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For some mathematical problems, we can just write down the solution:

For a0, a1 ∈ R, a1 ̸= 0, find x ∈ R such that a1x+ a0 = 0.

This has solution x = −a0/a1.

For most problems, we can’t just write down the solution:

For a0, . . . , a5 ∈ R, find x ∈ C such that a5x5 + a4x
4 + · · ·+ a0 = 0.

Theorem (Abel, 1824)
There are polynomials of degree 5 and higher that
cannot be solved by radicals (addition, subtraction,
multiplication, division, and nth root extraction).

Niels Henrik Abel, 1802–1829
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So what do we do in this situation? We still care about the roots of
polynomials!

Response A: prove things about the solutions.
We could prove that if x is a root of a polynomial with real coefficients, so
is x̄. Or we could study Vieta’s formulae, that (for example) the product
of the roots of an n-th degree polynomial is (−1)na0/an.

Response B: devise algorithms for computing the solutions.
Develop a computational procedure that approximates to arbitrary
accuracy the roots of our polynomial: construct a sequence that converges
to the roots.
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The central topic of constructive mathematics is algorithms.

Definition (Algorithm, informal)
An algorithm is a finite set of instructions for solving a
mathematical problem. To each input, it associates a
sequence of elementary computational steps to
calculate some desired output.

The formalisation of this definition is studied in
computer science, e.g. with Turing machines.

Muḥammad ibn Mūsā
al-Khwārizmī, c. 780–850
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Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the
existence of some object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will
prove that under certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

P. E. Farrell (Oxford) What is constructive mathematics? 5 / 7



Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the
existence of some object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will
prove that under certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

P. E. Farrell (Oxford) What is constructive mathematics? 5 / 7



Algorithms are of core interest to both pure and applied mathematics.

In pure mathematics, we use algorithms to (among other things) prove the
existence of some object. We will see examples in the course.

You will see another example in Part A Differential Equations: you will
prove that under certain conditions a unique solution exists to the problem

find y(t) such that dy

dt
= f(y, t), y(0) = y0,

by constructing a sequence of approximations yn that converges yn → y.

P. E. Farrell (Oxford) What is constructive mathematics? 5 / 7



In applied mathematics, algorithms are used to solve problems arising in
science and engineering.

climate energy aerodynamics

physiology covid galaxies
P. E. Farrell (Oxford) What is constructive mathematics? 6 / 7



Questions we ask:

Does our algorithm terminate?

Theorem (Halting problem, 1936)
No algorithm exists that always correctly decides if
another algorithm terminates on a given input.

Alan Turing, 1912–1954
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Questions we ask:

Does our algorithm give the correct answer, and if so, when?

In later lectures we will see Newton’s method for finding
a solution x of a general rootfinding problem f(x) = 0.

This converges if we start the iteration close to x, but
diverges if we start far away.

Isaac Newton, 1643–1727
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Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how
many terms do we require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

P. E. Farrell (Oxford) What is constructive mathematics? 7 / 7



Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how
many terms do we require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

P. E. Farrell (Oxford) What is constructive mathematics? 7 / 7



Questions we ask:

How fast does the algorithm converge to the right answer?

Consider two formulae for π:

π = 4

∞∑
k=0

(−1)k

2k + 1
, π−1 =

2
√
2

992

∞∑
k=0

(4k)!

k!4
26390k + 1103

3964k
.

If we approximate the series by its partial sums, how
many terms do we require for accuracy to ten digits?

About 5 billion, vs 2!

Gottfried Leibniz,
1646–1716

Srinivasa Ramanujan,
1887–1920

P. E. Farrell (Oxford) What is constructive mathematics? 7 / 7



Questions we ask:

How many operations does the algorithm take?

There are many algorithms for sorting a list of n
numbers.

The number of comparisons required by a naïve
algorithm called bubble sort scales like n2, while the
merge sort of von Neumann in 1945 scales like n log n.
This is much, much faster for large n.

John von Neumann, 1903–1957
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Questions we ask:

Are the problem and algorithm stable to small perturbations in data?

Consider p(x) = (x− 1)(x− 2) · · · (x− 20). Expanding
in monomials, we have

p(x) = x20 − 210x19 + 20615x18 + · · ·+ 20!.

James H. Wilkinson, 1919–1986
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become (to 5 digits)

1.00000 2.00000 3.00000 4.00000 5.00000

6.00001 6.99970 8.00727 8.91725 20.84691

10.09527± 11.79363± 13.99236± 16.73074± 19.50244±
0.64350i 1.65233i 2.51883i 2.81262i 1.94033i
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Greatest common divisors

Iterated division
We start with the natural numbers

N = {0, 1, 2, 3, . . . },

and consider dividing one natural number t by another b ̸= 0:
t = qb+ r, 0 ≤ r < b.

Either b divides t evenly (r = 0), or we are allowed to divide b by r. If
r ̸= 0 we can iterate: we can see what the division of b by r is.

Take t = 80, b = 7:
80 = 11× 7 + 3 (q = 11, r = 3)

7 = 2× 3 + 1 (q = 2, r = 1)

3 = 3× 1 + 0 (q = 3, r = 0).

The game ends when r = 0.

We’re interested in the last remainder before
hitting 0. This is the greatest common divisor of the two inputs!
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Greatest common divisors

Euclid’s method
Here is the algorithm. It computes the greatest common divisor (also
called highest common factor) of two numbers.

function gcd(t, b)
r ← t mod b
while r ̸= 0 do

t← b
b← r
r ← t mod b

end while
return b

end function

This completely and unambiguously lists the steps for a computer to take.

Note that this algorithm calls another one (the division algorithm).
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Greatest common divisors

Theorem (Elements, book VII, c. 300 BCE)
Given any t, b ∈ N, 0 < b < t, Euclid’s algorithm
computes the greatest common divisor of t and b.

For convenience, let’s label each intermediate value:

t = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

rj = qj+2rj+1 + rj+2

...
Also for convenience, denote

r−2 := t, r−1 := b.

Euclid of Alexandria, c. 300
BCE
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Greatest common divisors

Claim: the algorithm terminates.
Since division yields r < b, the sequence of remainders (r−2, r−1, r0, . . . ) is
a strictly decreasing sequence of natural numbers. The sequence must
therefore eventually reach zero. The algorithm therefore always terminates.

Let i be the index such that ri = 0.
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Greatest common divisors

Claim: ri−1 divides rj, j < i− 1 (common divisor).
Since ri = 0, ri−1 divides ri−2, i.e.

ri−2 = qiri−1.

Plugging this into the previous iteration tells us that ri−1 also divides ri−3:

ri−3 = qi−1ri−2 + ri−1

= (· · · )× ri−1

Proceeding by induction shows that ri−1 divides all remainders in the
sequence. In particular, ri−1 is a common divisor of the original t and b.
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Greatest common divisors

Claim: ri−1 is the greatest common divisor.
Assume d ∈ N also divides t and b, so there exist α, β ∈ N such that

t = αd, b = βd.

Since t = q0b+ r0, we get r0 = (α− q0β)d, so d divides r0.

The next equation is b = q1r0 + r1, but since d divides both b and r0, it
must also divide r1. Proceeding by induction, d must divide all remainders,
including ri−1.

Thus d ≤ ri−1, and ri−1 is the greatest common divisor of t and b.
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Greatest common divisors

When we know an algorithm works, our next question is usually: how fast
is it? How many operations does it take, as a function of the inputs? This
is referred to as its complexity.

In this context, we ask: can we bound the number of divisions required in
computing gcd(t, b) in terms of t and b, t > b > 0?

Since the remainder decreases at each iteration, we know at least that we
will do at most b iterations, i.e. the cost grows linearly in the size of the
inputs.

But it is possible to prove a tighter bound!
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Greatest common divisors

Theorem
Let t > b > 0. The smallest values of t and b for which
Euclid’s algorithm requires N iterations are the
Fibonacci numbers t = FN+2 and b = FN+1.

Theorem (Complexity of Euclid’s algorithm, 1844)
The number of steps taken in Euclid’s algorithm can
never be more than five times the number of decimal
digits of b.

This result shows that the cost grows logarithmically in
the size of the input b.

Gabriel Lamé, 1795–1870
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Section 2

Diophantine equations
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Diophantine equations

A Diophantine equation is an algebraic equation for which solutions are
sought in the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }. They are named
after Diophantus of Alexandria (c. 200–290).

Some Diophantine equations have no solutions, like 4x+ 6y = 3.

Some do, however. For example, 48x− 35y = 1 has a solution
x = −8, y = −11.

Diophantus’ work was collected in his magnum opus,
Arithmetica. In 1637, Pierre de Fermat wrote in the
margin of his copy of Arithmetica,

It is impossible …for any number which is a
power greater than the second to be written as
the sum of two like powers. I have a truly mar-
velous demonstration of this proposition which
this margin is too narrow to contain. Pierre de Fermat, 1607–1665
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Diophantine equations

A linear Diophantine equation (LDE) in two variables is of the form: given
a, b, c ∈ Z, find x, y ∈ Z such that

ax+ by = c.

LDEs with gcd(a, b) = 1 = c are of particular interest. If we can solve

ax+ by = 1

then we have solved the problem: find x ∈ Z such that

ax ≡ 1 (mod b),

the problem of finding modular multiplicative inverses.

In particular, this is a crucial step in RSA key generation: the private key d
satisfies

de ≡ 1 (mod λ(n)),

where n, e are the public key, and λ(n) is easy to compute if you know the
prime factorisation of n and difficult otherwise.
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Diophantine equations

Lemma (Bézout’s Lemma)
If gcd(a, b) = d, then the LDE ax+ by = d always has
an integer solution.

