## ANALYSIS I

## A Number Called e

These supplementary notes by H A Priestley provide a (non-examinable) proof of the useful fact that

$$
\mathrm{e}=\left(1+\frac{1}{n}\right)^{n}
$$

[An alternative, and simpler, proof of the more general result in which $x \in \mathbb{R}^{>0}$ replaces $n$ can be based on L'Hôpital's Rule (in Analysis II).]
e.1. The number e is defined to be

$$
\mathrm{e}=\sum_{k=0}^{\infty} \frac{1}{n!}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots,
$$

where, by convention, $0!=1$. Problem sheet 5, Q. 5 , asked for a proof that the partial sum sequence of the series above is monotonic increasing and bounded above. Hence it converges to a real number, so that e is well defined. You were also asked to show e is irrational.

Problem sheet 1, Q.5, introduced sequences

$$
\alpha_{n}=\left(1+\frac{1}{n}\right)^{n} \quad \text { and } \quad \beta_{n}=\left(1+\frac{1}{n}\right)^{n+1}
$$

and asked for a proof that, for all $n$,

$$
\alpha_{n} \leqslant \alpha_{n+1} \leqslant \cdots \leqslant \beta_{n+1} \leqslant \beta_{n}
$$

Example 6.3(c) then applied the Monotonic Sequences Theorem to prove that ( $\alpha_{n}$ ) converges.
We now provide the desired reconciliation.

## e. 2 Proposition.

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Proof. Let $s_{n}=\sum_{k=0}^{n} \frac{1}{n!}$.
By the Binomial Theorem

$$
\begin{aligned}
\alpha_{n} & =1+n\left(\frac{1}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{1}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{1}{n}\right)^{3}+\cdots+\frac{1}{n^{n}} \\
& =1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots \frac{1}{n} \\
& \leqslant 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}=s_{n} .
\end{aligned}
$$

From this we have $\lim \alpha_{n} \leqslant \mathrm{e}$.

On the other hand, if $m, n$ are natural numbers with $m<n$, focusing on the first $m+1$ terms of $\alpha_{n}$ we see that

$$
1+1+\left(1-\frac{1}{n}\right) \frac{1}{2!}+\cdots+\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \frac{1}{m!} \leqslant \alpha_{n}
$$

If we fix $m$ and let $n \rightarrow \infty$ then we have, using the Algebra of Limits and recalling that limits respect weak inequalities,

$$
1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{m!} \leqslant \lim \alpha_{n}
$$

Finally letting $m \rightarrow \infty$ we have $\mathrm{e} \leqslant \lim \alpha_{n}$ and the result follows.

## e. 3 Another useful limit.

$$
\left(1-\frac{1}{n}\right)^{n} \rightarrow \frac{1}{\mathrm{e}}
$$

Proof. See Problem sheet 5, Q. 6.

