
Linear Algebra II

James Maynard *

Hilary 2023

This course is a continuation of Linear Algebra I and will foreshadow much of what will be discussed
in more detail in the Linear Algebra course in Part A. We will also revisit some concepts seen in
Geometry though material from that course is not assumed to have been seen.

In this course we will deepen our understanding of matrices and linear maps more generally. In
particular we will see that often a good choice of basis makes the transformation easy to understand
in geometric terms. One of our key tools is the determinant which we will study first.

These lectures are a brief path through the essential material. Much will be gained by studying
text books along the way. One book that also covers much of the material of the Part A course
is “Linear Algebra” by Kaye and Wilson, another that can be found in many college libraries is
“Linear Algebra” by Morris.

*These notes are essentially due to Alan Lauder.
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1 Determinants

1.1 Existence and uniqueness

Let Mn(R) be the set of n× n matrices with real entries. For A ∈Mn(R) it will be convenient in
this section and occasionally elsewhere to write

A = [a1, · · · ,an]

where ai (1 ≤ i ≤ n) are the columns.

Definition 1.1. A mapping D : Mn(R)→ R is determinantal if it is

(a) multilinear in the columns:

D[· · · ,bi + ci, · · · ] = D[· · · ,bi, · · · ] +D[· · · , ci, · · · ]
D[· · · , λai, · · · ] = λD[· · · ,ai, · · · ] for λ ∈ R

(b) alternating:
D[· · · ,ai,ai+1, · · · ] = 0 when ai = ai+1

(c) and D(In) = 1 for In the n× n identity matrix.

When proving the existence of determinantal maps, it is easier to define the alternating property
as above. However, when showing uniqueness we shall use the following at first glance “stronger”
alternating properties.

Proposition 1.2. Let D : Mn(R)→ R be a determinantal map. Then

(1) D[· · · ,ai,ai+1 · · · ] = −D[· · · ,ai+1,ai, · · · ]
(2) D[· · · ,ai, · · · ,aj · · · ] = 0 when ai = aj , i 6= j.
(3) D[· · · ,ai, · · · ,aj · · · ] = −D[· · · ,aj , · · · ,ai, · · · ] when i 6= j.

Of course the third part subsumes the first, but it is easier to prove the proposition in three steps.

Proof. (1) Thinking of D as a multilinear alternating map on the i and (i+ 1)th columns only, we
have

0 = D[ai + ai+1,ai + ai+1] = D[ai,ai] +D[ai,ai+1] +D[ai+1,ai] +D[ai+1,ai+1]

= 0 +D[ai,ai+1] +D[ai+1,ai] + 0

from which the first claim follows.
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(2) For the second, given a matrix A in which ai = aj with i 6= j, we can switch adjacent columns
and apply the first part to see that D(A) agrees up to sign with D(A′) where the matrix A′ has
two identical adjacent columns. But then D(A′) = 0.

(3) Finally, the third part now follows from the second, by applying the same argument that we
used originally to prove the first part!

Theorem 1.3. A determinantal map D exists.

Proof. We prove this by induction on n. For n = 1 define D((λ)) := λ, which has the right
properties.

Assume we have proved the existence of a determinantal map Dn−1 for dimension n−1 where n ≥ 2.
We want to prove the existence of a determinantal map Dn for dimension n. Let A = (aij) ∈Mn(R).
Write Aij for the (n− 1)× (n− 1) matrix obtained from A by deleting the ith row and jth column.
Fix i with 1 ≤ i ≤ n. Define

Dn(A) := (−1)i+1ai1Dn−1(Ai1) + · · ·+ (−1)i+nainDn−1(Ain). (1)

Here the Dn−1(·) on the righthand side is our determinantal function on (n− 1)× (n− 1) matrices,
already defined by induction. We show Dn is determinantal on n× n matrices.

View Dn as a function of the kth column, and consider any term

(−1)i+jaijDn−1(Aij).

If j 6= k then aij does not depend on the kth column and Dn−1(Aij) depends linearly on the kth
column. If j = k the aij depends linearly on the kth column, and Dn−1(Aij) does not depend on
the kth column. In any case our term depends linearly on the kth column. Since Dn(A) is the sum
of such terms, it depends linearly on the kth column and so is multilinear.

Next, suppose two adjacent columns of A are equal, say ak = ak+1. Let j be an index with
j 6= k, k + 1. Then Aij has two adjacent equal columns, and hence Dn−1(Aij) = 0. So we find

Dn(A) = (−1)i+kaikDn−1(Aik) + (−1)i+k+1ai,k+1Dn−1(Ai,k+1).

Now Aik = Ai,k+1 and ai,k = ai,k+1 since ak = ak+1. So these two terms cancel and Dn(A) = 0.

Finally we check that Dn(In) = 1 directly from the inductive definition.

To show uniqueness, let’s first look at the case n = 2.
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Example 1.4 For any determinantal D : M2(R)→ R we have

D

(
a b
c d

)
= D

[
a

(
1
0

)
+ c

(
0
1

)
, b

(
1
0

)
+ d

(
0
1

)]

ab ·D
(

1 1
0 0

)
+ ad ·D

(
1 0
0 1

)
+ cb ·D

(
0 1
1 0

)
+ cd ·D

(
0 0
1 1

)
= ab · 0 + ad · 1 + cb · (−1) + cd · 0 = ad− bc.

So this function D is unique.

The proof for general n ≥ 1 is essentially the same, only more complicated to write down and we
will need first a definition.

Definition 1.5. Let n ∈ N. A permutation σ is a bijective map from the set {1, 2, · · · , n} to
itself. The set of all such permutations is denoted Sn. An element σ ∈ Sn which switches two
elements 1 ≤ i < j ≤ n and fixes the others is called a transposition.

It is intuitively obvious (and proved in “Groups and Group Actions”) that every permutation can
be written (not uniquely) as a sequence of transpositions.1

So let D : Mn(R)→ R be some determinantal map. For A = (aij) = [a1, · · · ,an] ∈Mn(R) write

a1 = a11e1 + · · · an1en
...