The statement for integers was already known before
Bézout, appearing in the work of Claude Gaspard
Bachet de Méziriac in 1624. Bézout’s contribution was
actually to extend it to polynomials, but his name has
stuck to the general principle.

Many other results in number theory follow from
Bézout’s Lemma, such as Euclid’s Lemma and Sunzi’s
Remainder Theorem.

Étienne Bézout, 1730–1783

Claude Gaspar Bachet de
Méziriac, 1581–1638
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Diophantine equations

Before we prove Bézout’s Lemma, let’s do an example. Let’s take
48x− 35y = 1 that we saw earlier. Applying Euclid’s algorithm, we get

48 = 1× 35 + 13 13 = 48− 1× 35

35 = 2× 13 + 9 9 = 35− 2× 13

13 = 1× 9 + 4 4 = 13− 1× 9

9 = 2× 4 + 1 1 = 9− 2× 4

Climbing up the tower on the right-hand side,
1 = 9 + (−2)× 4

= 9− 2× (13− 1× 9)

= (−2)× 13 + 3× 9

= (−2)× 13 + 3× (35− 2× 13)

= 3× 35 + (−8)× 13

= 3× 35− 8× (48− 1× 35)

= −8× 48 + 11× 35

which is the solution (x, y) = (−8,−11) that we saw earlier.
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Diophantine equations

How do we prove Bézout’s Lemma? We run Euclid’s method.

Proof.
Since gcd(a, b) = d, we know that iterated divisions of the form

a = q0b+ r0

b = q1r0 + r1

r0 = q2r1 + r2
...

will eventually reach ri−3 = qi−1ri−2 + d.
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Diophantine equations

Proof.
Let’s rewrite this as

d = ri−3 − qi−1ri−2.

We know that ri−4 = qi−2ri−3 + ri−2, so using this to eliminate ri−2 we
have

d = −qi−1ri−4 + (1− qi−1qi−2)ri−3.

Proceeding by induction, we can write d as a combination of ri−5 and
ri−4, then ri−6 and ri−5, and so on until we write

d = xa+ yb.

This uses an algorithm to prove an existence result.
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Diophantine equations

We saw in our previous calculations that 48x− 35y = 1 had a solution
(x, y) = (−8,−11). However, there are other solutions, such as
(x, y) = (−43,−59). How do we find them all? What is the general
solution?

Suppose we have a particular solution (xp, yp) satisfying axp + byp = 1. If
we had (x̃, ỹ) such that ax̃+ bỹ = 0, then

a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.

What are the solutions to the homogeneous equation ax̃+ bỹ = 0?
Exactly (x̃, ỹ) = n(−b, a) for n ∈ Z!

The general solution to ax+ by = c is thus

{c(xp, yp) + n(−b, a) : n ∈ Z} .
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a(xp + x̃) + b(yp + ỹ) = axp + byp = 1

also. Similarly, if a(xp + x̃) + b(yp + ỹ) = 1, then ax̃+ bỹ = 0.
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Diophantine equations

Here is the whole algorithm for solving an LDE ax+ by = c.
Step 1 Calculate d = gcd(a, b). If d does not divide c, stop; there

are no solutions.

Step 2 Divide both sides of the equation by d to get âx+ b̂y = ĉ.
Step 3 Compute a particular solution (xp, yp) of âx+ b̂y = 1.
Step 4 Set the general solution to be{

ĉ(xp, yp) + n(−b̂, â) : n ∈ Z
}
.
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Diophantine equations

Let’s see an example. Consider 192x− 140y = 12.

Step 1 d = gcd(192, 140) = 4.
Step 2 Dividing both sides by d, we get 48x− 35y = 3.
Step 3 Solving 48xp − 35yp = 1, we get (xp, yp) = (−8,−11).
Step 4 The general solution is thus

{3(−8,−11) + n(35, 48) : n ∈ Z}
= {(−24,−33) + n(35, 48) : n ∈ Z} .
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The extended Euclidean algorithm

Section 3

The extended Euclidean algorithm
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The extended Euclidean algorithm

We saw that the quotients computed during Euclid’s algorithm tell us how
to solve

ax+ by = gcd(a, b).

The idea of climbing up the tower of equations backwards is intuitively
useful, but it’s not so amenable to computer implementation.

There’s a very clever modification of Euclid’s algorithm that computes a
particular solution to the LDE in one pass: the extended Euclidean
algorithm.

This appears to have first been explained by Āryabhaṭa (476–550).
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The extended Euclidean algorithm

Recall that Euclid’s algorithm constructs a sequence

r−2, r−1, r0, r1, . . . , ri−1,

where ri−1 = gcd(a, b) and again we denote r−2 = a, r−1 = b.

We introduce two new sequences

x−2, x−1, x0, x1, . . . , xi−1,

y−2, y−1, y0, y1, . . . , yi−1,

and we will enforce the property that

axj + byj = rj , j = −2, . . . , i− 1.

If we can enforce this, then we will have

axi−1 + byi−1 = ri−1 = gcd(a, b).
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The extended Euclidean algorithm

How do we enforce

axj + byj = rj , j = −2, . . . , i− 1?

Well, to begin, we should set

(x−2, y−2) = (1, 0), (x−1, y−1) = (0, 1)

so that our property is enforced at the start.

Consider some step of Euclid’s method,

rj = qj+2rj+1 + rj+2.

If we know the expansions of rj and rj+1 in terms of our ‘basis’ a and b,
then we can work out the expansion of rj+2 too:

xj+2 = xj − qj+2xj+1,

yj+2 = yj − qj+2yj+1.
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Euclid for polynomials

Section 4

Euclid for polynomials
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Euclid for polynomials

So far we’ve applied Euclid’s method only to integers. It applies to other
types of algebraic objects, too.

A polynomial p in R[x] of degree d ∈ N is an expression of the form

p(x) = a0 + a1x+ a2x
2 + · · ·+ adx

d,

where all the ai lie in the set of real numbers R.

A root of p is a number x ∈ C satisfying p(x) = 0.

Recall: dividing p(x) by q(x) writes

p(x) = c(x)q(x) + r(x)

with quotient c(x) and remainder r(x), with deg(r) < deg(q).
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Euclid for polynomials

The polynomials R[x] form a Euclidean domain.

This is an algebraic structure R that can be equipped with a Euclidean
function

f : R \ {0} → N

which is something that strictly decreases on division: given a, b ∈ R,
there exist q, r ∈ R, such that

a = qb+ r,

and either r = 0 or f(r) < f(b).

For the polynomials, the Euclidean function is

f(r) = deg(r).

We can generalise Euclid’s method, greatest common divisors, Bézout’s
Lemma, and many other results to such domains.
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Euclid for polynomials

We will study algorithms for finding roots of general (i.e. not necessarily
polynomial) functions in the next lectures.

For now, we focus on computing common roots of two polynomials p and
q, of possibly different degrees. The common roots are x ∈ C such that
p(x) = q(x) = 0.

We do this by finding the roots of the greatest common divisor of p and q:
the polynomial of largest degree that divides both p and q.

A number a is a root of p iff (x− a) divides p, which gives the link
between common roots and common divisors.
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Euclid for polynomials

Let’s see an example of applying Euclid’s method. Take

p(x) = x4 + x3 − 6x2 + 5x− 1, q(x) = x3 + x2 + 3x− 5.

We have

x4 + x3 − 6x2 + 5x− 1 = (x)(x3 + x2 + 3x− 5) + (−9x2 + 10x− 1)

x3 + x2 + 3x− 5 =

(
−1

9
x− 19

81

)(
−9x2 + 10x− 1

)
+

424

81
(x− 1)

− 9x2 + 10x− 1 = − 81

424
(9x− 1)

424

81
(x− 1) + 0.

So (x− 1) is the gcd, so x = 1 is their only common root:

p(1) = 0 = q(1)

.
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Euclid for polynomials

We mention some interesting applications of Euclid’s method for
polynomials:

1. A clever way to identify the multiple roots of a polynomial p is to
compute the gcd of p and its derivative p′.

2. The sequence of remainders yielded by Euclid’s
method applied to p and p′ can be used to compute its
Sturm sequence. The number of times the Sturm
sequence changes sign can be used to calculate how
many real roots p has in any given interval (including
(−∞,∞)).

Jacques Charles François
Sturm, 1803–1855
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Euclid for polynomials

Many interesting polynomials are defined via recurrence relations. Euclid’s
method can be used to deduce facts about these without calculating them.

Consider a family of polynomials pk(x) for k ∈ N given by

p0(x) = 1, p1(x) = x,

and
pk(x) = αk(x)× pk−1(x) + βk × pk−2(x),

with degαk = 1 and βk ∈ R \ {0}.

Without specifying αk or βk, we can show that pk and pk+1 have no
common roots for k ≥ 1.
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Euclid for polynomials

Chebyshev polynomials
The main well-conditioned basis for polynomials used in
practical computations:

T0(x) = 1, T1(x) = x,

Tk(x) = 2xTk−1(x)− Tk−2(x).

Pafnuty Chebyshev, 1821–1894

Laguerre polynomials
These describe the radial part of the solution of the
Schrödinger equation for a one-electron atom:

L0(x) = 1, L1(x) = −x+ 1,

Lk(x) =
2k + 1− x

k + 1
Lk−1(x)−

k

k + 1
Lk−2(x).

