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1 Homeomorphisms

Definition 1. Let X, Y be topological spaces. A map f : X → Y is a
homeomorphism if f is 1-1, onto and both f and f−1 are continuous.

Definition 2. If there is a homeomorphism f : X → Y , we say that X, Y
are homeomorphic and denote this by X ∼= Y .

Remark 1. ∼= is an equivalence relation on any set of spaces

Spaces that are homeomorphic are the “same” from the point of view
of topology. Intuitively, homeomorphic spaces have the same “shape” if we
imagine our spaces to be made of rubber. In other wiords, two spaces are
homeomorphic if we can stretch one so that it becomes the other; but we are
not allowed to tear or to glue parts of the space.

For example a circle, a square loop, and an ellipse are all homeomorphic
to each other. A football and a rugby ball are homeomorphic. A bagel and
the surface of a mug are homeomorphic.

In the defintion, the condition on f−1 being continuous is actually neces-
sary:

Example 1. Consider X = [0, 1) , Y = S1 and f : X → Y given by
f(x) = (cos(2πx), sin(2πx)). Then f is 1-1, onto continuous. But f−1 is
not continuous, so f is not a homeomorphism.

However if X, Y are compact things are simpler.

Proposition 1. Let X be a compact space, Y a Hausdorff space and f : X →
Y a continuous map that is 1-1 and onto. Then f is a homeomorphism.

Proof. To show that f−1 is continuous it is enough to show that if K ⊂ X
closed then f(K) is also closed. Since K is closed and X is compact, K is
compact. Therefore f(K), the image of a compact space, is compact. Hence
f(K) is closed.
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2 Quotient topology

Definition 3. Let X be a topological space and ∼ an equivalence relation on
X. For every x ∈ X, denote by [x] its equivalence class.
The quotient space of X modulo ∼ is given by the set

X/∼ = {[x] : x ∈ X}

We have the projection map :

p : X → X/∼ , x 7→ [x]

and we equip X/∼ by the topology:
U ⊆ X/∼ is open iff p−1(U) is an open subset of X.

Remark 2. This is the finest topology (i.e. the one with the greatest number
of open sets) with respect to which p is continuous.

The quotient topology is a useful tool that allows us to construct easily
interesting spaces, avoiding cumbersome constructions, using equations etc.
For example it allows us to ‘glue’ spaces together.

A very important example of an equivalence relation comes from group
actions:

Example 2. If a group G acts on a space X by homeomorphisms, then we
have the orbit equivalence relation: x ∼ y if and only if x = g · y for some
g ∈ G.

The nature of the quotient space in this case depends very much on the
properties of the action: even if X is a very nice space, one needs some sort
of “discreteness” for the action if the quotient space is to be a reasonable
space.

Example 3.

1. Let X = [0, 1] ∪ [2, 3]. We define an equivalence relation: 1 ∼ 2. Then
[1] = [2] = {1, 2} , while [x] = {x} , ∀x ∈ X r {1, 2}.

Then X/∼ is homeomorphic to [0, 1].

2. Let X = [0, 1] and ∼ an equivalence relation on X such that 0 ∼ 1 and
[x] = {x}, ∀x ∈ X r {0, 1}. Then X/∼ ∼= S1.

A homeomorphism is given by:

f : X/∼→ S1, x 7→ (cos(2πx), sin(2πx))

This is well defined (f(0) = f(1)), 1-1, onto and its inverse is continu-
ous.
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3. Let X = R and ∼ equivalence relation on X, where for x, y ∈ X we
define

x ∼ y ⇐⇒ x− y ∈ Q

Then X/∼ is not Hausdorff. (prove this!)

4. Let D2 = {(x, y) ∈ R2 : x2 + y2 6 1}, and define ∼ on D2 by a ∼
b ⇐⇒ a, b ∈ ∂D2 for all a, b ∈ D2 (where ∂D2 = S1).

Then D2/∼ is homeomorphic to the sphere S2.