...
...

an = a1ne1 + · · · annen

where ei is the n× 1 vector with 1 in the ith position and zero elsewhere.

Then by multilinearity and using the second alternating property in Proposition 1.2 we have

D[a1, · · · ,an] =
∑
σ

aσ(1),1 · · · aσ(n),nD[eσ(1), · · · , eσ(n)].

Here the sum is over Sn — the main point being as in Example 1.4 determinants on matrices with
two equal columns vanish. Now write σ as a product of t, say, transpositions and “unshuffle” the
columns in [eσ(1), · · · , eσ(n)] keeping track of the effect on D using the third alternating property
in Proposition 1.2. We find 2

D[eσ(1), · · · , eσ(n)] = (−1)tD[e1, · · · , en] = (−1)tD(In) = (−1)t.

Observe that the value (−1)t must be independent of how one wrote σ as a product of transpositions:
it is called the sign of σ and written sign(σ).

1Imagine a row of children’s blocks with the numbers 1 to n on them, but in some random order: you can line
them up in the correct order by using your hands to switch two at a time.

2The matrix Mσ := [eσ(1), · · · , eσ(n)] is a permutation matrix, so-called because Mej = eσ(j); that is, it
permutes the basis vectors by acting by σ on the indices. We won’t use this term again, but it appears in “Groups
and Groups in Action”.
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So we find
D[a1, · · · ,an] =

∑
σ∈Sn

sign(σ)aσ(1),1 · · · aσ(n),n. (2)

But this equation gives D explicitly as a multivariable polynomial in the entries aij , and so shows
D is unique. We have proved:

Theorem 1.6. For each n ∈ N there exists a unique determinantal function D : Mn(R)→ R and
it is given explicitly by the expansion (2). We write this unique function as det(·) or sometimes | · |.

Note that det satisfies equation (1), since it is the unique determinantal function — we say here we
are computing det by expanding along the ith row (Laplace expansion).

Example 1.7 n = 2: Here S2 = {1, (1 2)} where (1 2) denotes the map switching 1 and 2, so
sign((1 2)) = −1.

det

(
a11 a12
a21 a22

)
=
∑
σ∈S2

sign(σ)aσ(1),1aσ(2),2 = a11a22 − a21a12.

n = 3: Using the Laplace expansion along the first row we find∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣− a12 ∣∣∣∣ a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣ .
These formulae, which you may have seen before, are useful for computations.

1.2 Basic properties

Now some basis properties of the determinant.

Lemma 1.8. For σ ∈ Sn, we have sign(σ) = sign(σ−1). (Note σ is a bijection so has an inverse.)

Proof. Follows since σ ◦ σ−1 is the identify map, which can be written as a sequence of 0 transposi-
tions, an even number.

Proposition 1.9. det(A) = det(AT ).

Proof. Follows from the expansion formula (2), Lemma 1.8, and the fact that as σ varies over Sn
so does σ−1:

det(AT ) =
∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n) =
∑
σ∈Sn

sign(σ)aσ−1(1),1 · · · aσ−1(n),n
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∑
σ−1∈Sn

sign(σ−1)aσ−1(1),1 · · · aσ−1(n),n = det(A).

Corollary 1.10. The map det : Mn(R)→ R is multilinear and alternating in the rows of a matrix.
(Our discussion in terms of columns though is notationally simpler.)

Corollary 1.11. One has

det(A) =
∑
σ∈Sn

sign(σ)a1,σ(1) · · · an,σ(n).

1.3 Geometric interpretation

The explicit form of det given in (2) and Corollary 1.11 is useful for computations in small dimensions
and some proofs (e.g. Proposition 2.9), but on the whole rather unenlightening. Rather, it is the
axiomatic characterisation of det as the unique map satisfying the properties in Definition 1.1 which
gives it an intuitive geometric meaning for real matrices.

Writing A = [a1, · · · ,an] ∈Mn(R) we have that the absolute value of det(A) is the n-dimensional
volume of the parallelepiped spanned by the vectors a1, · · · ,an. To see why, it is perhaps most
instructive to consider how the properties in Definition 1.1 fit exactly in the case of R2 with
your intuitive idea of how the area of a parallelogram should behave, e.g., under “summing” two
parallelograms with a common side, or scaling a side.

1.4 Multiplicativity

We now prove the key properties of the determinant.

Theorem 1.12. Let A, B ∈Mn(R). Then

(i) det(A) 6= 0 ⇔ A is invertible.

(ii) det(AB) = det(A) det(B).

There are various ways to go about this. We give a proof which is not the most concise, but shows
how one in practice actually goes about computing determinants once matrices get reasonably
larger; that is, using row operations.

Recall there are three types of elementary row operations (EROs):
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(i) Multiplying the ith row by λ 6= 0.

(ii) Swapping rows i and j.

(iii) Adding µ ∈ R times row j to row i.

Each of these is accomplished by pre-multiplying A be a suitable “elementary matrix” E which, for
example by the alternating and multilinear properties of det in the rows (or the expansion formula),
have determinant λ, −1 and 1 respectively.

Lemma 1.13. Let A ∈Mn(R). For such an elementary matrix E we have det(EA) = det(E) det(A).

Proof. We consider the three possible types for E and use Corollary 1.10.

(i) The result follows immediately by the multilinearity in the rows of det.

(ii) The result follows from the third alternating property (for the rows this time) in Proposition
1.2.

(iii) This follows from multilinearity and the second alternating properties (for rows) in Proposition
1.2. Precisely, by multilinearity det(EA) = det(A) + µdet(B) where the i and jth rows of B
are both (aj1, · · · , ajn), so det(B) = 0.

From Linear Algebra I (Theorem 47)we know that there exist elementary matrices E1, · · · , Ek such
that

EkEk−1 · · ·E1A =

{
In when A is invertible
A′ otherwise

where A′ is some matrix with a zero row. Note that det(A′) = 0 since we can, for example, compute
det(A′) by expanding along a zero row, using formula (1). So by Lemma 1.13

det(Ek) · · · det(E1) det(A) =

{
1 when A is invertible
0 otherwise.

