by the limit form of the Comparison Test,
∑

ak converges.

32 Ratio Test

Our next test for convergence is really useful. It sometimes gives a self-

contained way to decide whether a series converges, rather than having to

have an idea already (as is necessary for the Comparison Test, for example).

The idea of the next test is essentially comparison with a geometric series.

Let’s do an example before we state the general result.

Example. Let ak =
k

2k
and consider

∞∑
k=1

k

2k
.

We can’t directly compare with
∑

1
2k
.

Idea: the terms ak decrease nearly like 1
2k
.
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More precisely,

ak+1

ak
=

k + 1

2k+1
/
k

2k

=
k + 1

2k+1
· 2

k

k

=
k + 1

k
· 1
2

=

(
1 +

1

k

)
· 1
2
→ 1

2
as k → ∞,

where we used AOL at the end.

So there is K such that if k ⩾ K then

∣∣∣∣ak+1

ak
− 1

2

∣∣∣∣ < 1

4
, so

ak+1

ak
<

3

4
.

Then for k ⩾ K we have 0 < ak ⩽
(
3
4

)k−K
aK

and
∞∑

k=K

(
3

4

)k−K

aK converges (geometric series with common ratio 3
4
,

and
∣∣3
4

∣∣ < 1)

so, by the Comparison Test,
∑

ak converges.

Theorem 56 (Ratio Test). Let (ak) be a real sequence of positive terms.

Assume that
ak+1

ak
converges as k → ∞, say to limit L.

(i) If 0 ⩽ L < 1, then
∑

ak converges.

(ii) If L > 1, then
∑

ak diverges.

Remark. � Here, exceptionally, we allow L = ∞, and this is covered by

the L > 1 case.

� If L = 1, then the Ratio Test tells us nothing.

� If ak+1

ak
does not tend to a limit as k → ∞, then the Ratio Test tells us

nothing.

Proof. (i) Assume that 0 ⩽ L < 1.

Let α = 1+L
2
, so that L < α < 1. Let ε = α− L > 0.
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Since ak+1

ak
→ L, there is N such that if k ⩾ N then

∣∣∣ak+1

ak
− L

∣∣∣ < ε,

so ak+1

ak
< L+ ε = α.

Now for k ⩾ N we have 0 < ak ⩽ αk−NaN .

But
∑
k⩾N

αk−NaN converges (constant times a geometric series with com-

mon ratio α, where |α| < 1).

So, by the Comparison Test,
∑

ak converges (the first N terms do not

affect convergence).

(ii) Assume that L > 1.

Case 1 L ∈ R.

Let α = 1+L
2
, so 1 < α < L. Let ε = L− α > 0.

Since
ak+1

ak
→ L, there is N such that if k ⩾ N then

∣∣∣ak+1

ak
− L

∣∣∣ < ε,

so ak+1

ak
> L− ε = α.

Now for k ⩾ N we have ak ⩾ αk−NaN > 0,

and so ak ̸→ 0 as k → ∞, so
∑

ak diverges.

Case 2 L = ∞.

Let α = 2.

Since
ak+1

ak
→ ∞, there is N such that if k ⩾ N then ak+1

an
> α.

Then finish as in Case 1.

Example. Let ak =
k

2k
(we did this before!).

Then ak > 0 for all k, and

ak+1

ak
=

k + 1

2k+1
· 2

k

k
=

(
1 +

1

k

)
· 1
2
→ 1

2
< 1 as k → ∞,
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by AOL.

So, by the Ratio Test,
∑

ak converges.

Example. Let ak =
1
k
.

Then ak > 0 for all k, and

ak+1

ak
=

k

k + 1
→ 1 as k → ∞,

so the Ratio Test tells us nothing.

Notice how we really had to consider the limit. We have ak+1

ak
< 1 for

all k, but that’s not enough to determine convergence — remember that we

already know that this series diverges.

Example. Let

ak =


1
2k

if k = 2m for some m ⩾ 1

0 otherwise.

As it stands, we can’t apply the Ratio Test, because the terms aren’t all

positive.