Edmond Laguerre, 1834–1886
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Euclid for polynomials

Proof.
First note that deg pk = k, by induction.

By the recursive formula, we have

pk+1(x) = αk+1(x)× pk(x) + βk+1 × pk−1(x).

This is exactly the division of pk+1 by pk, since βk+1 × pk−1(x) is of lower
degree than pk. Up to a nonzero scalar (which doesn’t change the roots),
pk−1 is the remainder when pk+1 is divided by pk.

Similarly, pk−2 is the remainder on division of pk by pk−1. Euclid’s
algorithm thus iterates until it terminates with

p2(x) = α2(x)× p1(x) + β2p0(x) = α2(x)× x+ β2 × 1,

so gcd(pk, pk+1) is a nonzero constant (no roots).
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Introduction

In the previous lecture we saw that we could use Euclid’s method to
compute the common roots of two polynomials p and q.

This, however, is very limited. We will want to find roots of general (not
necessarily polynomial) functions f : R→ R.

For this, we turn to rootfinding algorithms. There are many different ones,
differing in efficiency, robustness, and applicability.
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Introduction

Rootfinding problem
Given f : R→ R, find x⋆ ∈ R such that

f(x⋆) = 0.

This problem shows up everywhere. For example, to solve an equation

f1(x) = f2(x),

find a root of f(x) := f1(x)− f2(x).

Another use: if you want to calculate the decimal expansion of a number
(like

√
2), set up a suitable equation, like

x2 − 2 = 0

and apply a rootfinding algorithm.
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Introduction

The algorithms we meet here will have a different flavour than Euclid’s
method.

Think back to some of the questions in Lecture 0:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

Euclid’s method always terminated, always gave the exact answer, and did
so in a very small number of operations.

By contrast, rootfinding algorithms can only give sequences that converge
to the root.

Different algorithms will trade off termination, convergence speed, and
operation count.
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Bisection

Section 2

Bisection
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Bisection

The first rootfinding algorithm we will meet is called the bisection method.
It is based on the following theorem, a corollary of the Intermediate Value
Theorem.

Bolzano’s theorem (1817)
If f : [a, b]→ R is continuous with f(a)f(b) < 0, then
there exists x⋆ ∈ (a, b) with f(x⋆) = 0.

The statement f(a)f(b) < 0 is just a fancy way of
saying f(a) and f(b) have opposite signs.

Bernhard Bolzano, 1781–1848

We evaluate f at c = (a+ b)/2. We then have three possibilities:
1. f(c) = 0, so we are done!
2. f(c) has the same sign as f(a), so there exists a root in (c, b).
3. f(c) has the same sign as f(b), so there exists a root in (a, c).
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Bisection

0 x

f(x)

a0 b0c0

f(c0)

a1 b1c1
f(c1)
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Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).
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end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).

P. E. Farrell (Oxford) Rootfinding and fixed points 8 / 47



Bisection

Let’s state this as an algorithm.

Assume f : [a, b]→ R is continuous, f(a)f(b) < 0, and tol > 0.

function bisect(f , a, b, tol)
while |b− a|/2 > tol do

c← (a+ b)/2
if f(c) = 0 then return c
else if f(c)f(b) < 0 then a = c
else if f(a)f(c) < 0 then b = c
end if

end while
return (a+ b)/2

end function

Note this only uses the sign of the output of f(x).
P. E. Farrell (Oxford) Rootfinding and fixed points 8 / 47



Bisection

There’s not much published information on the history
of bisection. The earliest reference Prof. Hollings could
find to it was in Cauchy’s Cours d’analyse (1821).

Augustin-Louis Cauchy FRS
1789–1857

Lemma
The algorithm always terminates.

Proof.
In the k-th iteration of the while loop, either the function returns or it
shrinks the interval by a factor of 2. For any tol > 0, there exists k ∈ N
such that tol < |b− a|/2k+1, so the algorithm must terminate.
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Bisection

Let’s do an example. Let’s try to solve x = cosx, so f(x) = x− cosx.

Let’s start with [a, b] = [−10, 10]. f(−10) ≈ −9.16, f(10) ≈ 10.83, so
we’re good to go.

c f(c) [a, b]

0 -1 [0, 10]
5 4.71 [0, 5]

2.5 3.30 [0, 2.5]
1.25 0.93 [0, 1.25]
0.625 -0.185 [0.625, 1.25]

The true solution is approximately x ≈ 0.739085, so we’re getting there,
slowly.
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Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.

3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.

3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).

7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.

7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.

7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.

7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Bisection

Comments on bisection
3 When it applies, it is guaranteed to converge.
3 The method is very simple and very robust.
3 Its smoothness requirements are low (only continuity).
7 The interval of interest only reduces by a factor of two each time.
7 It can be hard to find the initial points [a, b] that bracket a root.
7 It is hard (but not impossible) to generalise to higher dimensions.
7 It can never find roots of even multiplicity.

Definition (Multiplicity of a root)
A root x⋆ of a sufficiently differentiable f(x) has multiplicity k if
f (n)(x⋆) = 0 for all n < k, and f (k)(x⋆) 6= 0.

Later we will study other methods with different sets of advantages and
disadvantages.

P. E. Farrell (Oxford) Rootfinding and fixed points 11 / 47



Rate of convergence of a sequence

Section 3

Rate of convergence of a sequence
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Rate of convergence of a sequence

You’ve studied a great deal about whether sequences converge. Now let’s
consider: how fast do they converge?

Definition (Linear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges linearly if there exists
µ ∈ (0, 1) such that

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ.

In other words, asymptotically, moving one step along the sequence
multiplies the error by a fixed µ < 1. The µ is called the rate of
convergence.

For bisection, the sequence of the midpoints of the intervals converges
linearly with µ = 1/2.
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Rate of convergence of a sequence

Can you go faster?

Definition (Superlinear convergence of a sequence)
Suppose (xi)→ x⋆. We say the sequence converges superlinearly if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= 0.

In other words, the sequence converges faster than any linear rate of
convergence.

For example, the sequence

(
1

22n
) = (

1

2
,
1

4
,
1

16
,

1

256
,

1

65535
, . . . )→ 0

has the ratio of successive terms going to zero too.
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Rate of convergence of a sequence

We can further classify superlinear convergence:

Definition (Order of convergence of a sequence)
Suppose (xi)→ x⋆, superlinearly. The sequence converges with order q if

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|q

= M

for some M > 0 (not necessarily M < 1).

We call q = 2 quadratic convergence, q = 3 cubic convergence, etc.

We will see rootfinding methods with orders of convergence q = 2 and
q = 3. To develop these, we must first understand fixed point iterations.
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Fixed point iterations

Section 4

Fixed point iterations
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Fixed point iterations

So far we have considered rootfinding: find x⋆ ∈ R such that f(x⋆) = 0.

It will be very useful to consider finding fixed points: given g : [a, b]→ R,
find x⋆ ∈ [a, b] such that g(x⋆) = x⋆.

We can translate between rootfinding problems and fixed point problems.
For example, if you want to find the fixed points g(x) = x, then you can
find the roots of f(x) := g(x)− x.

Vice versa, if you have a rootfinding problem f(x) = 0, you could search
for fixed points of g(x) := f(x) + x. There are other ways of transforming
between them, of course.

Transforming between the two problems is useful because there are
powerful theorems that apply to finding fixed points. There’s even a whole
course, C4.6 Fixed Point Methods for Nonlinear PDEs, on this subject.
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Fixed point iterations

When can we show fixed points exist?

Theorem (Brouwer’s fixed point theorem)
If g : [a, b]→ [a, b] is continuous, then it has a fixed
point.

Luitzen Brouwer, 1881–1966

Warning (endomorphism)
Note that g must send [a, b] to [a, b], i.e. is an endomorphism. This result
does not hold for general g : [a, b]→ R, such as g(x) = x+ 1.
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Fixed point iterations

Proof.
Since g(x) ∈ [a, b], we have a ≤ g(x) ≤ b for all x ∈ [a, b]. Thus
f(x) := g(x)− x has f(a) ≥ 0 and f(b) ≤ 0.

If either inequality is an equality, we have a fixed point. So assume that
f(a) > 0 and f(b) < 0.

A root x⋆ of f(x) thus exists in (a, b) by Bolzano’s Theorem, with
g(x⋆) = x⋆.
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Fixed point iterations

That’s not all! You can get uniqueness of the fixed point under stronger
conditions.

Theorem
If g : [a, b]→ [a, b] is differentiable with |g′(x)| < 1 for every x ∈ (a, b),
then g has a unique fixed point in (a, b).

Theorem (Mean value theorem, 1823)
If g : [a, b]→ R is differentiable, then there exists some
c ∈ (a, b) such that

g′(c) =
g(b)− g(a)

b− a
.

Augustin-Louis Cauchy FRS
1789–1857
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Fixed point iterations

Proof.
There must be at least one fixed point of g, since it is continuous.

Suppose p and q are two fixed points of g in (a, b), then we have

g(p) = p, g(q) = q.

Assume without loss of generality that p < q. Applying the MVT in
[p, q] ⊂ [a, b], we find that there exists r ∈ (p, q) such that

g′(r) =
g(q)− g(p)

q − p
=

q − p

q − p
= 1.

But |g′(r)| < 1 by assumption, a contradiction.

How do we turn this into an algorithm?

Take x0 ∈ [a, b] and set xi+1 = g(xi)!
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Fixed point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function fixedpoint(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x← g(x)
end while
return g(x)

end function

Our goal is to investigate when this converges.
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Fixed point iterations
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The contraction mapping theorem

Section 5

The contraction mapping theorem
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The contraction mapping theorem

Let’s recall the setting. We have g : [a, b]→ [a, b] with |g′(x)| < 1 for
x ∈ (a, b), and we want to find fixed points x = g(x). We know that g has
a unique fixed point x⋆.