Now det(Ek) · · · det(E1) 6= 0 so we find

det(A) 6= 0⇔ A is invertible

proving Theorem 1.12 Part (i). Moreover when det(A) 6= 0 one has

det(A) =

(
k∏
i=1

det(Ei)

)−1
. (3)
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We now prove Part (ii). First note

det(AB) = 0⇔ AB is not invertible (by Part (i))

⇔ A is not invertible, or B is not invertible⇔ det(A) = 0 or det(B) = 0 (by Part (i)).

(The implication (AB invertible ⇒ A and B are both invertible) here is not completely obvious: if
AB is invertible then certainly the map defined by A is surjective and that by B is injective. Now
apply the rank-nullity theorem.) This proves Part (ii) when det(A) = 0 or det(B) = 0.

So we can assume that det(A),det(B) 6= 0. There exist elementary matrices Ei and Fj such that

Ek · · ·E1A = In
F` · · ·F1B = In

and so
F` · · ·F1(Ek · · ·E1A)B = In.

Thus by Lemma 1.13 we find ∏
i

det(Fi)
∏
j

det(Ej) det(AB) = 1

and hence

det(AB) =

(∏
i

det(Fi)

)−1∏
j

det(Ej)

−1 = det(A) det(B)

by (3).

Example 1.14 Usually it is better to compute determinants of matrices when n > 3 using row
operations. Writing |A| for det(A):∣∣∣∣∣∣∣∣

1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 2 3
0 3 8 15
0 7 26 63

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 2 3
0 0 2 6
0 0 12 42

∣∣∣∣∣∣∣∣
= 2 ·

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 12 42

∣∣∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 6

∣∣∣∣∣∣∣∣ = 2 · 6 = 12.

Observe here that by expanding successive down the first column one sees that the determinant of
an upper triangular matrix is the product of its diagonal entries.

1.5 Determinant of a linear transformation

Let V be a vector space of dimension n over R.
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Definition 1.15. Let T : V → V be a linear transformation, B a basis for V , and MB
B (T ) the

matrix for T with respect to initial and final basis B. We define

det(T ) := det(MB
B (T )).

Proposition 1.16. The determinant of T is independent of the choice of basis B.

Proof. Let B′ be another basis, write A = MB
B (T ) and C = MB′

B′ (T ), We need to show det(A) =
det(C).

Let P = MB′

B (IdV ) be the change of basis matrix. By Linear Algebra I (Corollary 185)we have

C = P−1AP.

Hence by Theorem 1.12 Part (ii)

det(C) = det(P−1) det(A) det(P ) = det(P−1) det(P ) det(A)

= det(P−1P ) det(A) = det(In) det(A) = det(A).

Note the useful fact det(P−1) = det(P )−1 for an invertible matrix P .

Theorem 1.17. Let S, T : V → V be linear transformations. Then

(i) det(T ) 6= 0 ⇔ T is invertible.

(ii) det(ST ) = det(S) det(T ).

Proof. Immediate from Theorem 1.12.
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2 Eigenvectors and eigenvalues

In this section the field R may be replaced by any other field F , for example C. Note though a
matrix over R often acquires more eigenvalues and eigenvectors when one thinks of it as being
defined over C, and likewise for linear maps.

2.1 Definitions and basic properties

Let V be a vector space over R and T : V → V be a linear transformation.

Definition 2.1. A vector v ∈ V is called an eigenvector of T if v 6= 0 and Tv = λv for some
λ ∈ R. We call λ ∈ R an eigenvalue of T if Tv = λv for some nonzero v ∈ V .

From now on we assume V is finite dimensional.

Example 2.2 Let V = R3, and T be rotation by an angle θ about an axis through the origin. If
v 6= 0 lies on this axis then Tv = v so it is an eigenvector with eigenvalue 1. There are no other
eigenvalues unless θ = 180o in which case −1 is an eigenvalue and all nonzero vectors lying in the
plane perpendicular to the axis are eigenvectors.

Proposition 2.3. λ is an eigenvalue of T ⇔ Ker(T − λI) 6= {0}.

Proof.
λ is an eigenvalue of T ⇔ ∃v ∈ V, v 6= 0, T v = λv

⇔ ∃v ∈ V, v 6= 0, (T − λI)v = 0 ⇔ Ker(T − λI) 6= {0}.

Corollary 2.4. The following statements are equivalent.

(a) λ is an eigenvalue of T

(b) Ker(T − λI) 6= {0}

(c) T − λI is not invertible

(d) det(T − λI) = 0.

Proof. (a)⇔ (b) was shown above. (c)⇔ (d) follows from Theorem 1.17 Part (i). (b)⇔ (c) is true
since by the Rank-Nullity theorem T − λI is invertible if and only if its nullity is zero.
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The equivalence (a)⇔ (d) is the key one here and motivates the following definition.

Definition 2.5. For A ∈Mn(R) the characteristic polynomial of A is defined as det(A− xIn).
For T : V → V a linear transformation, let A be the matrix for T with respect to some basis B.
The characteristic polynomial of T is defined as det(A− xIn).

Here the determinants are defined by taking the field in Section 1 to be R(x). That the characteristic
polynomial is well-defined for a linear map — independent of the choice of basis — is proved in
exactly the same manner as in Proposition 1.16, using the equality P−1(A−xIn)P = P−1AP −xIn.

We denote the characteristic polynomial of T by χT (x), and of a matrix A by χA(x).

Theorem 2.6. Let T : V → V be a linear transformation. Then λ is an eigenvalue of T if and
only if λ is a root of the characteristic polynomial χT (x) of T .

Proof. (⇒) Suppose λ is an eigenvalue of T . Then by Corollary 2.4 implication (a)⇒ (d), we have
det(T − λ1) = 0. Thus det(A − λIn) = 0 for any matrix A for T . (If A is a matrix for T , then
A− λIn is the corresponding one for T − λI.) So λ is a root of χT (x) = det(A− xIn).