But we can omit the zero terms (which do not affect the convergence of

the series): let bm =
1

22m
for m ⩾ 1, and consider

∑
m

bm.

Now bm > 0 for all m, and

bm+1

bm
=

22
m

22m+1 =
1

22m
→ 0 < 1 as m → ∞,

so by the Ratio Test
∑

bm converges and hence
∑

ak converges.

Remark. � The Ratio Test is brilliant, but please make sure you apply

it carefully. Check the conditions!

� It’s not always the case that ak+1

ak
converges, so that’s why we stated it

as a condition in the Ratio Test. Try to avoid assuming that the limit

exists.
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� We proved the Ratio Test by comparing with a geometric series. So

we shouldn’t use the Ratio Test to decide whether a geometric series

converges!

We can adapt the Ratio Test to study absolute convergence of series even

when the terms are not all real and positive.

Corollary 57. Let (ak) be a sequence of non-zero (real or complex) numbers.

Assume that

∣∣∣∣ak+1

ak

∣∣∣∣ converges as k → ∞, say to limit L.

(i) If 0 ⩽ L < 1, then
∑

ak converges absolutely and hence converges.

(ii) If L > 1, then
∑

ak diverges.

Remark. � As before, we allow L = ∞ and include this in the case

L > 1.

� If L = 1 then the Ratio Test tells us nothing.

Proof. (i) Apply the Ratio Test to (|ak|).

(ii) If L > 1, then the proof of the Ratio Test as applied to (|ak|) shows

that |ak| ̸→ 0, so ak ̸→ 0, and so
∑

ak diverges.

Remark. We’ll see later in the course that the Ratio Test (especially in this

form) is extremely helpful for studying power series.

33 Integral Test

In this section, we’ll study certain series by considering corresponding inte-

grals. This is a bit surprising, since we currently don’t know what integration

is. But it’s nice to see the link to convergence of series now, so we’ll pretend
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that we know what integration is, and that we know some basic facts about

integration. In Analysis III, you’ll fill in the details of this — you might like

to revisit this section/video after studying Analysis III.

Some (for now unofficial) facts we’ll assume:

� Suitably nice functions are integrable (in this section we’ll consider only

suitably nice functions).

� We can integrate constants: if c ∈ R then
∫ k+1

k
c dx = c.

� Integration preserves weak inequalities: if f, g : [a, b] → R are suitably

nice, and f(x) ⩽ g(x) for all x ∈ [a, b], then
∫ b

a
f ⩽

∫ b

a
g.

� If a < b < c and f : [a, c] → R is suitably nice, then
∫ c

a
f =

∫ b

a
f +

∫ c

b
f .

Theorem 58 (Integral Test). Let f : [1,∞) → R be a function. Assume

that

� f is non-negative (f(x) ⩾ 0 for all x ∈ [1,∞));

� f is decreasing (if x < y then f(x) ⩾ f(y));

�

∫ k+1

k
f(x)dx exists for each k ⩾ 1.

Let sn =
∑n

k=1 f(k) and In =
∫ n

1
f(x)dx.

(i) Let σn = sn − In. Then (σn) converges, and if we let σ be the limit of

(σn), then 0 ⩽ σ ⩽ f(1).

(ii)
∑

f(k) converges if and only if (In) converges.

Remark. � The main part of the Integral Test is (ii), and (i) is mostly

interesting for helping us to prove (ii), but (as we’ll see) (i) is also useful

in its own right.

96



� If f is continuous then
∫ k+1

k
f(x)dx exists for each k ⩾ 1.

Proof. (i) Idea: show that (σn) is bounded below and decreasing.

Since f is decreasing, for x ∈ [k, k + 1], we have

f(k + 1) ⩽ f(x) ⩽ f(k),

and so

f(k + 1) =

∫ k+1

k

f(k + 1)dx ⩽
∫ k+1

k

f(x)dx ⩽
∫ k+1

k

f(k)dx = f(k).

Now

f(2) ⩽
∫ 2

1

f(x)dx ⩽ f(1)

and f(3) ⩽
∫ 3

2

f(x)dx ⩽ f(2)

and
...

and f(n) ⩽
∫ n

n−1

f(x)dx ⩽ f(n− 1).