We then proposed the iteration scheme: take any x0 ∈ [a, b], and set

xi+1 = g(xi)

until convergence.

Thus, we are checking x0, g(x0), g(g(x0)), . . . to find the unique fixed
point.

This algorithm doesn’t require derivatives. Can we devise conditions for
convergence that don’t require derivatives? We’ll see this next.
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The contraction mapping theorem

Definition (Contraction)
A function g : [a, b]→ [a, b] is called a contraction if there exists a
constant 0 ≤ γ < 1 such that

|g(x)− g(y)| ≤ γ|x− y|

for all x, y ∈ [a, b].

Example
Any differentiable g : [a, b]→ [a, b] with |g′(x)| ≤ γ < 1 for x ∈ (a, b) is a
contraction. For x, y ∈ [a, b], by the MVT there exists c ∈ (x, y) such that

|g(x)− g(y)| = |g′(c)(x− y)| ≤ γ|x− y|.

Not all contractions are differentiable. For example,
g(x) = |x|/2

is a contraction with γ = 1/2, but is not differentiable.
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The contraction mapping theorem

Contraction mapping theorem (1922)
If g : [a, b]→ [a, b] is a contraction, then it has a unique
fixed point x⋆, and the iteration scheme xi+1 = g(xi)
converges at least linearly to x⋆ for any x0 ∈ [a, b].

Banach proved his theorem on more general complete
metric spaces.

Banach was a Pole who spent his entire academic
career in Lwów (now Lviv).

Stefan Banach, 1892–1945

P. E. Farrell (Oxford) Rootfinding and fixed points 27 / 47



The contraction mapping theorem

Contraction mapping theorem (1922)
If g : [a, b]→ [a, b] is a contraction, then it has a unique
fixed point x⋆, and the iteration scheme xi+1 = g(xi)
converges at least linearly to x⋆ for any x0 ∈ [a, b].

Banach proved his theorem on more general complete
metric spaces.

Banach was a Pole who spent his entire academic
career in Lwów (now Lviv).

Stefan Banach, 1892–1945

P. E. Farrell (Oxford) Rootfinding and fixed points 27 / 47



The contraction mapping theorem

Proof.
We prove the theorem in stages. First, we show g is continuous, and thus
must have a fixed point.

If γ = 0 then g(x) = const which is continuous, so assume γ > 0. Take
arbitrary ε > 0 and choose δ = ε/γ. Then if |x− y| < δ, we have

|x− y| < ε/γ =⇒ γ|x− y| < ε,

and since |g(x)− g(y)| ≤ γ|x− y| by assumption, |g(x)− g(y)| < ε.

We thus know that g must have a fixed point.
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The contraction mapping theorem

Proof.
We now show that the fixed point of g is unique. Suppose p and q are two
fixed points of g. Then g(p) = p and g(q) = q, so

|p− q| = |g(p)− g(q)| ≤ γ|p− q|

and since γ < 1, this can only be satisfied if |p− q| = 0, so p = q.
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The contraction mapping theorem

Proof.
We now show convergence for arbitrary x0 ∈ [a, b]. Recall that
xi = g(xi−1) and consider

|xi − x⋆| = |g(xi−1)− g(x⋆)| ≤ γ|xi−1 − x⋆|

≤ γ2|xi−2 − x⋆|
≤ γi|x0 − x⋆|.

Since γ < 1, γi → 0, while |x0 − x⋆| is fixed. Thus

lim
i→∞
|xi − x⋆| = 0,

i.e. xi → x⋆. Since
|xi − x⋆|
|xi−1 − x⋆|

≤ γ,

the convergence is at least linear with rate γ < 1.
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The contraction mapping theorem

Let’s review the conditions for our theorems.

Existence of fixed point: g : [a, b]→ [a, b] continuous.

Uniqueness of fixed point: g differentiable with |g′(x)| < 1 for all
x ∈ (a, b).

Contraction mapping theorem: g a contraction, i.e. with |g′(x)| ≤ γ < 1
for all x ∈ (a, b) in the differentiable case.

Let’s explore some examples on the edges of these results.
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The contraction mapping theorem

First, let’s consider

g : [0, 1]→ [0, 1], g(x) = x.

This is differentiable but has |g′(x)| = 1. Clearly this has an infinite
number of fixed points.

You can have a unique fixed point of a differentiable function without
being a contraction. An example is

g : [0, π]→ [0, 1] ⊂ [0, π], g : x 7→ sinx.

This has |g′(x)| < 1 for x ∈ (0, π), so has a unique fixed point x⋆ = 0.
But it is not a contraction, since g′(0) = cos (0) = 1; there is no γ < 1
such that |g′(x)| ≤ γ on (0, π). The fixed point iteration converges, but so
slowly as to be absolutely useless.
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Example

Section 6

Example

P. E. Farrell (Oxford) Rootfinding and fixed points 33 / 47



Example

Suppose we wish to find the roots of f(x) = x2 − x− 1 = 0. (Its roots are
the golden ratio ϕ ≈ 1.61834 and its conjugate −ϕ−1 ≈ −0.618034.)

Let’s manipulate f to recast the problem as a fixed point problem. There
are many ways to do this.

Fixed point iteration A
x2 − x− 1 = 0 =⇒ x2 = x+ 1 =⇒ x = (x+ 1)/x =: gA(x)

Fixed point iteration B
x2 − x− 1 = 0 =⇒ x = x2 − 1 =: gB(x)

Fixed point iteration C
x2 − x− 1 = 0 =⇒ x(x− 1) = 1 =⇒ x = 1/(x− 1) =: gC(x)
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Example

Comment
This is how the questions for this subject go, but it isn’t what rootfinding
with fixed point iteration is actually like!

We’ll see generic ways of transforming a rootfinding problem into a fixed
point problem that work for very broad classes of functions.

In other words, the methods actually used don’t rely on specific
manipulation of the function given.
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Example

If we run the fixed point iteration with x0 = 1.1, we get

iteration gA(x) = (x+ 1)/x gB(x) = x2 − 1 gC(x) = 1/(x− 1)

1 1.909091 0.210000 10.00000
2 1.523810 -0.955900 0.111111
3 1.656250 -0.086255 -1.125000
4 1.603774 -0.992560 -0.470588
5 1.623529 -0.014825 -0.680000
6 1.615942 -0.999780 -0.595238
7 1.618834 -0.000439 -0.626866
8 1.617729 -1.000000 -0.614679
9 1.618151 -0.000000 -0.619318
10 1.617989 -1.000000 -0.617544

Can we explain this?
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Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and
|g′(x)| ≤ γ < 1 on (a, b).

Case A: g(x) = (x+ 1)/x

Its derivative is g′(x) = −1/x2. On [a, b] = [1, 2] this is increasing, but
g′(1) = −1. So let’s try [a, b] = [1.1, 2]. We then have
γ = |g′(1.1)| ≈ 0.826 < 1.

We also need to check that g([a, b]) ⊂ [a, b]. g(x) = 1 + 1/x, so the
function is decreasing on [a, b]. Checking, we find g(1.1) = 1.9 and
g(2) = 1.5, so this is satisfied.

Banach’s contraction mapping theorem thus applies.
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Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and
|g′(x)| ≤ γ < 1 on (a, b).

Case B: g(x) = x2 − 1

Its derivative is g′(x) = 2x. We have g′(ϕ) ≈ 3.23 > 1 and
g′(−ϕ−1) ≈ −1.23 < −1. So there can be no interval containing the root
that satisfies the criteria.
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Example

Let’s check if we can find γ and [a, b] such that g([a, b]) ⊂ [a, b] and
|g′(x)| ≤ γ < 1 on (a, b).

Case C: g(x) = 1/(x− 1)

Its derivative is g′(x) = −1/(x− 1)2, with g′(ϕ) ≈ −2.6 < −1, and
g′(−ϕ−1) ≈ −0.38. Taking [a, b] = [−0.8,−0.4], we have g′ is a
decreasing function, and γ = |g′(−0.4)| ≈ 0.51.

On [−0.8,−0.4], g is a decreasing function, so we just need to check the
endpoints. We have g(−0.8) ≈ −0.555 and g(−0.4) ≈ −0.714, so
g([a, b]) ⊂ [a, b].

Banach’s contraction mapping theorem thus applies.
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Termination criteria

Section 7

Termination criteria
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Termination criteria

In the statement of the algorithm we looped until |g(x)− x| ≤ tol. This
does not guarantee anything about the error |x− x⋆|! Can we do better?

In the proof, we saw that |xi − x⋆| ≤ γi|x0 − x⋆|. Since x0, x
⋆ ∈ [a, b], we

can bound this by γi|b− a|.

Thus, to achieve a tolerance tol on the error, we choose i such that
γi ≤ tol/|b− a|.

This reminds us we want a contraction with a small γ: if γ ≈ 1, we will
require many iterations to converge.