(⇐) Suppose λ is a root of χT (x) = det(A − xIn) for some matrix (all matrices) A for T . Then
det(A− λIn) = 0, and so det(T − λI) = 0. Thus by Corollary 2.4 implication (d)⇒ (a), λ is an
eigenvalue of T .

Given a matrix A ∈Mn(R) one defines eigenvalues λ ∈ R and eigenvectors v ∈ Rn (column vectors)
exactly as in Definition 2.1, taking T to be the linear map on V = Rn associated to A, and then
Proposition 2.3, Corollary 2.4 and Theorem 2.6 hold with T replaced by A.

Example 2.7 Continuing Example 2.2, if we take a basis v1, v2, v3 where v1 lies on the axis of
rotation and v2 and v3 are perpendicular vectors of equal length spanning the plane through the
origin perpendicular to the axis, then the matrix is

A =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ


which has characteristic polynomial∣∣∣∣∣∣

1− x 0 0
0 cos θ − x − sin θ
0 sin θ cos θ − x

∣∣∣∣∣∣ = (1−x)
(
(cos θ)2 − 2 cos θx+ x2 + (sin θ)2

)
= (1−x)(x2−2 cos θx+1).

So the eigenvalues over C are λ = 1 and

2 cos θ ±
√

4(cos θ)2 − 4

2
= cos θ ± sin θ

√
−1,
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these latter only being real when θ = 0 (λ = 1) or 180o (λ = −1). So Theorem 2.6 agrees with our
geometric intuition.

For A = (aij) ∈Mn(R) recall the trace tr(A) is defined to the sum
∑n
i=1 aii of the diagonal entries,

and that tr(AB) =
∑
i(AB)i,i =

∑
i,j Ai,jBi,j = tr(BA) for A,B ∈Mn(R).

Definition 2.8. For T : V → V a linear transformation the trace tr(T ) is defined to be tr(A)
where A is any matrix for T .

That this is well-defined follows since (using notation from the proof of Proposition 1.16) we have

tr(P−1AP ) = tr(P−1(AP )) = tr((AP )P−1) = tr(A(PP−1)) = tr(A).

Proposition 2.9. For A ∈Mn(R),

χA(x) = (−1)nxn + (−1)n−1tr(A)xn−1 + · · ·+ det(A).

(Likewise for a transformation χT (x) = (−1)nxn + (−1)n−1tr(T )xn−1 + · · ·+ det(T ).)

Proof. First evaluating at x = 0 we find χA(0) = det(A), which gives the constant term.

Writing A = (aij) we have

det(A− xI) =

∣∣∣∣∣∣∣∣∣∣∣∣

a11 − x a12 a13 · · · a1n
a21 a22 − x a23 · · · a2n
a31 a32 a33 − x · · · a3n
...

...
...

...
...

ann an2 an3
... ann − x

∣∣∣∣∣∣∣∣∣∣∣∣
We use the explicit formula (Corollary 1.11) to compute the leading two terms.

Observe that any permutation in Sn except the identity fixes ≤ n − 2 elements in {1, 2, · · · , n}.
Thus using the explicit formula we find

det(A− xI) =

n∏
i=1

(aii − x) + · · ·

where the · · · involves products containing ≤ n − 2 of the diagonal entries aii − x. Since the
off-diagonal terms contain no x, the · · · must be a polynomial of degree ≤ n− 2. The result follows
since

n∏
i=1

(aii − x) = (−1)n
n∏
i=1

(x− aii) = (−1)n

(
xn −

(
n∑
i=1

aii

)
xn−1 + lower order terms

)
.
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In particular, the characteristic polynomial has degree n and so there are at most n eigenvalues (or
in the case in which the base field is C, exactly n eigenvalues counting multiplicities).

Corollary 2.10. Let A ∈ Mn(C) have eigenvalues λ1, λ2, · · · , λn ∈ C (not necessarily distinct).
Then tr(A) = λ1 + λ2 + · · ·+ λn and det(A) = λ1 · · ·λn (and likewise for transformations T ).

Proof. Over C we have χA(x) =
∏n
i=1(λi − x) = (−1)n

∏n
i=1(x− λi) and

n∏
i=1

(x− λi) = xn −
n∑
i=1

λix
n−1 + · · ·+ (−1)n

n∏
i=1

λi.

Now compare this with Proposition 2.9.

2.2 Diagonalisation

We now apply our theory to show that often given a linear map one can find a basis so that the
matrix takes a particularly simple form.

Theorem 2.11. Let λ1, · · · , λm (m ≤ n) be the distinct eigenvalues of T and v1, · · · , vm be
corresponding eigenvectors. Then v1, · · · , vm are linearly independent.

Proof. Suppose v1, · · · , vm are linearly dependent. Renumbering the vectors if necessary we assume
{v1, · · · , vk} is the smallest subset of linear dependent vectors in {v1, · · · , vm}, where k ≤ m. So
there exists a1, · · · , ak ∈ R with all a1, · · · , ak 6= 0 such that

a1v1 + · · ·+ akvk = 0.

Applying T − λkI to both sides we get

(T − λkI)(a1v1) + · · ·+ (T − λkI)(akvk) = 0.

That is
a1(λ1 − λk)v1 + · · ·+ ak−1(λk−1 − λk)vk−1 + ak(λk − λk)vk = 0.

But λi − λk 6= 0 for i < k and λk − λk = 0. So v1, · · · , vk−1 are linearly dependent, contradicting
the minimality of k.

Definition 2.12. A linear map T : V → V is diagonalisable if V has a basis consisting of
eigenvectors for T . (For then the matrix for T with respect to this basis is a diagonal matrix.) A
matrix A ∈Mn(R) is called diagonalisable if the map it defines by acting on (column) vectors in
Rn is diagonalisable.