We will come back to these examples later to give more detailed proofs
of the homeomorphisms. Note that this is a very general definition and
example 3 shows that things can go awry. In practice we will restrict to
gentle equivalence relations.

Proposition 2. If X is compact (connected), then the quotient space X/∼
is also compact (connected).

Proof. The projection map p : X → X/∼, is continuous and onto and the
continuous image of a compact (connected) space is compact (connected).

Definition 4. Let A be a subset of the topological space X and ∼ an equiv-
alence relation on X.

1. The saturation of A with respect to ∼ is the set

Â = {x ∈ X/∃a ∈ A : x ∼ a}

If Â = A, then A is called saturated.

2. The relation ∼ is called closed if for every A ⊂ X closed, Â is also
closed.

3. A Hausdorff space, X, is called normal if for any K1, K2 closed dis-
joint subsets of X, there are A1, A2 open disjoint subsets of X, such
that K1 ⊂ A1, K2 ⊂ A2.

Exercise 1. If A is open and saturated, show that p(A) is an open subset of
X/∼.

We omit the proof of the following proposition. Informally what it says
is that under a mild condition we can insure that the quotient space of a
‘reasonable’ topological space is also ‘reasonable’.

Proposition 3. Let X normal topological space and ∼ a closed equivalence
relation on X. Then X/∼ is normal.
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Example 4. Let X be a topological space and let A ⊂ X be closed. We define
the equivalence relation: a ∼ b ⇐⇒ a, b ∈ A.

We define X/A := X/∼. From the previous proposition if X is normal,
then X/∼ is normal.

Proposition 4. Let X, Y be topological spaces, f : X → Y continuous
and ∼ an equivalence relation on X. If f(x1) = f(x2), ∀x1, x2 ∈ X with
x1 ∼ x2, then the map f̄ : X/∼→ Y , where f̄([x]) = f(x), is well defined
and continuous.

Proof. It is obvious that f̄ is well defined. We show that f̄ is continuous:
let U ⊂ Y open, then f̄−1(U) ⊂ X/∼ and p−1(f̄−1(U)) = f−1(U). f−1(U)
is open since f is continuous and U is open. It follows that f̄−1(U) is open,
hence f̄ is continuous.

Example 5. 1. Let’s show that [0, 1]/0 ∼ 1 is homeomorphic to S1:

We define f : [0, 1] → S1 by f(x) = ei2πx. This map continuous, onto
and f(0) = f(1). Hence f̄ is continuous, 1-1 and since the spaces
[0, 1]/0 ∼ 1 and S1 are compact it follows that f̄ is a homeomorphism.

2. Let’s show that D2/∼= D2/∂D2 is homeomorphic to S2:

It is easy to see (stereographic projection) that S2 r {N} ∼= R2 ∼= D̊2.

Let f̂ : D̊2 → S2 r {N} a homeomorphism. We define f : D2 → S2 as
follows :

f(x) =

{

f̂(x) , if x ∈ D̊2

N , if x ∈ ∂D2

For all x, y ∈ ∂D, f(x) = f(y) = N . Moreover f is continuous, onto,
1-1, and D,S2 are compact, so f̄ : D2/∂D2 → S2 is a homeomorphism.

Similarly one shows that Dn/∂Dn ∼= Sn.

3. Let X = S1 × I and A = S1 × 1. Then X/A ∼= D2. Indeed X is
homeomorphic to the ring C = {x ∈ R2 | 1

2
6 |x| 6 1} A = {x ∈ R2 |

|x| = 1

2
}. We define

f : C → D2 by f(x) = 2(|x| −
1

2
)x

f is continuous and f(x) = 0 , ∀x ∈ A , so it induces a continuous map
f̄ : C/A → D2. Moreover f̄ is 1-1 and onto so it gives a homeomor-
phism C/A ∼= D2.

4