This is an a priori error estimate: we can compute it before ever doing any
computations, or choosing x0. What can we do if we know more?
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Termination criteria

From the contraction property, we know that
|xi − xi−1| ≤ γ|xi−1 − xi−2|

for i > 2. Take a fixed J > i. We can expand |xJ − xi| as

|xJ − xi| = |(xJ − xJ−1) + (xJ−1 − xJ−2) + · · ·+ (xi+1 − xi)|
≤ |xJ − xJ−1|+ |xJ−1 − xJ−2|+ · · ·+ |xi+1 − xi|
≤ γJ−1|x1 − x0|+ γJ−2|x1 − x0|+ · · ·+ γi|x1 − x0|
=

(
γJ−1 + γJ−2 + · · · γi

)
|x1 − x0|

= γi
(
γJ−i−1 + γJ−i−2 + · · ·+ γ + 1

)
|x1 − x0|.

In brackets we have the first few terms of the geometric series, which
converges because γ < 1. Taking the limit J →∞, so xJ → x⋆, we have

|xi − x⋆| ≤ γi

1− γ
|x1 − x0|.

This is an a posteriori bound: you have to do some computation to use it.
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Section 8

Another example
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Another example

Example question
Find some [a, b] so that g(x) = e−x has a unique fixed point in [a, b].

We need:
(i) g : [a, b]→ [a, b], and
(ii) |g′(x)| ≤ γ < 1 on [a, b] for some γ.

So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so
|g′(x)| = |e−x|. This is 1 at x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so
g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing
[a, b] = [1/10, 1] works fine. (The actual fixed point is x⋆ ≈ 0.567143.)
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So let’s consider g′(x). Calculating, we find g′(x) = −e−x, so
|g′(x)| = |e−x|. This is 1 at x = 0 and strictly less than 1 for x > 0.

Also note that g(1) = e−1 < 1, and g(x) is decreasing, so
g : [0, 1]→ [0, 1].

We could thus take an interval with a > 0 but close and b = 1. Choosing
[a, b] = [1/10, 1] works fine. (The actual fixed point is x⋆ ≈ 0.567143.)
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Another example

Continuing with the same example, how many iterations are required to
get within 10−3 of the fixed point?

Our γ is e−1/10 ≈ 0.905.

For the a priori bound, solving γi < 0.001/0.9 yields i > 68. (To achieve a
tolerance of 10−6, i > 137 is required.)

Let’s imagine we start with a lucky guess x0 = 0.56. How does the a
posteriori bound look? In this case x1 ≈ 0.57120906, so we have

γi

1− γ
|0.57120906− 0.56| < tol,

which gives i > 47 for tol = 10−3 and i > 116 for tol = 10−6.
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Bonus: accelerating sequence convergence
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Bonus: accelerating sequence convergence

Suppose one has a sequence (xi) that is linearly
converging:

lim
i→∞

|xi+1 − x⋆|
|xi − x⋆|

= µ,

with the property that for large enough i,

xi − x⋆, xi+1 − x⋆, xi+2 − x⋆

all have the same sign.

Aitken’s big idea: use the entries of (xi) to make a new
sequence (x̃i) that (hopefully) converges faster!

Alexander Aitken FRS FRSL,
1895–1967
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Bonus: accelerating sequence convergence

Assume that the asymptotic limits hold at iterations i+ 1, i+ 2, so that

xi+1 − x⋆ ≈ µ(xi − x⋆), xi+2 − x⋆ ≈ µ(xi+1 − x⋆).

Equating the two expressions for µ and doing some algebra yields

x⋆ ≈
(
xixi+2 − x2i+1

)
xi+2 − 2xi+1 + xi

so we hope that the expression on the right gives a good approximation to
the sequence limit.

Aitken thus defines
x̃i =

(
xixi+2 − x2i+1

)
xi+2 − 2xi+1 + xi

to yield a new, (hopefully) faster-converging sequence.
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Bonus: accelerating sequence convergence

Aitken’s acceleration is backed up by a theorem.
Aitken’s theorem (1926)
Suppose (xi) is linearly converging with all entries the same sign. Then

lim
i→∞

x̃i − x⋆

xi − x⋆
= 0.

Consider Leibniz’ formula for π:

π = 4
∞∑
k=0

(−1)k

2k + 1
.

Set xi to be the ith partial sum.

To get π to 10 digits, Leibniz’ formula requires about 5 billion terms;
Aitken’s acceleration (x̃i) of it requires about 1400.

If you apply Aitken acceleration again, to yield (˜̃xi), you can get away with
only 70 terms!
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M4: Constructive Mathematics
Lecture 3: Newton’s method
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Newton’s method

Let’s consider rootfinding again:

find x⋆ ∈ R such that f(x⋆) = 0.

Since there are powerful theorems about fixed point problems, let’s try to
reformulate this as a fixed point problem:

find x⋆ ∈ R such that x⋆ = g(x⋆).

How should we construct g(x) from f(x)? One way we’ve seen is to set

g(x) = f(x) + x

but we have no reason to think this is a contraction.
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Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0 x

f(x)

Start from an initial x0.

P. E. Farrell (Oxford) Newton’s method 3 / 60



Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

t0

x0 x

f(x)

Build a linear model of the function.
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Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0

t1

x1 x

f(x)

Set x1 to be the root of the linear model.
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Newton’s method

Here is a better way to construct g(x).

−3 −2 −1 1 2 3

2

4

6

x0x1

t2

x2 x

f(x)

Repeat.
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Newton’s method

The tangent line joins (xi, f(xi)) and (xi+1, 0), so we can write its slope as

f ′(xi) =
f(xi)− 0

xi − xi+1

and solving for xi+1 yields

xi+1 = xi −
(
f ′(xi)

)−1
f(xi).
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Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

This is a generic way of constructing a fixed point
problem x = g(x) from a rootfinding problem f(x) = 0. Isaac Newton FRS, 1643–1727

The special case of applying Newton’s method for calculating square roots
was known to the ancient Greeks in Alexandria (Heron’s method, 60).

Taking f(x) = x2 − c, we get

xi+1 = xi −
x2i − c

2xi
=

1

2

(
xi +

c

xi

)
.

The extension to computing p-th roots was known to Jamshīd al-Kāshī in
Samarkand around 1427.
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Newton’s method

Isaac Newton (1669, published 1711) derived a complicated version of the
method, only for polynomials. He didn’t make the connection to calculus.

John Wallis (Savilian Chair of Geometry in Oxford)
published the same method before Newton, in 1685. So
we should probably call it the Wallis method!

John Wallis, 1616–1703

Joseph Raphson (1690) simplified the method, but still only applied it to
polynomials.

Thomas Simpson (1740) gave the modern description, using calculus, and
applied it to general functions.
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Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi −

(
f ′(xi)

)−1
f(xi).

Comments:
3 If f(xi) = 0, then xi+1 = xi. So roots of f are fixed points of g.

7 Unlike bisection, we require f to be differentiable.
7 Moreover, we need f ′(xi) 6= 0 at every iterate.
3 If x0 is close to x⋆, Newton’s method usually converges very fast.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method generalises elegantly to higher dimensions.
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Newton’s method

Consider f(x) = x3 − 2x+ 2 with x0 = 0.

−3 −2 −1 1 2 3

−2

2

4

6

x0 x

f(x)
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Newton’s method

Even when it converges, Newton’s method can behave in an unstable
manner.

f(x) = (x− 4)(x− 1)(x+ 3), x0 = 2.352836327.

In [14]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836327, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192796e+01
Iteration 3: x = -7.829406e-01 f(x) = 1.890641e+01
...
Iteration 9: x = -8.476712e-01 f(x) = 1.927820e+01
Iteration 10: x = 2.687229e+00 f(x) = -1.259690e+01
Iteration 11: x = -1.449560e+02 f(x) = -3.086271e+06
Iteration 12: x = -9.643403e+01 f(x) = -9.143167e+05
...
Iteration 19: x = -5.622219e+00 f(x) = -1.670889e+02
Iteration 20: x = -4.050607e+00 f(x) = -4.271814e+01
Iteration 21: x = -3.265703e+00 f(x) = -8.235014e+00
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Newton’s method

Now change from x0 = 2.352836327 to x0 = 2.352836323.

In [15]: newton(lambda x: (x-4)*(x-1)*(x+3),
lambda x: 3*x**2 - 4*x - 11, 2.352836323, 1e-6)

Iteration 0: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 1: x = -7.829394e-01 f(x) = 1.890641e+01
Iteration 2: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 3: x = -7.829393e-01 f(x) = 1.890641e+01
Iteration 4: x = 2.352836e+00 f(x) = -1.192795e+01
Iteration 5: x = -7.829361e-01 f(x) = 1.890639e+01
Iteration 6: x = 2.352822e+00 f(x) = -1.192790e+01
Iteration 7: x = -7.828166e-01 f(x) = 1.890567e+01
Iteration 8: x = 2.352281e+00 f(x) = -1.192584e+01
Iteration 9: x = -7.783146e-01 f(x) = 1.887843e+01
Iteration 10: x = 2.332103e+00 f(x) = -1.184692e+01
Iteration 11: x = -6.205467e-01 f(x) = 1.781690e+01
Iteration 12: x = 1.799380e+00 f(x) = -8.442739e+00
Iteration 13: x = 8.042685e-01 f(x) = 2.379590e+00
Iteration 14: x = 9.981010e-01 f(x) = 2.279200e-02
Iteration 15: x = 9.999997e-01 f(x) = 3.591499e-06
Iteration 16: x = 1.000000e+00 f(x) = 8.926193e-14
Out[15]: 0.9999999999999926
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Newton’s method

Let’s draw the first iterations with x0 = 2.352836327.
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Newton’s method

So why is Newton’s method a good idea? Let’s talk about general fixed
point iterations xi+1 = g(xi) converging to x⋆ for a moment.