Proposition 2.13. A matrix A ∈Mn(R) is diagonalisable if and only if there exists an invertible
matrix P such that B := P−1AP is a diagonal matrix (in which case, the diagonal entries in B are
the eigenvalues, and the columns in P the corresponding eigenvectors).
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Proof. Assume A is diagonalisable and let v1, . . . ,vn be the basis of eigenvectors and λ1, . . . , λn
the eigenvalues (possibly with repetition of eigenvalues). Using the notation in Section 1, define
P = [v1, · · · ,vn] and B the diagonal matrix with entries λ1, · · · , λn. Then P is invertible since its
columns are linearly independent, and the equation

[λ1v1, · · · , λnvn] = [Av1, · · ·Avn]

is the same as PB = AP , that is B = P−1AP .

Conversely, given that B := P−1AP is diagonal, the columns of P must be n linearly eigenvectors
of A and entries of B corresponding eigenvalues (since PB = AP ).

Theorem 2.14. Let V be a vector space of dimension n. Suppose a linear map T : V → V (matrix
A ∈Mn(R), respectively) has n distinct eigenvalues. Then T (A, respectively) is diagonalisable.

Proof. Assume T has n distinct eigenvalues. For each of the n distinct eigenvalues λi there is at
least one eigenvector vi (by definition). By Theorem 2.11 the n eigenvectors v1, · · · , vn are linearly
independent, and thus form a basis for V . (The statement for matrices A follows by viewing A as a
map on Rn.)

The next corollary gives a sufficient (but by no means necessary) condition for a map/matrix to be
diagonalisable.

Corollary 2.15. Suppose χT (x) (χA(x), respectively) has n distinct roots in R. Then T (A,
respectively) is diagonalisable over R.

Replacing the base field R by C in this corollary, and noting that the characteristic polynomial
always has n roots over C counting multiplicity, one sees that when these roots in C are distinct
the map (matrix, respectively) is diagonalisable over C.

We now describe a general method for diagonalising a matrix (when it can be done).

Algorithm 2.16 Let A ∈Mn(R).

(1) Compute χA(x) = det(A− xI) and find its roots λ ∈ R (real eigenvalues).

(2) For each eigenvalue λ, find a basis for Ker(A − λI) using, for example, row-reduction (this
gives you linearly independent eigenvectors for each eigenvalue).

(3) Collect together all these eigenvectors. If you have n of them put them as columns in a matrix
P , and the corresponding eigenvalues as the diagonal entries in a matrix B. Then B = P−1AP
and you have diagonalised A. If you have < n eigenvectors you cannot diagonalise A (over R).
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Note that the collection of eigenvectors found here must be linearly independent: this follows from
an easy extension of the argument in the proof of Theorem 2.11.

Example 2.17 Let V = R2 (column vectors) and T : V → V be given by the matrix

A =

(
0 −2
1 3

)
.

Then det(A− xI2) = (x− 1)(x− 2).

λ = 1:

A− λI2 =

(
−1 −2

1 2

)
∼
(

1 2
0 0

)
.

So Ker(A− I2) = 〈(−2, 1)T 〉.

λ = 2:

A− λI2 =

(
−2 −2

1 1

)
∼
(

1 1
0 0

)
.

So Ker(A− 2I2) = 〈(−1, 1)T 〉. Letting

P :=

(
−2 −1

1 1

)
we find

AP = P

(
1 0
0 2

)
, i.e., P−1AP =

(
1 0
0 2

)
.

Note that P is invertible here because the columns are eigenvectors for distinct eigenvalues and so
are linearly independent.

2.3 Geometric and algebraic multiplicity

As before let T : V → V be a linear transformation.

Definition 2.18. Let λ be an eigenvalue for T . Then

Eλ := Ker(T − λI) = {v ∈ V : Tv = λv}

is called the eigenspace for λ. (This is just the set of all eigenvectors of T with eigenvalue λ,
along with the zero vector.)

Note that Eλ is a subspace of V since it is the kernel of the map T − λI.

Definition 2.19. Let λ be an eigenvalue of T . The dimension of Eλ is called the geometric
multiplicity of λ. The multiplicity of λ as a root of the characteristic polynomial χT (x) is called
the algebraic multiplicity of λ.
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Let’s denote these multiplicities gλ and aλ respectively. So χT (x) = (x− λ)aλf(x) where f(λ) 6= 0.

Proposition 2.20. Let λ be an eigenvalue of T . The geometric multiplicity of λ is less than or
equal to the algebraic multiplicity of λ.

Proof. Extend a basis for Eλ to one for V . Then the matrix for T with respect to this basis for V
looks like (

λIgλ ?
0 ?

)
Hence the matrix for T − xI looks like(

(λ− x)Igλ ?
0 •

)
and so det(T−xI) = (λ−x)gλh(x) for some h(x) := det(•) ∈ R[x]. We must then have gλ ≤ aλ.

By this proposition one sees that in Algorithm 2.16 if at any stage during Step (2) one finds < aλ
linearly independent eigenvectors for an eigenvalue λ then the matrix cannot be diagonalisable (for
one cannot get a “surplus” of eigenvectors from the other eigenvalues).

The next proposition used to be mentioned in the course synopsis: it is really just a different way
of saying something we have stated in a more intuitive way already. (Worth thinking about, but no
longer examinable.)

Proposition 2.21. Let λ1, · · · , λr (r ≤ n) be the distinct eigenvalues of T . Then the eigenspaces
Eλ1 , · · · , Eλr form a direct sum Eλ1 ⊕ · · · ⊕ Eλr .

The point here is to show that each v ∈ Eλ1
+ · · ·+Eλr can be written uniquely as v = v1 + · · ·+ vr

for some vi ∈ Eλi . (Or equivalently, if you prefer, that

Eλi ∩
∑
j 6=i

Eλj = {0}

for each 1 ≤ i ≤ r.) This is what it means for a finite collection of subspaces of V to form a direct
sum. But this is an immediate corollary of Theorem 2.11, since eigenvectors arising from distinct
eigenvalues are linearly independent (check this yourself, or come to the lecture).