Adding these (finitely many) inequalities gives

sn − f(1) ⩽ In ⩽ sn − f(n)
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so

0 ⩽ f(n) ⩽ sn − In ⩽ f(1)

so

0 ⩽ σn ⩽ f(1) for all n ⩾ 1.

Also,

σn+1 − σn = sn+1 − In+1 − sn + In

= f(n+ 1)−
∫ n+1

n

f(x)dx ⩽ 0

as above.

So (σn) is decreasing and bounded below,

so, by the Monotone Sequences Theorem, it converges.

Say σn → σ as n → ∞.

Then, since limits preserve weak inequalities, and 0 ⩽ σn ⩽ f(1) for all

n ⩾ 1, we have 0 ⩽ σ ⩽ f(1).

(ii) If (sn) converges, then by AOL so does (In), since In = sn − σn.

And if (In) converges, then by AOL so does (sn), since sn = In + σn.

Example. This is Lemma 53 revisited.

Claim. If 0 < p ⩽ 1, then
∑

k−p diverges, and if p > 1 then
∑

k−p con-

verges.

Proof. Fix p > 0. Define f : [1,∞) → R by f(x) = x−p.

Then f is non-negative, and decreasing on [1,∞), and continuous.
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Now for p ̸= 1 we have

In =

∫ n

1

x−pdx

=

[
1

1− p
x1−p

]n
1

=
1

1− p
(n1−p − 1),

so for p < 1 we see that (In) does not converge,

and for p > 1 we see that (In) does converge.

Also, for p = 1 we have

In =

∫ n

1

x−pdx = [log x]n1 = log n,

so (In) does not converge.

Hence, by the Integral Test,
∑

k−p converges for p > 1 and diverges for

0 < p ⩽ 1.

Remark. The Integral Test handles p ⩾ 0, but not p < 0 because in this

case the function is not decreasing. Fortunately we can handle p < 0 directly,

because in this case k−p ̸→ 0 and so
∑

k−p diverges.

Example.

Claim.
∑
k⩾2

1

k log k
diverges.

Proof. Exercise — use the Integral Test.

Remark. This series can be useful for counterexamples, because it feels like

it ‘only just’ diverges.
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34 Euler’s constant and rearranging series

Example. We know that the harmonic series
∑
k

1

k
diverges. But the Inte-

gral Test can give us additional information.

Let γn = 1 + 1
2
+ 1

3
+ · · ·+ 1

n
− log n.

Define f : [1,∞) → R by f(x) = 1
x
.

Then f is non-negative, decreasing and continuous, and

γn =
n∑

k=1

1

k
−
∫ n

1

1

x
dx,

so (i) of Theorem 58 tells us that (γn) converges as n → ∞, and the limit is

in [0, 1].

Let γ be this limit (this is standard notation), so

γn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
− log n → γ as n → ∞,

and 0 ⩽ γ ⩽ 1.

So, roughly speaking, the partial sums of the harmonic series grow like

log n, and hence tend to infinity rather slowly.

The number γ is known as Euler’s constant.

It is not known whether γ is rational or irrational.

Example. Let sn =
n∑

k=1

(−1)k−1 1

k
.

Then

s2n = 1− 1

2
+

1

3
+ · · ·+ 1

2n− 1
− 1

2n

=

(
1 +

1

2
+

1

3
+ · · ·+ 1

2n

)
− 2

(
1

2
+

1

4
+ · · ·+ 1

2n

)
= (γ2n + log(2n))− (γn + log n)

= log 2 + γ2n − γn

→ log 2 as n → ∞,
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and s2n+1 = s2n +
1

2n+1
→ log 2 as n → ∞,

so (by a result on a problems sheet) (sn) converges to log 2, that is,

∞∑
k=1

(−1)k−1

k
= log 2.

Remark. The order in which we sum the terms in this series really matters.