For a contraction g with contraction factor γ < 1, we know
|xi+1 − x⋆| ≤ γ|xi − x⋆|,

or in other words that we have linear convergence
|xi+1 − x⋆|
|xi − x⋆|

≤ γ < 1.

But Newton’s method is special: under mild conditions, when xi is close
to x⋆ it will satisfy for some K > 0

|xi+1 − x⋆|
|xi − x⋆|2

≤ K.

Recall that we called this quadratic convergence.

This is much, much faster: roughly speaking, the number of correct digits
will double at each iteration!
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Newton’s method

So how can Newton achieve this quadratic convergence?

Recall the Taylor expansion of g around some point a:

g(xi) = g(a) + (xi − a)g′(a) +
1

2
(xi − a)2g′′(ζi), some ζi ∈ (xi, a).

What happens if we evaluate this around a fixed point x⋆ of g?

g(xi) = g(x⋆) + (xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi), some ζi ∈ (xi, x

⋆).

But g(xi) = xi+1 and g(x⋆) = x⋆, so

|xi+1 − x⋆| = |(xi − x⋆)g′(x⋆) +
1

2
(xi − x⋆)2g′′(ζi)|

≤ |xi − x⋆||g′(x⋆)|+ 1

2
|xi − x⋆|2 max

s∈(xi,x⋆)
|g′′(s)|.

If g has g′(x⋆) = 0, we would have quadratic convergence!
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Newton’s method

Let’s check when Newton’s method does indeed satisfy g′(x⋆) = 0.

Recall that
g(x) = x− f(x)

f ′(x)
,

so (assuming f ∈ C2(R))

g′(x) = 1−
(
[f ′(x)]2 − f(x)f ′′(x)

[f ′(x)]2

)
=

f(x)f ′′(x)

[f ′(x)]2
.

If f(x⋆) = 0 and f ′(x⋆) 6= 0, then g′(x⋆) = 0, and we do get quadratic
convergence!

If f ′(x⋆) = 0, we have a multiple root, and we have to take the limit
x→ x⋆ and use L’Hôpital’s rule to evaluate the fraction.
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Newton’s method

Take-home message
Newton’s method converges quadratically to isolated roots.

If the root is not isolated, then one generally expects linear convergence,
with the exact rate depending on details. For example, on the problem
sheets you will prove that if

f ′(x⋆) = 0, f ′′(x⋆) 6= 0

then one expects linear convergence with rate 1/2.
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Newton’s method

Let’s take an example. Let’s look for the fixed point of x = cosx. We
tried this with bisection and it was slow.

The true answer is x⋆ ≈ 0.739085133215161.

Applying Newton’s method to f(x) := cosx− x from x0 = 0, we get

x1 = 1 |x1 − x⋆| = 2.6× 10−1

x2 = 0.750363867840244 |x2 − x⋆| = 1.1× 10−2

x3 = 0.739112890911362 |x3 − x⋆| = 2.8× 10−5

x4 = 0.739085133385284 |x4 − x⋆| = 1.7× 10−10

x5 = 0.739085133215161 = x6 = · · · .
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Newton’s method

Let’s do an exam question. Consider the question from 2017, Paper IV,
Q7 (b):

The function
p(x) = 27x3 − 27x2 + 4

has a root α = 2/3.

Show that Newton’s method to compute approximations to this
root, with starting guess x0, can be written as the iteration

xk+1 = g(xk),

where you should find g explicitly. Prove or disprove that the
sequence generated will converge to α for any x0 ∈ [1/3, 1].
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Newton’s method

We write

g(x) = x− p(x)

p′(x)

= x− 27x3 − 27x2 + 4

81x2 − 54x

= x− (3x− 2)(9x2 − 3x− 2)

27x(3x− 2)

=
2x

3
+

2

27x
+

1

9
.

To check whether the Newton sequence will converge, we investigate the
conditions of Banach’s contraction mapping theorem.
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Newton’s method

Let’s check the conditions. We compute

g′(x) =
2

3
− 2

27x2
, g′′(x) =

4

27x3
.

We see that g′′(x) > 0 on [1/3, 1] and hence g′(x) is increasing on
[1/3, 1]. Evaluating at the endpoints,

g′(1/3) = 0, g′(1) = 16/27 = γ.

We now check that g is an endomorphism.
Since g′(x) ≥ 0 on [1/3, 1], we know g is also increasing.

Checking at the endpoints,

g(1/3) = 5/9 ∈ [1/3, 1], g(1) = 23/27 ∈ [1/3, 1].

So the conditions of Banach’s contraction mapping theorem are satisfied.
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Newton’s method

There are other fixed-point iterations for rootfinding.

Halley’s method (1694)

xi+1 = g(xi) := xi −
2f(xi)f

′(xi)

2[f ′(xi)]2 − f(xi)f ′′(xi)
.

Edmund Halley FRS,
1656–1742

Halley was Savilian Professor of Geometry here in Oxford, after Wallis.

In a letter in 1712, Taylor wrote
While I was thinking of these things, I fell into a
general method of applying Dr. Halley’s Extrac-
tion of roots to all Problems …And it is com-
prehended in this Theorem ….

The theorem he proved was Taylor’s theorem!
Brook Taylor FRS, 1685–1731
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Bonus: the secant iteration

Section 2

Bonus: the secant iteration
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Bonus: the secant iteration

Halley’s method uses more derivatives to get faster convergence.

In practice, computing derivatives of your function might be very
expensive. (Think of e.g. f(x) as the evaluation of a climate model.)

The secant iteration makes the converse trade: no derivative evaluations,
for (slightly) slower convergence.
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Bonus: the secant iteration

The Newton iteration uses
xi+1 = g(xi) = x−

(
f ′(xi)

)−1
f(xi)

but we don’t want to code f ′(x).

The secant method approximates

f ′(xi) ≈
f(xi)− f(xi−1)

xi − xi−1

with some previous data xi−1.

This requires the user to supply both x0 and x−1.

Newton invented the secant method around the same time, but never
published it.

Both the ancient Egyptians and Babylonians used the secant method
around 1800 BCE to solve equations like

ax+ b = c

since they didn’t know how to move terms from one side to another!
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Bonus: the secant iteration

The secant iteration.

−3 −2 −1 1 2 3
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x0x−1 x

f(x)
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Bonus: the secant iteration

The secant iteration.
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Bonus: the secant iteration

Interestingly, the secant iteration converges with order

ϕ =
1 +
√
5

2
≈ 1.618034

so its convergence is superlinear, but not quite quadratic.

The first proof to be found of this is by Terry Allen Jeeves in 1958, 300
years after Newton invented it!

Comments on the secant method:
7 The method requires more information to start, and depends

sensitively on it.
3 In principle the method can be applied to nondifferentiable functions.
▶ The generalisation to higher dimensions is different—leading to the

quasi-Newton family of methods.
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Bonus: Aitken acceleration of fixed-point iterations

Section 3

Bonus: Aitken acceleration of fixed-point iterations
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Bonus: Aitken acceleration of fixed-point iterations

Suppose our fixed-point iteration

xi+1 = g(xi)

is only converging linearly.

We could apply Aitken acceleration, constructing

x0, x1,x2, x3, x4, . . .

x̃0, x̃1, . . . .

The acceleration only goes one way: we don’t re-use the accelerated values
in the fixed-point iteration itself.
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Bonus: Aitken acceleration of fixed-point iterations

Steffensen’s idea
Do two steps of fixed-point iteration, apply Aitken
acceleration, then re-start the fixed-point iteration from
there.

This interleaves the fixed-point iteration and
acceleration. Johan Frederik Steffensen,

1873–1961

P. E. Farrell (Oxford) Newton’s method 28 / 60



Bonus: Aitken acceleration of fixed-point iterations

Assume g : [a, b]→ [a, b], and x0 ∈ [a, b].

function steffensen(g, x0, tol)
x← x0
while |g(x)− x| > tol do

x0 ← x
x1 ← g(x0)
x2 ← g(x1)
x←

(
x0x2 − x21

)
/(x2 − 2x1 + x0)

end while
return g(x)

end function

If you organise the code properly, this requires two evaluations of g per
iteration.

Does this really help?
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Bonus: Aitken acceleration of fixed-point iterations

Yes, it does, under certain conditions:

Steffensen’s theorem (1933)
Suppose that g(x) has a fixed point x⋆ with g′(x⋆) 6= 1. If there exists
δ > 0 such that g ∈ C3([x⋆ − δ, x⋆ + δ],R), then Steffensen’s method
gives quadratic convergence for any x0 ∈ [x⋆ − δ, x⋆ + δ].

This can achieve quadratic convergence, without derivatives!
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Bonus: Aitken acceleration of fixed-point iterations

Let’s see two examples.

We previously considered the fixed-point iteration

g(x) =
x+ 1

x

for calculating the golden ratio ϕ.

Fixed-point iteration requires 37 evaluations of g to get ϕ to 16 digits.
Steffensen’s method requires only 8!
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Bonus: Aitken acceleration of fixed-point iterations

Let’s apply Newton’s method to

f(x) = (x− 1)2.

This gives
g(x) = x− (x− 1)2

2x− 2
.