3 Spectral theorem

We prove the spectral theorem for real symmetric matrices and give an application to finding nice
equations for quadrics in R3.
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3.1 Spectral theorem for real symmetric matrices

3.1.1 The Gram-Schmidt procedure

Recall from Linear Algebra I (Section 8.2) the notion of an inner product 〈·, ·〉 on a finite dimensional
real vector space V . Recall that we say two vectors u, v ∈ V are orthogonal if 〈u, v〉 = 0, and we
call a basis v1, · · · , vn ∈ V orthonormal if 〈vi, vj〉 = 0 (1 ≤ i 6= j ≤ n) and ||vi|| :=

√
〈vi, vi〉 =

1 (1 ≤ i ≤ n) (that is, 〈vi, vj〉 = δij).

The Gram-Schmidt procedure takes a basis {v1, . . . , vn} of an n-dimensional real inner product
vector space V and outputs an orthonormal basis {w1, . . . , wn} of V , with the additional property

Span(v1, . . . , vj) = Span(w1, . . . , wj)

for all j ≤ n. In particular, this shows that every finite dimensional inner product space has an
orthonormal basis (something mentioned in Linear Algebra I).

Let’s looks at how this algorithm works for Rn with the dot product (the discussion is completely
analogous for a general inner product space).

Given {u1, · · · , un} a basis for Rn we construct an orthonormal basis {v1, · · · , vn} for Rn with the
property that Sp({u1, · · · , uk}) = Sp({v1, · · · , vk}) for k = 1, 2, · · · , n as follows.

v1 := u1

||u1||
w2 := u2 − (u2 · v1)v1, v2 := w2

||w2||
...

...
...

...
...

...

wn := un −
∑n−1
j=1 (un · vj)vj , vn := wn

||wn|| .

One proves that {v1, · · · , vn} has the required properties (and in particular each wk 6= 0) by
induction on k for 1 ≤ k ≤ n.

In detail, by induction on k we may assume vi ·vj = δij for 1 ≤ i, j ≤ k−1 and so for each 1 ≤ i < k
we have

wk · vi =

uk − k−1∑
j=1

(uk · vj)

 · vi = (uk · vi)− (uk · vi)(vi · vi) = 0.

Also wk 6= 0 since otherwise uk ∈ Sp({v1, · · · , vk−1}) = Sp({ui, · · · , uk−1}) which would be a
contradiction. So vk := wk/||wk|| is indeed a unit vector orthogonal to v1, · · · , vk−1. Next we see

Sp({v1, · · · , vk−1, vk}) = Sp({u1, · · · , uk−1, vk}) = Sp({u1, · · · , uk−1, wk}) = Sp({u1, · · · , uk−1, uk}).

The first equality here is by induction, and the last a direct application of the Steinitz Exchange
Lemma from Linear Algebra I (Theorem 128).

The algorithm is best explained by pictures in R2 and R3 (come to the lectures for this or draw
these yourself).
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Observe that given a vector v1 ∈ Rn with ||v1|| = 1 we can “extend” this to an orthonormal basis
for Rn using the Gram-Schmidt procedure. That is, extend {v1} to a basis arbitrarily and apply
Gram-Schmidt.

3.1.2 The spectral theorem

Let A ∈ Mn(R) be a symmetric matrix, that is AT = A. Now A may be thought of as a linear
transformation on Cn and so in particular has (counting multiplicities) n eigenvalues in C (since
it’s characteristic polynomial χA(t) has counting multiplicity n roots in C). In fact we have that:

Proposition 3.1. The eigenvalues of A all lie in R.

Proof. Let λ ∈ C be an eigenvalue of A with eigenvector v ∈ Cn. So Av = λv with v 6= 0. Now

(Av)T v = vTAT v
AT=A

= vTAv
Av=Av=λv

= λvT v

(Av)T v
Av=λv

= λvT v.

Writing vT = (v1, · · · , vn) we see

vT v = v1v1 + · · ·+ vnvn = |v1|2 + · · ·+ |vn|2 > 0

since v 6= 0. Thus we can cancel vT v and one gets λ = λ, that is λ ∈ R.

By a similar argument one can show that eigenvectors corresponding to distinct eigenvalues of a
real symmetric matrix are orthogonal (Sheet 4). We’ll prove instead though the following “strong”
diagonalisability result for a real symmetric matrix A.

Proposition 3.2. Let A ∈ Mn(R) be symmetric. Then the space Rn has an orthonormal basis
consisting of eigenvectors of A. That is, there exists an orthogonal real matrix R (so RT = R−1)
such that R−1AR is diagonal with real entries.

Proof. Let λ1 ∈ R be an eigenvalue (Proposition 3.1). Choose an eigenvector v1 ∈ Rn for λ1 and
normalise it so that ||v1|| = 1. Extend to a basis v1, u2, · · · , un in an arbitrary manner, and then
apply the Gram-Schmidt procedure to obtain an orthonormal basis v1, v2, · · · , vn. Then writing
P = [v1, · · · , vn] define B := P−1AP . Since the columns of P are orthonormal vectors we see that
PTP = In, that is, P−1 = PT . Hence B = PTAP is a symmetric matrix and so must have the
form

B =

(
λ1 0
0 C

)
for some C ∈Mn−1(R) which is symmetric. (The zeros down the first column come from v1 being
an eigenvector, and along the first row from the symmetry of B.) The result now follows by
induction on the dimension n.
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In detail, by induction there exists an orthonormal basis of eigenvectors for C; that is, an invertible
matrix Q such that D := Q−1CQ is diagonal with real entries and Q−1 = QT . Define

R := P ×
(

1 0
0 Q

)
Then

R−1 =

(
1 0
0 Q−1

)
× P−1 =

(
1 0
0 QT

)
× PT = RT

and

R−1AR = RTAR =

(
λ1 0
0 D

)
is diagonal.

Equivalently we can state this proposition as the . . .

Theorem 3.3 (Spectral theorem for real symmetric matrices). A real symmetric matrix A ∈Mn(R)
has real eigenvalues and there exists an orthonormal basis for Rn consisting of eigenvectors for A.