It turns out that if we regroup to have the same terms but in another

order, with three positive terms followed by one negative, so

1 +
1

3
+

1

5
− 1

2
+

1

7
+

1

9
+

1

11
− 1

4
+ · · ·

then we instead get log 2+ 1
2
log 3 (exercise: show this!). There’s yet another

version of the series, with yet another value, on Sheet 7.

Definition. Let g : N → N be a bijection (a permutation of N). Given a

series
∑

ak, write bk = ag(k). Then
∑

bk is a rearrangement of
∑

ak.

Remark. � It turns out (no proof in this course!) that if
∑

ak is abso-

lutely convergent, then any rearrangement of
∑

ak also converges, to

the same limit. In this sense absolutely convergent series are ‘robust’.

� As we have seen, a series that converges but not absolutely (that is,

a series that converges conditionally) is less robust. A rearrangement

might give a series that converges to a different value, or even that does

not converge at all.

Remark. In this course we’ve seen several tests for convergence of a series:

� the Comparison Test;

� the Alternating Series Test;

� the Ratio Test;
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� the Integral Test.

We also saw that absolute convergence implies convergence.

These are the main tools for studying convergence of a series, but they

are not the only ones: not every series is susceptible to one of these tests, and

there are other convergence tests that can be useful — but they are beyond

the scope of the course.

35 Power series

Definition. A real power series is a series of the form
∞∑
k=0

ckx
k, where ck ∈ R

for all k ⩾ 0 and x is a real variable.

A complex power series is a series of the form
∞∑
k=0

ckz
k, where ck ∈ C for

all k ⩾ 0 and z is a complex variable.

Remark. � Much of the theory applies equally to real and complex

power series, and of course every real power series is also a complex

power series. Our focus in this course is mostly on real power series,

but sometimes it is at least as convenient, or even more convenient, to

work in the more general complex setting and then specialise later.

� We typically want to define a function using a power series. This is

why we think of x or z as a variable.

� By convention, when we consider the series
∞∑
k=0

ckz
k at z = 0, we mean

just c0. There are no issues about what 00 might mean! Every power

series converges at z = 0, so we do not need to consider this case when

studying convergence.

102



Example. Consider
∞∑
k=0

zk

k!
. We use the Ratio Test: for z ̸= 0, we have

∣∣∣∣ zk+1

(k + 1)!
/
zk

k!

∣∣∣∣ = k!

(k + 1)!
|z| = |z|

k + 1
→ 0 as k → ∞

and 0 < 1, so by the Ratio Test the series converges absolutely, and hence

converges, for all z ∈ C.

Definition. We define the exponential function exp : C → C by exp(z) =
∞∑
k=0

zk

k!
. We also write ez for exp(z).

Example. Consider

∞∑
k=0

(−1)k
z2k

(2k)!
and

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
and

∞∑
k=0

z2k+1

(2k + 1)!
and

∞∑
k=0

z2k

(2k)!
.

Each of these converges for all z ∈ C. (Exercise: use the Ratio Test to

prove this for z ̸= 0.)

Definition. We define the sine function sin : C → C by

sin(z) =
∞∑
k=0

(−1)k
z2k+1

(2k + 1)!
,

and the cosine function cos : C → C by

cos(z) =
∞∑
k=0

(−1)k
z2k

(2k)!
.

Definition. We define the hyperbolic sine function sinh : C → C by

sinh(z) =
∞∑
k=0

z2k+1

(2k + 1)!

and the hyperbolic cosine function cosh : C → C by

cosh(z) =
∞∑
k=0

z2k

(2k)!
.
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Remark. � We can go on to define other trig functions such as tan, cosec,

sec and cot using these, on suitable domains. We wouldn’t expect these

further functions to have power series that converge on the whole of C.

� We have defined sin and cos by power series, not by right-angled trian-

gles.

� We need to go on to deduce the usual properties of exp, sin and cos,

working from the power series definitions. We’ll make a start on that

in this course, and you will continue in Analysis II next term.

Remark. We previously proved (as part of AOL) that if (sn) and (tn) are

convergent sequences, with sn → L and tn → M , then (sn+tn) also converges,

and sn + tn → L+M .

