Reminder on Quotient spaces

October 17, 2013

1 Homeomorphisms

Definition 1. Let X, Y be topological spaces. A map $f : X \to Y$ is a homeomorphism if f is 1-1, onto and both f and f^{-1} are continuous.

Definition 2. If there is a homeomorphism $f : X \to Y$, we say that X, Y are **homeomorphic** and denote this by $X \cong Y$.

Remark 1. \cong is an equivalence relation on any set of spaces

Spaces that are homeomorphic are the "**same**" from the point of view of topology. Intuitively, homeomorphic spaces have the *same "shape" if* we imagine our spaces to be *made of rubber*. In other words, two spaces are homeomorphic if we can stretch one so that it becomes the other; but we are not allowed to tear or to glue parts of the space.

For example a circle, a square loop, and an ellipse are all homeomorphic to each other. A football and a rugby ball are homeomorphic. A bagel and the surface of a mug are homeomorphic.

In the definition, the condition on f^{-1} being continuous is actually necessary:

Example 1. Consider X = [0,1), $Y = S^1$ and $f : X \to Y$ given by $f(x) = (\cos(2\pi x), \sin(2\pi x))$. Then f is 1-1, onto continuous. But f^{-1} is not continuous, so f is not a homeomorphism.

However if X, Y are compact things are simpler.

Proposition 1. Let X be a compact space, Y a Hausdorff space and $f : X \rightarrow Y$ a continuous map that is 1-1 and onto. Then f is a homeomorphism.

Proof. To show that f^{-1} is continuous it is enough to show that if $K \subset X$ closed then f(K) is also closed. Since K is closed and X is compact, K is compact. Therefore f(K), the image of a compact space, is compact. Hence f(K) is closed.

2 Quotient topology

Definition 3. Let X be a topological space and \sim an equivalence relation on X. For every $x \in X$, denote by [x] its equivalence class. The **quotient space** of X modulo \sim is given by the set

$$X/\!\!\sim = \{ [x] : x \in X \}$$

We have the projection map :

$$p: X \to X/\sim, x \mapsto [x]$$

and we equip X/\sim by the topology: $U \subseteq X/\sim$ is **open** iff $p^{-1}(U)$ is an open subset of X.

Remark 2. This is the finest topology (i.e. the one with the greatest number of open sets) with respect to which p is continuous.

The quotient topology is a useful tool that allows us to construct easily interesting spaces, avoiding cumbersome constructions, using equations etc. For example it allows us to 'glue' spaces together.

A very important example of an equivalence relation comes from group actions:

Example 2. If a group G acts on a space X by homeomorphisms, then we have the orbit equivalence relation: $x \sim y$ if and only if $x = g \cdot y$ for some $g \in G$.

The nature of the quotient space in this case depends very much on the properties of the action: even if X is a very nice space, one needs some sort of "discreteness" for the action if the quotient space is to be a reasonable space.

Example 3.

- 1. Let $X = [0, 1] \cup [2, 3]$. We define an equivalence relation: $1 \sim 2$. Then $[1] = [2] = \{1, 2\}$, while $[x] = \{x\}$, $\forall x \in X \setminus \{1, 2\}$. Then X/\sim is homeomorphic to [0, 1].
- 2. Let X = [0, 1] and \sim an equivalence relation on X such that $0 \sim 1$ and $[x] = \{x\}, \forall x \in X \setminus \{0, 1\}$. Then $X/\sim \cong S^1$.

A homeomorphism is given by:

 $f: X/\sim \to S^1, x \mapsto (\cos(2\pi x), \sin(2\pi x))$

This is well defined (f(0) = f(1)), 1-1, onto and its inverse is continuous.

3. Let $X = \mathbb{R}$ and \sim equivalence relation on X, where for $x, y \in X$ we define

$$x \sim y \iff x - y \in \mathbb{Q}$$

Then X/\sim is not Hausdorff. (prove this!)

4. Let $D^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, and define \sim on D^2 by $a \sim b \iff a, b \in \partial D^2$ for all $a, b \in D^2$ (where $\partial D^2 = S^1$).

Then D^2/\sim is homeomorphic to the sphere S^2 .

We will come back to these examples later to give more detailed proofs of the homeomorphisms. Note that this is a very general definition and example 3 shows that things can go awry. In practice we will restrict to gentle equivalence relations.

