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ANALYSIS I

Decimal Expansions and the Uncountability of R
These supplementary notes by H A Priestley lead up to a proof that R is uncountable.

D.1 Theorem (decimal expansions).

Let (ak) be a real sequence such that 0 6 ak 6 9 with not all ak equal to 0. Then
∑

ak/10k

converges and
∞∑
k=1

ak
10k
∈ (0, 1].

Conversely, given x ∈ (0, 1] there exists a unique sequence (ak) of natural numbers such that

(i) 0 6 ak 6 9 for each k;

(ii) x− 1

10n
6

n∑
k=1

ak
10k

< x for each n;

(iii)
∞∑
k=1

ak
10k

= x.

Proof. For (i), note that 0 6 ak10−k 6 9 · 10−k and that
∑

10−k converges (it’s a convergent
geometric series), and has sum

s =
∞∑
k=1

1

10k
=

1

10

(
1

1− 10−1

)
=

1

9
.

The simple Comparison Test now implies that
∑

ak/10k converges, to a sum which is no bigger
than 1 (and certainly > 0).

In the other direction, we fix x ∈ (0, 1] and construct the sequence (ak) by induction. The
key observation is that any interval [a− 1, a) contains a unique integer (why?).

Pick a1 to be the unique natural number in [10x− 1, 10x) and note that

−1 < 10x− 1 6 a1 < 10x,

so a1 ∈ {0, 1, . . . , 9} and (ii) holds for n = 1.

Suppose now that a1, a2, . . . , am have been found satisfying (i) and that (ii) holds for n 6 m.
Then

x− 1

10m+1
6

m+1∑
k=1

ak
10k

< x⇐⇒ x− 1

10m+1
−

m∑
k=1

ak
10k
6

am+1

10m+1
< x−

m∑
k=1

ak
10k

⇐⇒ 10m+1x−
m∑
k=1

10m+1−kak − 1 6 am+1 < 10m+1x−
m∑
k=1

10m+1−kak.
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2

There is a unique natural number in this range, and we take this as am+1. By hypothesis,

am+1 > 10m+1

(
x−

m∑
k=1

10−kak

)
− 1 > −1,

am+1 < 10m+1

(
x−

m∑
k=1

10−kak

)
6 10m+1 · 1

10m
= 10.

So 0 6 am+1 6 9 and (ii) is satisfied with n replaced by m + 1. Appeal to sandwiching to get
(iii). �

We write x = 0·a1a2a3 . . . and call this the decimal expansion of x. Translating to (0, 1]
by subtracting a suitable integer a we get a unique expansion a·a1a2a3 . . . for any x ∈ R.

Note on uniqueness: according to the recipe above, 1/4 has decimal expansion 0·2499999 . . .
rather than 0·25. That is, we have opted for a non-terminating representation rather than a
terminating one where both are available, This avoids a potential issue with non-uniqueness.

D.2 Proving that an infinite set A is uncountable.

The strategy is to argue by contradiction. We assume that we can enumerate all the elements
of A as a1, a2, . . . and then seek to construct an element of A which must be different from each
ak. Here we are assuming that a countably infinite set is in bijective correspondence with N.
See supplementary notes on countability for a discussion of this.

D.3 Application of decimal expansions (uncountability of R) [deferred from Section 5].

Proof. It is enough to show that (0, 1] is uncountable. Certainly (0, 1] is not finite, by the
Archimedean Property. Assume for a contradiction there exists an enumeration of the members
of (0, 1] as

x1, x2, x3, . . . .

Then each xk has a non-terminating decimal expansion

xk = 0·ak1ak2ak3 . . . .
We then define a member y of (0, 1] which has decimal expansion

0·b1b2b3 . . . where bk =

{
3 if akk = 7,

7 if akk 6= 7.

Then y is different from each xk since expansions are unique and y differs from xk in the kth
decimal place. This is a contradiction. �

We have deliberately avoided involving 9s in the definition of y and so any issues over
terminating/non-terminating representations.

D.4 Binary expansions.

Decimals give us expansions to base 10. But there is no reason why we should not use a
different natural number, > 2, as a base. In particular a unique binary (base 2) expansion of a
real number may be defined in the same way that a decimal expansion is defined, but with 10
replaced by 2: the first digit to the right of the binary point is the coefficient of 1

2
s, the next

digit is the coefficient of 1
4
s, the next is the coefficient of 1

8
s, and so on.

Exercise:

(a) Show that 0.101101101101 . . . is the binary expansion of 5/7.
(b) Find the binary expansion of 1/9.