We can apply this to sequences of partial sums, which gives us a way to

consider the sum of two series.

To put that more explicitly, let
∑

ak and
∑

bk be convergent series, and

write

sn =
n∑

k=1

ak and tn =
n∑

k=1

bk.

Then (sn) and (tn) converge. Say sn → s and tn → t (that is,
∞∑
k=1

ak = s and

∞∑
k=1

bk = t). Then

sn + tn =
n∑

k=1

ak +
n∑

k=1

bk =
n∑

k=1

(ak + bk),

so by AOL (sn + tn) converges, and
∞∑
k=1

(ak + bk) = s+ t.

So we can sum two convergent series, and we can also use AOL to show

that we can multiply a series by a (real or complex) number.
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Remark. The above remark gives a useful way to show that a series diverges.

If
∑

ak converges and
∑

bk diverges, then
∑

(ak+bk) diverges too. That’s

because if
∑

(ak + bk) converges, then also
∑

((ak + bk) − ak) converges, by

the remark above.

Exercise: show, through suitable examples, that if
∑

ak and
∑

bk both

diverge, then it might be that
∑

(ak + bk) converges and it might be that it

diverges.

Example. From the power series definitions earlier, and this remark about

AOL applied to series, we can see that for z ∈ C we have

cos z =
1

2
(eiz + e−iz)

and sin z =
1

2i
(eiz − e−iz)

and cosh z =
1

2
(ez + e−z)

and sinh z =
1

2
(ez − e−z)

and eiz = cos z + i sin z.

We can also see from the power series definitions that for z ∈ C we have

cos(iz) = cosh z, and other similar relationships between cos and cosh, and

between sin and sinh. (Exercise: think about all of these!)

36 Radius of convergence

In this section, it will be more natural to study power series in C. The

main goal will be to determine the subset of C on which a given power series

converges. As we’ll see, this subset must have a rather specific form. You

might already have ideas about this, having tackled Sheet 6 Q4.

We expect that a power series will be more likely to converge for small

|z| than for large |z|. In principle, the subset of C on which a given power
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series
∑

ckz
k converges might be a blob of convergence, or an ink splat of

convergence, or an even more complicated region.

It turns out, though, that in fact the relevant shape is not a blob or an

ink splat, but a disc. There are some details to be addressed, but that is the

secret reason for the following definition — we’ll go into the details after the

definition.

Definition. Let
∑

ckz
k be a power series. We define its radius of convergence

to be

R :=

sup{|z| ∈ R :
∑

|ckzk| converges} if the sup exists

∞ otherwise.

Remark. � We certainly have 0 ∈ {|z| ∈ R :
∑

|ckzk| converges}, so

the set is non-empty. So this subset of R has a sup if and only if it is

bounded.

� There are other equivalent ways to define the radius of convergence,

so if you look at another source then you might see a slightly different

definition.

This definition is interesting, but without the following proposition it

doesn’t get us far. The proposition is more important than it might at first

sight appear!
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Proposition 59 (Radius of convergence). Let
∑

ckz
k be a power series with

radius of convergence R.

(i) If R > 0 and |z| < R, then
∑

ckz
k converges absolutely and hence

converges.

(ii) If |z| > R, then
∑

ckz
k diverges.

Remark. This proposition says nothing about what happens if |z| = R.

This is deliberate!

Proof. (i) Case 1: R ∈ R.

Assume that R > 0, and take z ∈ C with |z| < R.

Then there is S with |z| < S < R. Let ε = R− S > 0.

Since R = sup{|w| ∈ R :
∑

|ckwk| converges}, by the Approximation

Property there is ρ such that S = R − ε < ρ ⩽ R and
∑

|ckρk|

converges.

Then 0 ⩽ |z| < ρ and
∑

|ckρk| converges, so by the Comparison Test∑
|ckzk| converges.

Since absolute convergence implies convergence, this shows that
∑

ckz
k

converges.

Case 2: R = ∞.

Very similar to Case 1.

(ii) Take z ∈ C with |z| > R

Then we know that
∑

|ckzk| diverges, by definition of R, but we don’t

know about
∑

ckz
k.

