ANALYSIS I

Decimal Expansions and the Uncountability of \mathbb{R}

These supplementary notes by H A Priestley lead up to a proof that \mathbb{R} is uncountable.

D. 1 Theorem (decimal expansions).

Let $\left(a_{k}\right)$ be a real sequence such that $0 \leqslant a_{k} \leqslant 9$ with not all a_{k} equal to 0 . Then $\sum a_{k} / 10^{k}$ converges and

$$
\sum_{k=1}^{\infty} \frac{a_{k}}{10^{k}} \in(0,1] .
$$

Conversely, given $x \in(0,1]$ there exists a unique sequence $\left(a_{k}\right)$ of natural numbers such that
(i) $0 \leqslant a_{k} \leqslant 9$ for each k;
(ii) $x-\frac{1}{10^{n}} \leqslant \sum_{k=1}^{n} \frac{a_{k}}{10^{k}}<x$ for each n;
(iii) $\sum_{k=1}^{\infty} \frac{a_{k}}{10^{k}}=x$.

Proof. For (i), note that $0 \leqslant a_{k} 10^{-k} \leqslant 9 \cdot 10^{-k}$ and that $\sum 10^{-k}$ converges (it's a convergent geometric series), and has sum

$$
s=\sum_{k=1}^{\infty} \frac{1}{10^{k}}=\frac{1}{10}\left(\frac{1}{1-10^{-1}}\right)=\frac{1}{9} .
$$

The simple Comparison Test now implies that $\sum a_{k} / 10^{k}$ converges, to a sum which is no bigger than 1 (and certainly >0).

In the other direction, we fix $x \in(0,1]$ and construct the sequence $\left(a_{k}\right)$ by induction. The key observation is that any interval $[a-1, a)$ contains a unique integer (why?).

Pick a_{1} to be the unique natural number in $[10 x-1,10 x)$ and note that

$$
-1<10 x-1 \leqslant a_{1}<10 x
$$

so $a_{1} \in\{0,1, \ldots, 9\}$ and (ii) holds for $n=1$.
Suppose now that $a_{1}, a_{2}, \ldots, a_{m}$ have been found satisfying (i) and that (ii) holds for $n \leqslant m$. Then

$$
\begin{aligned}
x-\frac{1}{10^{m+1}} \leqslant \sum_{k=1}^{m+1} \frac{a_{k}}{10^{k}} & <x \Longleftrightarrow x-\frac{1}{10^{m+1}}-\sum_{k=1}^{m} \frac{a_{k}}{10^{k}} \leqslant \frac{a_{m+1}}{10^{m+1}}<x-\sum_{k=1}^{m} \frac{a_{k}}{10^{k}} \\
& \Longleftrightarrow 10^{m+1} x-\sum_{k=1}^{m} 10^{m+1-k} a_{k}-1 \leqslant a_{m+1}<10^{m+1} x-\sum_{k=1}^{m} 10^{m+1-k} a_{k}
\end{aligned}
$$

There is a unique natural number in this range, and we take this as a_{m+1}. By hypothesis,

$$
\begin{aligned}
& a_{m+1} \geqslant 10^{m+1}\left(x-\sum_{k=1}^{m} 10^{-k} a_{k}\right)-1>-1, \\
& a_{m+1}<10^{m+1}\left(x-\sum_{k=1}^{m} 10^{-k} a_{k}\right) \leqslant 10^{m+1} \cdot \frac{1}{10^{m}}=10 .
\end{aligned}
$$

So $0 \leqslant a_{m+1} \leqslant 9$ and (ii) is satisfied with n replaced by $m+1$. Appeal to sandwiching to get (iii).

We write $x=0 \cdot a_{1} a_{2} a_{3} \ldots$ and call this the decimal expansion of x. Translating to $(0,1]$ by subtracting a suitable integer a we get a unique expansion $a \cdot a_{1} a_{2} a_{3} \ldots$ for any $x \in \mathbb{R}$.
Note on uniqueness: according to the recipe above, $1 / 4$ has decimal expansion $0 \cdot 2499999 \ldots$ rather than $0 \cdot 25$. That is, we have opted for a non-terminating representation rather than a terminating one where both are available, This avoids a potential issue with non-uniqueness.

D. 2 Proving that an infinite set A is uncountable.

The strategy is to argue by contradiction. We assume that we can enumerate all the elements of A as a_{1}, a_{2}, \ldots and then seek to construct an element of A which must be different from each a_{k}. Here we are assuming that a countably infinite set is in bijective correspondence with \mathbb{N}. See supplementary notes on countability for a discussion of this.

D. 3 Application of decimal expansions (uncountability of \mathbb{R}) [deferred from Section 5].

Proof. It is enough to show that $(0,1]$ is uncountable. Certainly $(0,1]$ is not finite, by the Archimedean Property. Assume for a contradiction there exists an enumeration of the members of $(0,1]$ as

$$
x_{1}, x_{2}, x_{3}, \ldots
$$

Then each x_{k} has a non-terminating decimal expansion

$$
x_{k}=0 \cdot a_{k 1} a_{k 2} a_{k 3} \ldots
$$

We then define a member y of $(0,1]$ which has decimal expansion

$$
0 \cdot b_{1} b_{2} b_{3} \ldots \quad \text { where } b_{k}= \begin{cases}3 & \text { if } a_{k k}=7 \\ 7 & \text { if } a_{k k} \neq 7\end{cases}
$$

Then y is different from each x_{k} since expansions are unique and y differs from x_{k} in the k th decimal place. This is a contradiction.

We have deliberately avoided involving 9 s in the definition of y and so any issues over terminating/non-terminating representations.

D. 4 Binary expansions.

Decimals give us expansions to base 10. But there is no reason why we should not use a different natural number, $\geqslant 2$, as a base. In particular a unique binary (base 2) expansion of a real number may be defined in the same way that a decimal expansion is defined, but with 10 replaced by 2 : the first digit to the right of the binary point is the coefficient of $\frac{1}{2} \mathrm{~s}$, the next digit is the coefficient of $\frac{1}{4} \mathrm{~s}$, the next is the coefficient of $\frac{1}{8} \mathrm{~s}$, and so on.

Exercise:

(a) Show that $0.101101101101 \ldots$ is the binary expansion of $5 / 7$.
(b) Find the binary expansion of $1 / 9$.