Note that symmetric matrices are characterised by having the property

(Au) · v = u ·Av (i.e. uTAT v = uTAv) for all u, v ∈ Rn.

To see why consider a matrix with this property and let u, v ∈ Rn run over the standard basis —
this shows the matrix must be symmetric (and the reverse implication is immediate).

Now let V be a real vector space with inner product 〈−,−〉. We call a linear map T : V → V
self-adjoint (or symmetric) if

〈Tu, v〉 = 〈u, Tv〉 for all u, v ∈ Rn.

Then similar to above we have the . . .

Theorem 3.4 (Spectral theorem for self-adjoint operators on a real inner product space). A
self-adjoint map T on a finite dimensional real inner product space V has real eigenvalues and there
exists an orthonormal basis for V consisting of eigenvectors of T .

Inner products on finite dimensional real vector spaces are just a “basis free” way of discussing the
dot product. So one can deduce this theorem immediately from Theorem 3.3 by just choosing an
orthonormal basis for V to get a real symmetric matrix A for T . (By Gram-Schmidt every finite
dimensional real inner product space has an orthonormal basis. It is easy to check that the matrix
for a self-adjoint operator with respect to an orthonormal basis is symmetric.) Theorem 3.4 can
also be proved in a “basis free” manner (see Part A Linear Algebra).

Example 3.5
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(1) Of course not all real matrices have real eigenvalues, for example(
0 −1
1 0

)
has eigenvalues ±

√
−1.

(2) Let

A =

(
1 µ
µ 1

)
with µ 6= 0. Then χA(x) = (x− (µ+ 1))(x− (−µ+ 1)) and we find real eigenvalues µ+ 1 and
−µ+ 1 with corresponding eigenvectors

1√
2

(
1
1

)
,

1√
2

(
−1
1

)
.

These are orthogonal, as predicted by the spectral theorem.

(3) Let

A =

 1 0 2
1 1 0
0 1 −2

 .

Show without doing any numerical computations that the eigenvalues of ATA are real and
non-negative.

Now ATA is a real symmetric matrix, so by the spectral theorem we can find an orthonormal
basis of eigenvectors v1, v2, v3 for ATA with corresponding real eigenvalues λ1, λ2, λ3 ∈ R. Note
that since ATAvi = λivi we find that

λi(vi · vi) = (λivi) · vi = (ATAvi) · vi = (ATAvi)
T vi = vTi A

TAvi = (Avi) · (Avi) ≥ 0.

Since vi · vi > 0 we can cancel this to deduce λi ≥ 0. (So indeed for any A ∈ Mn(R) the
eigenvalues of ATA are real and non-negative.)

Here in fact

ATA =

 2 1 2
1 2 −2
2 −2 8

 .

has eigenvalues 0, 3, 9. (See Sheet 4 Question 5 for an application of all this.)
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3.2 Quadrics

We finish off with a geometric application of the spectral theorem for real symmetric matrices.

3.2.1 Quadratic forms

First an example.

Example 3.6 We apply our theory to “simplify” the quadratic form

Q(x, y) = x2 + 4xy + y2.

First rewrite this as

Q(x1, x2) = (x1 x2)

(
1 2
2 1

)(
x1
x2

)
= 1 · x21 + 2x1x2 + 2x1x2 + 1 · x22.

Writing

S =

(
1 2
2 1

)
we diagonalise this using an orthogonal change of basis

P−1SP =

(
3 0
0 −1

)
, P :=

1√
2

(
1 −1
1 1

)
= Rotation by π

4 .

So

Q(x1, x2) = (x1 x2)P

(
3 0
0 −1

)
PT
(
x1
x2

)
So defining

(y1 y2) := (x1 x2)P, i.e., y1 =
1√
2

(x1 + x2), y2 =
1√
2

(x2 − x1)

we have

Q(y1, y2) = (y1 y2)

(
3 0
0 −1

)(
y1
y2

)
= 3y21 − y22 .

So by an orthogonal change of variable (in this case a rotation) we have a simpler equation.

The above method works for general quadratic forms.

Definition 3.7. A quadratic form in n variables x1, · · · , xn over R is a homogeneous degree 2
polynomial

Q(x1, · · · , xn) =

n∑
i,j=1

aijxixj = (x1 · · · xn)A

 x1
...
xn

 , A = (aij)

with real coefficients. We can and do assume A is symmetric (by adjusting aij and aji to be equal).

21



By the above method and Theorem 3.3 we can find an orthogonal change of variable

(y1 · · · yn) = (x1 · · · xn)P, PT = P−1

so that
Q(y1, · · · , yn) = λ1y

2
1 + · · ·+ λny

2
n

where λ1, · · · , λn ∈ R are the (all real) eigenvalues of the symmetric matrix A.

3.2.2 Classification of quadrics

The natural generalisation to R3 of a conic (solutions in R2 of an equation of the form ax2 + bxy +
cy2 + dx+ ey + f = 0 with a, b, c not all zero) is a quadric.

Definition 3.8. A quadric is the set of points in R3 satisfying a degree 2 equation

f(x1, x2, x3) =

3∑
i,j=1

aijxixj +

3∑
i=1

bixi + c = 0

with A = (aij) ∈M3(R) symmetric and non-zero, and b1, b2, b3, c ∈ R.

The techniques in this section apply to both conics and quadrics, but we focus on the latter.

Using the method in Section 3.2.1 by an orthogonal change of basis we can simplify our quadric to
have the form

f(y1, y2, y3) = λ1y
2
1 + λ2y

2
2 + λ3y

2
3 +

∑
i

Biyi + c = 0

where λi ∈ R. That is, apply this method to the leading form
∑3
i,j=1 aijxixj of the polynomial,

and then make the required substitutions to the linear term.