Suppose, for a contradiction, that
∑

ckz
k converges.
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Find ρ with ρ > R such that
∑

|ckρk| converges.

Then ckz
k → 0 as k → ∞, so (ckz

k) is bounded, so there is M such

that |ckzk| ⩽ M for all k.

Take ρ with R < ρ < |z|.

Then

0 ⩽ |ckρk| ⩽ |ckzk|
∣∣∣ρ
z

∣∣∣k ⩽ M
∣∣∣ρ
z

∣∣∣k
and

∑∣∣ρ
z

∣∣k converges (geometric series with common ratio
∣∣ρ
z

∣∣, and∣∣ρ
z

∣∣ < 1),

so, by the Comparison Test,
∑

|ckρk| converges,

contradicting the definition of R.

Remark. � We call {z ∈ C : |z| < R} the disc of convergence for the

power series. Proposition 59 shows that this is a useful concept. For

a real power series, the corresponding concept is an interval of conver-

gence.

� Anything at all can happen on the circle {z ∈ C : |z| = R}! The series

might converge everywhere on the circle, or diverge everywhere on the

circle, or converge at some points and diverge at others.

� You might like to revisit Sheet 6 Q4 briefly having seen the theory, to

see the connections.

Example. � We have already seen that the exponential, sine and cosine,

hyperbolic sine and hyperbolic cosine series have radius of convergence

∞ (using the Ratio Test).
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� The geometric series
∑

zk has R = 1 (from an example in Section 28).

Example. Consider
∞∑
k=0

k!

kk
xk.

For x ̸= 0, we have∣∣∣∣ (k + 1)!

(k + 1)k+1
xk+1 · kk

k!xk

∣∣∣∣ = k!

(k + 1)k
kk

k!
|x| =

(
k

k + 1

)k

|x|

=

(
1 +

1

k

)−k

|x| → 1

e
|x| as k → ∞,

so by the Ratio Test the series
∑∣∣ k!

kk
xk
∣∣ converges for |x| < e (so R ⩾ e)

and diverges for |x| > e (so R ⩽ e).

So R = e.

Remark. Note that it was not enough to use the Ratio Test to show that

the series converges (absolutely) for |x| < e — this shows that R ⩾ e, not

that R = e.

Example. Consider
∑

ckx
k where ck =

1 if k prime

0 otherwise.

So the Ratio Test won’t work!

For x = 1, we see that ckx
k ̸→ 0 as k → ∞ (because there are infinitely

many primes), so R ⩽ 1.

If |x| < 1, then 0 ⩽ |ckxk| ⩽ |xk|,

and
∑

|xk| is a convergent geometric series,

so, by the Comparison Test,
∑

ckx
k converges absolutely and hence con-

verges. So R ⩾ 1.

So R = 1.

Remark. The Ratio Test is often useful for finding the radius of convergence

of a power series, but does not always work. There are more sophisticated

strategies that work in other situations, but it is easy to apply them incor-

rectly, and they are not needed for Prelims.
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37 Differentiation Theorem

We have seen that we can define a function using a power series. For ex-

ample, we defined the exponential, sine and cosine functions in this way. In

this section, we’re going to explore the derivative of a function defined by a

power series, as this will enable us to study some key properties of familiar

functions. This will not be an in-depth exploration, since you haven’t stud-

ied differentiability yet. We’ll state a theorem, and then see how extremely

useful it can be in practice. We shan’t prove it in this course; you’ll see a

proof in a future analysis course.

Theorem 60 (Differentiation Theorem for real power series). Let
∑

ckx
k be

a real power series with radius of convergence R. Assume that 0 < R ⩽ ∞.

For |x| < R, define f(x) =
∞∑
k=0

ckx
k.

Then f(x) is well defined whenever |x| < R. Moreover, if |x| < R then

the derivative f ′(x) exists, and

f ′(x) =
d

dx

(
∞∑
k=0

ckx
k

)
=

∞∑
k=0

d

dx
(ckx

k) =
∞∑
k=1

kckx
k−1.