Since f ′(1) = 0, g′(1) 6= 0, and we only achieve linear convergence:

In [17]: newton(lambda x: (x-1)**2, lambda x: 2*x - 2, 0, 1e-4)
Iteration 0: x = 0.000000e+00 f(x) = 1.000000e+00
Iteration 1: x = 5.000000e-01 f(x) = 2.500000e-01
Iteration 2: x = 7.500000e-01 f(x) = 6.250000e-02
Iteration 3: x = 8.750000e-01 f(x) = 1.562500e-02
Iteration 4: x = 9.375000e-01 f(x) = 3.906250e-03
Iteration 5: x = 9.687500e-01 f(x) = 9.765625e-04
Iteration 6: x = 9.843750e-01 f(x) = 2.441406e-04
Iteration 7: x = 9.921875e-01 f(x) = 6.103516e-05
Out[17]: 0.9921875
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Bonus: Aitken acceleration of fixed-point iterations

Converging linearly, you say?
In [19]: steffensen(lambda x: x - (x-1)**2/(2*x-2), 2, 1e-12, exact=1)
Iterations 0: fixed point = 2.000000000000000e+00 error = 1.000000000000000e+00
Iterations 2: fixed point = 1.000000000000000e+00 error = 0.000000000000000e+00

Steffensen’s method gets the answer exact to 16 digits in 2 iterations.
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Rootfinding for polynomials

Section 4

Rootfinding for polynomials
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Rootfinding for polynomials

We have seen general rootfinding methods that apply to many different
kinds of functions.

Philosophical remark
When designing algorithms, we should always ask: have we used every

piece of knowledge we have about the problem?

For example, if we restrict ourselves to rootfinding for polynomials, can we
make our algorithms better? The answer is yes.
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Horner’s method

Section 5

Horner’s method

P. E. Farrell (Oxford) Newton’s method 36 / 60



Horner’s method

In the literature, Horner’s method refers to two different things:
1. an efficient evaluation strategy for polynomials in the monomial basis;

2. an iteration scheme for finding the roots of polynomials that
combines Newton’s method with the evaluation scheme.

The evaluation scheme was known in medieval times to Qín Jiǔsháo
(c. 1202–1261) and Sharaf al-Dīn al-Ṭūsī (c. 1135-1213), and later to
Newton and Lagrange.

It’s not clear that Horner, a schoolmaster in Bath, even
invented the latter method that now bears his name.
He was beaten to it by Paolo Ruffini in 1804 and
Theophilus Holdred, a London watchmaker, in 1820.
The method was published again by Horner in 1830.

Paolo Ruffini, 1765–1822
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Horner’s method

Let’s consider Horner’s two methods in order. Suppose we have a
polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

with n large, e.g. n = 10, 000. How should we evaluate p(r) for r ∈ R?

One way would be to evaluate all the terms in the sum separately, and add
them up. This would require n additions and

0 + 1 + 2 + · · ·+ n =
n2 + n

2

multiplications. Scaling like n2 is bad!
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Horner’s method

Instead, a better way is to write
a0 + a1x+ · · ·+ anx

n

= a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · · )) .

This shares the evaluations of powers of x. It only requires n
multiplications and n additions. Much faster!

Algorithmically, to evaluate p(r) for given r ∈ R we calculate
bn := an

bn−1 := an−1 + bnr

...
bi := ai + bi+1r

...
b1 := a1 + b2r

b0 := a0 + b1r.

We then have b0 = p(r).
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Horner’s method

There’s more to it than this, however.

Theorem
Define the polynomial

Q(x) := bnx
n−1 + bn−1x

n−2 + · · ·+ b2x+ b1.

Then
p(x) = (x− r)Q(x) + b0.

Before proving this, note that indeed p(r) = b0, and

p′(x) = Q(x) + (x− r)Q′(x),

so in particular
p′(r) = Q(r).
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Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 =

(x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)
= xi −

p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx

n, bn = an, and bi = ai + bi+1r.

Expand

(x− r)Q(x) + b0 = (x− r)(bnx
n−1 + · · ·+ b1) + b0

= x(bnx
n−1 + · · ·+ b1)− r(bnx

n−1 + · · ·+ b1) + b0

= bnx
n + (bn−1 − bnr)x

n−1 + · · ·+ (b0 − b1r)

= anx
n + an−1x

n−1 + · · ·+ a0,

since ai = bi − bi+1r for i < n.

In the context of Newton’s method applied to p, we have

xi+1 = xi −
p(xi)

p′(xi)

= xi −
p(xi)

Q(xi)
.

P. E. Farrell (Oxford) Newton’s method 41 / 60



Horner’s method

Proof.
Recall that p(x) = a0 + · · ·+ anx
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Horner’s method

function horner([a0, · · · , an], x0, tol, maxit)
x← x0

for i = 1, . . . ,maxit do
b← anx+ an−1 # Horner eval for p
c← an # Horner eval for p′
for k = n− 1, n− 2, . . . , 1, 0 do

c← cx+ b
b← bx+ ai

end for
if |b| < tol then # success

return x
end if
x← x− b/c # Newton update

end for
end function
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Horner’s method

We can summarise with the following useful notation:

Definition (Big O notation)
For g(n) > 0, we say

f(n) = O(g(n)) as n→∞

if there exists M > 0 and n0 ∈ N such that

|f(n)| ≤Mg(n) for all n ≥ n0.

The number of operations to evaluate a degree-n polynomial is:
▶ O(n2) for the naïve way, but
▶ O(n) for Horner’s evaluation scheme.

This is much, much better at high n!
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Horner’s method

In fact, Horner’s scheme for evaluation has a nice optimality property:

Theorem
Any algorithm for evaluating an arbitrary polynomial must require at least
n additions (Ostrowski, 1954) and at least n multiplications (Pan, 1966).

Since Horner’s scheme employs n additions and n multiplications, it is
optimal (for arbitrary polynomials).

If you know you’ll evaluate a polynomial many times on different inputs, it
is possible to preprocess the polynomial into a representation that requires
fewer operations (trading offline work for online work).
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More philosophical remarks

Horner’s evaluation scheme exhibits an important principle:

Philosophical remark
Equivalent expressions can have different algorithmic properties!

In Horner’s case, we had

a0 + a1x+ · · ·+ anx
n = a0 + x (a1 + x (a2 + · · ·+ x (an−1 + xan) · · · )) .

Algorithmic advances sometimes come by deriving an equivalent expression
with better properties.
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More philosophical remarks

Think back to our list of questions we ask about algorithms:
▶ Does the algorithm terminate?
▶ Does the algorithm give the correct answer?
▶ How fast does the algorithm converge to the answer?
▶ How many operations does it take?

There’s another very important question we might want to ask:

▶ Can we parallelise the algorithm?

Every computer nowadays has multiple processing units. (My phone has
8.) Can we use them?
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More philosophical remarks

Here’s another equivalent expression with different properties:

a0 + a1x+ · · ·+ anx
n

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+
(
a1x+ a3x

3 + a5x
5 + · · ·

)

=
(
a0 + a2x

2 + a4x
4 + · · ·

)
+ x

(
a1 + a3x

2 + a5x
4 + · · ·

)
= p1(x

2) + xp2(x
2)

which we can evaluate in parallel with two independent runs of Horner’s
method.

More generally, if you have enough terms, you can break p up into k + 1
polynomials {pj}kj=0, each taking the monomial term xi if

i mod (k + 1) = j.
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Bonus: finding all roots of a polynomial

Horner’s scheme is just a specialised variant of Newton’s method. It finds
roots one at a time.

Once you have found a root x⋆ of p0(x), you can construct

p1(x) =
p0(x)

(x− x⋆)

and apply the scheme again to p1. Iterating in this way one can find all
real roots, if you can construct good initial guesses.

Can we find them all at once, without fussing over guesses?
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Bonus: finding all roots of a polynomial

It turns out that we have very fast and powerful algorithms for computing
the eigenvalues of diagonalisable matrices:

for A ∈ Rn×n, find all λi, vi s.t. Avi = λvi, ‖vi‖2 = 1.

The algorithm is called the QR algorithm, invented independently by
Francis (1959) and Kublanovskaya (1961). It is widely regarded as one of
the ten most important algorithms of the 20th century.

John Francis, 1934– Vera Kublanovskaya, 1920–2012

You can learn more in A7: Numerical Analysis.
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Bonus: finding all roots of a polynomial

Given p(x) of degree n, we want to construct an A with characteristic
polynomial p(x).

Let

p(x) = a0 + a1x+ · · ·+ xn

be our (monic) polynomial. Then we can construct its companion matrix

C(a) :=


0 −a0
1 0 −a1
0 1 0 −a2

. . . ...
1 −an−1

 .

By construction, we have (proof is by induction):

det(C(a)− λI) = (−1)np(λ).
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Bonus: finding all roots of a polynomial

By applying the QR algorithm for eigenvalues to the companion matrix, we
can find all roots in O(n3) operations.

We previously saw that Newton’s method can get stuck in a cycle for
p(x) = x3 − 2x+ 2. No problem:

In [2]: np.roots([1, 0, -2, -2])
Out[2]:
array([ 1.76929235+0.j,

-0.88464618+0.58974281j,
-0.88464618-0.58974281j])
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Bonus: representing polynomials

Philosophical remark
Algorithms are usually tied to the data structures we use.

For example, as mathematicians we might think of p ∈ Πn, the vector
space of degree-n polynomials. But Horner’s method and the companion
matrix rely on a particular representation of p, in the monomial basis {Mi}:

p(x) =

n∑
i=0

aiMi(x), Mi(x) := xi.

The algorithms take in [a0, a1, . . . , an] ∈ Rn+1 to represent p.