Proposition 2. If X is compact (connected), then the quotient space X/\sim is also compact (connected).

Proof. The projection map $p: X \to X/\sim$, is continuous and onto and the continuous image of a compact (connected) space is compact (connected). \Box

Definition 4. Let A be a subset of the topological space X and \sim an equivalence relation on X.

1. The saturation of A with respect to \sim is the set

$$\hat{A} = \{ x \in X / \exists a \in A : x \sim a \}$$

If $\hat{A} = A$, then A is called **saturated**.

- 2. The relation \sim is called **closed** if for every $A \subset X$ closed, \hat{A} is also closed.
- 3. A Hausdorff space, X, is called **normal** if for any K_1, K_2 closed disjoint subsets of X, there are A_1, A_2 open disjoint subsets of X, such that $K_1 \subset A_1, K_2 \subset A_2$.

Exercise 1. If A is open and saturated, show that p(A) is an open subset of X/\sim .

We omit the proof of the following proposition. Informally what it says is that under a mild condition we can insure that the quotient space of a 'reasonable' topological space is also 'reasonable'.

Proposition 3. Let X normal topological space and \sim a closed equivalence relation on X. Then X/\sim is normal.

Example 4. Let X be a topological space and let $A \subset X$ be closed. We define the equivalence relation: $a \sim b \iff a, b \in A$.

We define $X/A := X/\sim$. From the previous proposition if X is normal, then X/\sim is normal.

Proposition 4. Let X, Y be topological spaces, $f : X \to Y$ continuous and \sim an equivalence relation on X. If $f(x_1) = f(x_2), \forall x_1, x_2 \in X$ with $x_1 \sim x_2$, then the map $\overline{f} : X/\sim \to Y$, where $\overline{f}([x]) = f(x)$, is well defined and continuous.

Proof. It is obvious that \overline{f} is well defined. We show that \overline{f} is continuous: let $U \subset Y$ open, then $\overline{f}^{-1}(U) \subset X/\sim$ and $p^{-1}(\overline{f}^{-1}(U)) = f^{-1}(U)$. $f^{-1}(U)$ is open since f is continuous and U is open. It follows that $\overline{f}^{-1}(U)$ is open, hence \overline{f} is continuous.

Example 5. 1. Let's show that $[0,1]/0 \sim 1$ is homeomorphic to S^1 :

We define $f: [0,1] \to S^1$ by $f(x) = e^{i2\pi x}$. This map continuous, onto and f(0) = f(1). Hence \bar{f} is continuous, 1-1 and since the spaces $[0,1]/0 \sim 1$ and S^1 are compact it follows that \bar{f} is a homeomorphism.

2. Let's show that $D^2/\sim = D^2/\partial D^2$ is homeomorphic to S^2 :

It is easy to see (stereographic projection) that $S^2 \smallsetminus \{N\} \cong \mathbb{R}^2 \cong \mathring{D}^2$. Let $\hat{f} : \mathring{D}^2 \to S^2 \smallsetminus \{N\}$ a homeomorphism. We define $f : D^2 \to S^2$ as follows :

$$f(x) = \begin{cases} \hat{f}(x) & \text{, if } x \in \mathring{D}^2 \\ N & \text{, if } x \in \partial D^2 \end{cases}$$

For all $x, y \in \partial D$, f(x) = f(y) = N. Moreover f is continuous, onto, 1-1, and D, S^2 are compact, so $\overline{f} : D^2/\partial D^2 \to S^2$ is a homeomorphism. Similarly one shows that $D^n/\partial D^n \cong S^n$.

3. Let $X = S^1 \times I$ and $A = S^1 \times 1$. Then $X/A \cong D^2$. Indeed X is homeomorphic to the ring $C = \{x \in \mathbb{R}^2 \mid \frac{1}{2} \leq |x| \leq 1\}$ $A = \{x \in \mathbb{R}^2 \mid |x| = \frac{1}{2}\}$. We define

$$f: C \to D^2$$
 by $f(x) = 2(|x| - \frac{1}{2})x$

f is continuous and f(x) = 0, $\forall x \in A$, so it induces a continuous map $\overline{f} : C/A \to D^2$. Moreover \overline{f} is 1-1 and onto so it gives a homeomorphism $C/A \cong D^2$.