Remark. � The slogan is that “on the disc of convergence, we can dif-

ferentiate term-by-term”.

� The theorem is definitely not obvious! It involves exchanging the order

of limiting processes, and that is a delicate business.

Example. We saw that the power series defining the exponential, sine, co-

sine, sinh and cosh functions have R = ∞, so the series converge on R (and

on C), and by the Differentiation Theorem they are differentiable on all of

R. Moreover, by the Differentiation Theorem we can differentiate term by

term on R.
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For example, for x ∈ R we have

d

dx
ex =

d

dx

(
∞∑
k=0

xk

k!

)

=
∞∑
k=0

d

dx

(
xk

k!

)
by the Differentiation Theorem

=
∞∑
k=1

kxk−1

k!

=
∞∑
k=1

xk−1

(k − 1)!

=
∞∑
k=0

xk

k!
= ex.

To summarise, for all x ∈ R we have

d

dx
ex = ex

d

dx
sinx = cosx

d

dx
cosx = − sinx

d

dx
sinhx = coshx

d

dx
coshx = sinhx.

Example.

Claim. sin2 x+ cos2 x = 1 for all x ∈ R.

Proof. Define h : R → R by h(x) = sin2 x+ cos2 x.

Then (using properties of differentiability that you’ll study in Analysis II

next term) h is differentiable on R, and

h′(x) = 2 cosx sinx− 2 sinx cosx = 0 for all x ∈ R.

This means (using a result you’ll see in Analysis II) that h is constant.
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But we know from the power series that sin 0 = 0 and cos 0 = 1, so

h(0) = 1.

So h(x) = 1 for all x ∈ R.

Remark. It would not be a good plan to try to do this by squaring power

series and manipulating terms — this would need a lot of justification.

Example.

Claim. ea+b = eaeb for all a, b ∈ R.

Proof. Fix c ∈ R, and define g : R → R by g(x) = exec−x.

Then (Analysis II) g is differentiable on R, and

g′(x) = exec−x − exec−x = 0 for all x ∈ R.

This means (Analysis II) that g is constant.

But we know from the power series that e0 = 1, so g(0) = ec.

So g(x) = ec for all x ∈ R.

This argument works for all c ∈ R. Take a, b ∈ R, and apply it with

x = a, c = a+ b to get ea+b = eaeb.

Remark. This shows that for all x ∈ R we have exe−x = e0 = 1. From the

power series, we see that ex > 0 for x ⩾ 0, and hence in fact ex > 0 for all

x ∈ R.

Remark. These examples illustrate a really useful strategy, which can also

be used to prove results like trig identities. Watch out for more on this in

Analysis II next term!

What is π? We have defined sine and cosine using power series, without

mentioning right-angled triangles. We can then define π to be the smallest
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positive x such that sinx = 0, or π
2
as the smallest positive x such that

cosx = 0. It is not obvious that smallest such values exist; you’ll look at this

in more detail in Analysis II. You’ll then be able to go on and prove that

sine and cosine are 2π-periodic, for example.

Example. We see that if x, y ∈ R then

ex+iy = ex(cos y + i sin y).

We can then use properties of π to see that e2πi = 1.

You’ll study differentiability in C as part of the Part A Complex Anal-

ysis course, when you’ll go on to explore many interesting (and surprising)

properties of complex functions.

There are some further examples at the end of Hilary Priestley’s notes on

Moodle, which you’ll also see in Analysis II/III.

This brings us to the end of Analysis I, but definitely not the end of

analysis.

Building on your knowledge of analysis so far, you might like to consider

the following questions, as a warm up for Analysis II.

� Given a function f : R → R and a, L ∈ R, what does it mean to say

that f(x) → L as x → a?

� What does it mean to say that f : R → R is continuous at a point

x ∈ R?

� Define f : R → R by f(x) =

x if x ∈ Q

0 otherwise.

At which points (if any)

is f continuous?
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� What does it mean to say that f : R → R is differentiable at a point

x ∈ R?

Well done and thank you for making it to the end of Analysis I!

To be continued. . . (in Analysis II)
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