ANALYSIS I

Axioms for the Real Numbers

Algebraic Properties

For every pair of real numbers $a, b \in \mathbb{R}$ there is a unique real number $a+b$, called their 'sum'.
For every pair of real numbers $a, b \in \mathbb{R}$ there is a unique real number $a \cdot b$, called their 'product'.
For each real number $a \in \mathbb{R}$ there is a unique real number $-a$, called its 'negative' or 'additive inverse'.
For each real number $a \in \mathbb{R}$, with $a \neq 0$, there is a unique real number $\frac{1}{a}$, called its 'reciprocal' or 'multiplicative inverse'.
There is a special element $0 \in \mathbb{R}$ called 'zero' or 'the additive identity'.
There is a special element $1 \in \mathbb{R}$ called 'one' or 'the multiplicative identity'.
The following hold for all real numbers a, b, c :
A1 $a+b=b+a \quad[+$ is commutative $]$
A2 $a+(b+c)=(a+b)+c \quad[+$ is associative $]$
A3 $a+0=a \quad$ [zero and addition]
A4 $a+(-a)=0$
[negatives and addition]
M1 $a \cdot b=b \cdot a \quad[\cdot$ is commutative $]$
M2 $a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad[$ is associative $]$
M3 $a \cdot 1=a \quad$ [the unit element and multiplication]
M4 If $a \neq 0$ then $a \cdot \frac{1}{a}=1$
[reciprocals and multiplication]

D $\quad a \cdot(b+c)=a \cdot b+a \cdot c$
[. distributes over +]
Z $\quad 0 \neq 1$
[to avoid total collapse]

Notation: we write $\begin{cases}a b & \text { for } a \cdot b \\ a-b & \text { for } a+(-b) ; \\ a / b & \text { for } a \frac{1}{b} \quad(b \neq 0) ; \\ a^{-1} & \text { for } \frac{1}{a} \quad(a \neq 0) .\end{cases}$

Order Properties.

There exists a subset \mathbb{P} of \mathbb{R} called the '(strictly) positive numbers' such that for all a, b in \mathbb{R}
P1 If $a \in \mathbb{P}$ and $b \in \mathbb{P}$ then $a+b \in \mathbb{P}$.
P2 If $a \in \mathbb{P}$ and $b \in \mathbb{P}$ then $a \cdot b \in \mathbb{P}$.
P3 Exactly one of $a \in \mathbb{P}, a=0,-a \in \mathbb{P}$ is true
Notation: we write $\begin{cases}a>b & \text { for } a-b \in \mathbb{P} ; \\ a<b & \text { for } b-a \in \mathbb{P} ; \\ a \geqslant b & \text { for } a-b \in \mathbb{P} \text { or } a=b ; \\ a \leqslant b & \text { for } b-a \in \mathbb{P} \text { or } b=a .\end{cases}$

Completeness Property

Upper bound: Suppose that $E \subseteq \mathbb{R}$, and that $b \in \mathbb{R}$ is such that $x \leqslant b$ for all $x \in E$. We then say that ' b is an upper bound of E ', and that ' E is bounded above.' Notation: we shall write E ' to denote the set of upper bounds of E.

Supremum: Suppose that E is a non-empty subset of \mathbb{R} which is bounded above. Assume that $s \in \mathbb{R}$ is such that
(a) $s \in E^{\uparrow}$
[s is an upper bound of E]
(b) $b \in E^{\uparrow}$ implies $s \leqslant b$
[s is the least upper bound of E]

Then s is called the supremum of E (notation: $s=\sup E)$.

The Completeness Axiom

Let E be a non-empty subset of \mathbb{R} which is bounded above. Then $\sup E$ exists.
[completeness]

