ANALYSIS I

Axioms for the Real Numbers

Algebraic Properties

For every pair of real numbers $a, b \in \mathbb{R}$ there is a unique real number a + b, called their 'sum'. For every pair of real numbers $a, b \in \mathbb{R}$ there is a unique real number $a \cdot b$, called their 'product'. For each real number $a \in \mathbb{R}$ there is a unique real number -a, called its 'negative' or 'additive inverse'.

For each real number $a \in \mathbb{R}$, with $a \neq 0$, there is a unique real number $\frac{1}{a}$, called its 'reciprocal' or 'multiplicative inverse'.

There is a special element $0 \in \mathbb{R}$ called 'zero' or 'the additive identity'. There is a special element $1 \in \mathbb{R}$ called 'one' or 'the multiplicative identity'.

The following hold for all real numbers a, b, c:

A1 a + b = b + a[+ is commutative] **A2** a + (b + c) = (a + b) + c[+ is associative] **A3** a + 0 = a[zero and addition] A4 a + (-a) = 0[negatives and addition] M1 $a \cdot b = b \cdot a$ $\left[\cdot \text{ is commutative}\right]$ **M2** $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ $[\cdot \text{ is associative}]$ $\mathbf{M3} \quad a \cdot 1 = a$ [the unit element and multiplication] **M4** If $a \neq 0$ then $a \cdot \frac{1}{a} = 1$ [reciprocals and multiplication] **D** $a \cdot (b+c) = a \cdot b + a \cdot c$ $\left[\cdot \text{ distributes over }+\right]$ $\mathbf{Z} \quad 0 \neq 1$ [to avoid total collapse] Notation: we write $\begin{cases} ab & \text{for } a \cdot b \\ a - b & \text{for } a + (-b); \\ a/b & \text{for } a\frac{1}{b} \quad (b \neq 0); \\ a^{-1} & \text{for } \frac{1}{-} \quad (a \neq 0) \end{cases}$

Order Properties.

There exists a subset \mathbb{P} of \mathbb{R} called the '(strictly) positive numbers' such that for all a, b in \mathbb{R} **P1** If $a \in \mathbb{P}$ and $b \in \mathbb{P}$ then $a + b \in \mathbb{P}$. [addition and the order] **P2** If $a \in \mathbb{P}$ and $b \in \mathbb{P}$ then $a \cdot b \in \mathbb{P}$. [multiplication and the order] **P3** Exactly one of $a \in \mathbb{P}$, $a = 0, -a \in \mathbb{P}$ is true [trichotomy] $\begin{pmatrix} a > b & \text{for } a - b \in \mathbb{P} \end{pmatrix}$

Notation: we write
$$\begin{cases} a > b & \text{ for } a - b \in \mathbb{P}; \\ a < b & \text{ for } b - a \in \mathbb{P}; \\ a \ge b & \text{ for } a - b \in \mathbb{P} \text{ or } a = b; \\ a \le b & \text{ for } b - a \in \mathbb{P} \text{ or } b = a. \end{cases}$$

Completeness Property

Upper bound: Suppose that $E \subseteq \mathbb{R}$, and that $b \in \mathbb{R}$ is such that $x \leq b$ for all $x \in E$. We then say that 'b is an upper bound of E', and that 'E is bounded above.' Notation: we shall write E^{\uparrow} to denote the set of upper bounds of E.

Supremum: Suppose that *E* is a non-empty subset of \mathbb{R} which is bounded above. Assume that $s \in \mathbb{R}$ is such that

- (a) $s \in E^{\uparrow}$ [s is an upper bound of E]
- (b) $b \in E^{\uparrow}$ implies $s \leq b$ [s is the *least* upper bound of E]

Then s is called the *supremum* of E (notation: $s = \sup E$).

The Completeness Axiom

Let E be a non-empty subset of \mathbb{R} which is bounded above. Then $\sup E$ exists. [completeness]