Next assuming that A has rank 3 (so λi 6= 0 for i = 1, 2, 3) we can “complete the square” by
substituting

Yi = yi +
Bi
2λi

to get an equation
f(Y1, Y2, Y3) = λ1Y

2
1 + λ2Y

2
2 + λ3Y

2
3 + C = 0. (4)

(So here we have excluded the cases when the rank of A is < 3.) So when det(A) 6= 0 by an
orthogonal change of variable followed by a translation one can put our quadric in this simple
form. Recall from Geometry 1 that both orthogonal transformations and translations are isometric
(distance preserving). Indeed, any isometry in Rn is an orthogonal map followed by a translation
(Geometry 1, Theorem 83) and any orthogonal map in R3 is either a rotation or a reflection, or a
rotation followed by a reflection (from3 Geometry 1, Theorem 77). (Indeed we can assume here

3Let P be an orthogonal matrix. If det(P ) = 1 then by Theorem 77 the map P is a rotation. So assume det(P ) 6= 1,
that is det(P ) = −1. When Tr(P ) = 1 then by Theorem 77 the map P is a reflection. Otherwise, let Q be the
(orthogonal) diagonal matrix with entries −1, 1, 1, the reflection in the (y, z)-plane. Then det(QP ) = (−1) · (−1) = 1
and so by Theorem 77 the orthogonal matrix QP is a rotation. Hence P = Q−1 · (QP ) is a rotation followed by
reflection in the (y, z)-plane.
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that our orthogonal map is a rotation by changing the sign of one of the eigenvectors of A (columns
of P ) if necessary so that det(P ) = 1, rather than −1.)

One now classifies these quadrics according to the signs of the eigenvalues, and whether or not the
constant C equals 0. That is, up to an isometric change of variable any quadric with det(A) 6= 0
can be given by an equation of a particular form. Noting also that one can scale the equation (4),
one finds when det(A) 6= 0 that the cases are

Ellipsoid : µ1Y
2
1 + µ2Y

2
2 + µ3Y

2
3 = 1

∅ µ1Y
2
1 + µ2Y

2
2 + µ3Y

2
3 = −1

{0} µ1Y
2
1 + µ2Y

2
2 + µ3Y

2
3 = 0

1-sheet Hyperboloid : µ1Y
2
1 + µ2Y

2
2 − µ3Y

2
3 = 1

2-sheet Hyperboloid : µ1Y
2
1 + µ2Y

2
2 − µ3Y

2
3 = −1

Cone µ1Y
2
1 + µ2Y

2
2 − µ3Y

2
3 = 0.

Here after possibly reordering the indices, µi :=
∣∣λi
C

∣∣ > 0 when C 6= 0 and µi = |λi| > 0 when
C = 0. Look at the nice pictures of these quadrics at http://en.wikipedia.org/wiki/Quadric (or
comes to the lectures).

One can similarly handle the cases det(A) < 3, but it gets a little complicated (see below).

Example 3.9 We find the point(s) on the quadric

2(x21 + x22 + x23 + x2x3 + x3x1 + x1x2) = 1

which is (are) nearest to the origin.

The associated symmetric matrix

A =

 2 1 1
1 2 1
1 1 2

 = I3 +B

has eigenvalues 1, 1, 4 (one can just add 1 to the eigenvalues 0, 0, 3 of B). We can take as
corresponding eigenvectors the vectors

u1 =

 1
0
−1

 , u2 =

 0
1
−1

 , u3 =

 1
1
1

 .

By the sentence following Proposition 3.1 we are guaranteed that u3 · u1 = u3 · u1 = 0. However
u1 · u2 6= 0. Applying Gram-Schmidt to {u1, u2} we find a better basis for the 1-eigenspace

v1 =
1√
2

 1
0
−1

 , v2 =

√
2

3

 − 1
2

1
− 1

2

 .

Letting

P := [v1, v2,
1√
3
u3]

23



we find PT = P−1 and

P−1AP =

 1 0 0
0 1 0
0 0 4

 .

Setting (y1 y2 y3) = (x1 x2 x3)P since this change of variable is distance preserving and fixes the
origin, we must find the closest point to the origin of

y21 + y22 + 4y23 = 1.

This is an ellipsoid (sphere flattened along the y3-axis) and the closest points are (0, 0,± 1
2 ). Hence

the closest points for our original ellipsoid are

(x1, x2, x3) =

(
0, 0,±1

2

)
P−1, i.e. , (x1, x2, x3) =

(
0, 0,±1

2

)
PT

that is ± 1
2
√
3
(1, 1, 1). Note that to find these points we did not really need to compute the orthogonal

matrix P , only its final column — but we wished to illustrate how this can be done when A does
not have distinct eigenvalues.

That’s all you really need to know. To fill any time at the end we could look at some cases when
det(A) = 0:

(1) Two eigenvalues are non-zero with same sign, say λ1 > 0, λ2 > 0 and λ3 = 0. Then we remove
linear terms in y1 and y2. If the coefficient of y3 is non-zero then scaling by a positive constant
and making a linear substitution Y3 = ±y3 + (const) we get the form

µ1Y
2
1 + µ2Y

2
2 − Y3 = 0, where µ1, µ2, µ3 > 0.

This is an “elliptic paraboloid”. If the coefficient of y3 is zero then we cannot do anything
much about the constant term except scale it by a positive constant, so get

µ1Y
2
1 + µ2Y

2
2 = 1, or µ1Y

2
1 + µ2Y

2
2 = −1, or µ1Y

2
1 + µ2Y

2
2 = 0

with µ1, µ2, µ3 > 0. These are the “elliptic cylinder”, ∅ and {0}.

(2) Two eigenvalues are non-zero but with different sign, say λ1 > 0, λ2 < 0 and λ3 = 0. According
to the coefficient of y3 we similarly get the cases

Hyperbolic paraboloid µ1Y
2
1 − µ2Y

2
2 − Y3 = 0

Hyperbolic cylinder µ1Y
2
1 − µ2Y

2
2 = 1

Unnamed
√
µ1Y1 = ±√µ2Y2

with µ1, µ2 > 0. Note that switching Y1 and Y2 allows one to treat the ±1 constant terms
together.
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