A natural question to ask:

is the map a 7→ p stable?
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Bonus: representing polynomials

If we make a perturbation δa to a, how big can the perturbation δp be?
For the monomial basis {Mi}, the answer is very very big:

Construct

p(x) =

20∏
i=1

(x− i), x ∈ [0, 20],

then perturb its monomial coefficients by

δa = [0,−2−23, 0, . . . , 0]. James H. Wilkinson, 1919–1986

The resulting δp has
‖δp‖∞ := max{|δp(x)| : x ∈ [0, 20]} ≈ 6.25× 1017

for a stability constant of
‖δp‖∞
‖δa‖∞

≈ 5× 1024.
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Bonus: representing polynomials

Philosophical remark
Not all bases are equally good.

For example, for ε > 0, the set

{(1, 0)⊤, (1, ε)⊤}

is as much of a basis for R2 as

{(1, 0)⊤, (0, 1)⊤}.

But you’d much rather compute with the latter than the former for small ε.
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Bonus: representing polynomials

So what is a good basis for polynomials? An excellent choice on [a, b] is

p(x) =

n∑
i=0

ciTi(x̂(x)), x̂ =
2(x− a)

(b− a)
− 1

where the Chebyshev polynomials {Ti : [−1, 1]→ [−1, 1]} satisfy
T0(x̂) = 1, T1(x̂) = x̂, Ti+1(x̂) = 2x̂Ti(x̂)− Ti−1(x̂).

The role of the x̂ is to map the input interval [a, b] to [−1, 1].

Chebyshev polynomials. Credit: Glosser.ca, Wikipedia
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Bonus: representing polynomials

Using this basis yields a stable map c 7→ p. For Wilkinson’s polynomial,

‖δp‖∞/‖δc‖∞ ≈ 1.

Just as a polynomial p has a finite Chebyshev series, general functions f
have infinite Chebyshev series. These expansions converge very, very fast:
Theorem
Let f : [a, b]→ R be analytic with Chebyshev expansion

f(x) =
∞∑
i=0

ciTi(x).

Then for a constant C > 1

‖f − pn‖∞ = O(C−n), pn(x) =

n∑
i=0

ciTi(x).

You can learn more in C6.3 Approximation of Functions.
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Bonus: representing polynomials

But we can’t apply Horner’s method for evaluation, or the companion
matrix trick for rootfinding, to Chebyshev expansions!

Our algorithms are tied to our choice of representation: to our choice of
basis, or (from a CS perspective) the data structure we use.

Good news
For Chebyshev bases, analogous algorithms exist:

3 the second barycentric formula, for O(n) evaluation, and
3 the colleague matrix, for finding all roots with the QR algorithm.

These allow us to work with polynomials with degrees in the millions.
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M4: Constructive Mathematics
Lecture 4: Higher-dimensional rootfinding
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Newton in higher dimensions

We have considered several algorithms for rootfinding over R:

given f : R → R, find x⋆ ∈ R such that f(x⋆) = 0.

▶ bisection (q = 1, µ = 1/2, when it applies)
▶ secant method (q = ϕ ≈ 1.618, usually)
▶ Newton’s method (q = 2, usually)
▶ Halley’s method (q = 3, usually)
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Newton in higher dimensions

In real life, most problems involve more than one variable. So let’s consider

given F : RN → RN , find x⋆ ∈ RN such that F (x⋆) = 0.

Simpson extended Newton’s method to this case in his
1740 book Essays on Several Curious and Useful
Subjects in Speculative and Mix’d Mathematicks,
Illustrated by a Variety of Examples.

Thomas Simpson, 1710–1761
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Derivation of Newton’s method

Section 2

Derivation of Newton’s method
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Derivation of Newton’s method

The geometric pictures we had in one dimension don’t naturally extend to
higher dimensions. So first let’s see another derivation of Newton’s
method in R that does extend.

Consider a Taylor expansion of f . We want to find xi+1 = xi + δx:

f(xi + δx) = f(xi) + δxf ′(xi) + higher-order terms.

We want to choose the update δx so that f(xi + δx) = 0. Setting the
left-hand side to zero, and dropping higher-order terms, we get

δx = −[f ′(xi)]
−1f(xi), xi+1 = xi + δx,

which we recognise as Newton’s scheme written in update form.
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Derivation of Newton’s method

Taylor’s theorem extends to higher dimensions, with the role of derivative
f ′ replaced by the Jacobian matrix. If F : RN → RN looks like

F (x) = F


x1

x2

...
xN

 =


F 1(x1, . . . ,xN )
F 2(x1, . . . ,xN )

...
FN (x1, . . . ,xN )

 ,

then its Jacobian DF : RN → RN×N is

DF (a) :=


∂F 1

x1 (a) ∂F 1

x2 (a) · · · ∂F 1

xN (a)

∂F 2

x1 (a) ∂F 2

x2 (a) · · · ∂F 2

xN (a)
... ... ...

∂FN

x1 (a) ∂FN

x2 (a) · · · ∂FN

xN (a)

 .
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Derivation of Newton’s method

Taylor expansions in higher dimensions look like

F (x) = F (a) +DF (a)(x− a) + higher-order terms.

Following the reasoning from one dimension,

F (xi+1) = F (xi + δx) ≈ F (xi) +DF (xi)δx,

and optimistically setting F (xi+1) = 0, we get

δx = −[DF (xi)]
−1F (xi), xi+1 = xi + δx.

In practice, we don’t actually invert the matrix, but rather

solve DF (xi)δx = −F (xi),

using e.g. an LU factorisation of the matrix.
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Derivation of Newton’s method

Newton–Raphson method
xi+1 = g(xi) := xi − (DF (xi))

−1 F (xi).

Comments:
3 Still a fixed-point method.

3 Fixed points of g are roots of F .
7 We still require F to be differentiable.
7 We now require DF to be invertible at every iterate.
7 We have to solve linear systems (worse case O(N3) operations).
3 Sometimes the linear systems can be solved in O(N) operations.
3 If x0 is close to x⋆, Newton’s method usually converges quadratically.
7 If x0 is far away, the method can diverge or get stuck in a cycle.
3 Newton’s method even generalises to infinite dimensions.
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Example

Section 3

Example
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Example

Let’s do an example. Take

F (x, y) =

(
xy + y2 − 2
x3y − 3x− 1

)
,

with DF (x, y) =

(
y x+ 2y

3x2y − 3 x3

)
.

Starting at x0 = (0, 1)⊤, we have to solve(
1 2
−3 0

)(
δx
δy

)
=

(
1
1

)
.

This yields (δx, δy)⊤ = (−1/3, 2/3)⊤, so

x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=

(
−1/3
5/3

)
.

Repeating the procedure, the next iterates are

x2 =

(
−0.357668
1.606112

)
, x3 =

(
−0.357838
1.604407

)
, x4 =

(
−0.357838
1.604406

)
.
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x1 = x0 + δx =

(
0
1

)
+

(
−1/3
2/3

)
=
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5/3

)
.

Repeating the procedure, the next iterates are
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Section 4

Convergence
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Convergence

Definition (Norm of x ∈ RN)
Given x ∈ RN , we define its ∞-norm to be

∥x∥∞ := max
k=1,...,N

|xk|.

Definition (Convergence of a vector-valued sequence)
We say (xi) → x⋆ in the ∥ · ∥∞ norm if

lim
i→∞

∥xi − x⋆∥∞ = 0.

Definition (Order of convergence of a sequence)
Suppose (xi) → x⋆. The sequence converges with order q if

lim
i→∞

∥xi+1 − x⋆∥∞
∥xi − x⋆∥q∞

= M

for some M > 0 (if q = 1 we need M < 1).
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Convergence

Assuming Newton’s method converges, how fast does it converge? From
our one-dimensional experience, we expect quadratic convergence to
isolated roots.

Theorem (Quadratic convergence of Newton’s method)
Let F ∈ C2(RN ,RN ), i.e. F is continuous with all first and second partial
derivatives continuous. Suppose x⋆ ∈ RN is an isolated root of F ,
i.e. F (x⋆) = 0 with DF (x⋆) nonsingular. Then if x0 is close enough to
x⋆, the Newton sequence will converge quadratically.

The core of the proof is that the Jacobian matrix of the associated
fixed-point iteration is zero at x⋆.
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Bonus: Affine covariance

Section 5

Bonus: Affine covariance
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Bonus: Affine covariance

Newton’s method has an important property that becomes apparent in
higher dimensions.

Given F : RN → RN , and x0 ∈ RN , we construct the sequence x0,x1, . . . .

Now imagine that we change units or coordinate systems for our outputs
F . Instead of solving F (x) = 0, we want to solve F̃ (x) = AF (x) = 0,
where A ∈ RN×N is constant and nonsingular. Of course, this doesn’t
change the roots x⋆.

Theorem (Affine covariance)
Premultiplying F by a constant nonsingular A ∈ RN×N does not change
the Newton sequence.
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Bonus: Affine covariance

Let F̃ (x) := AF (x). Newton’s method applied to F̃ from x0 = x̃0

generates a sequence
x̃0, x̃1, x̃2, . . . .

Proof.
For i = 0, we have xi = x̃i by assumption.

Assume xi = x̃i at iteration i. Then the Newton update for F̃ satisfies
−δx̃i = [DF̃ (x̃i)]

−1F̃ (x̃i) = [ADF (xi)]
−1AF (xi)

= [DF (xi)]
−1A−1AF (xi)

= [DF (xi)]
−1F (xi) = −δxi.

Hence xi+1 = x̃i+1, and the result follows by induction.

We get exactly the same iterates x0,x1, . . . , whether we apply Newton to
F (x) = 0 or AF (x) = 0.
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Bonus: Affine covariance

Why does this matter?

Philosophical remark
Since Newton’s method is affine covariant, the conditions for any theorem
guaranteeing its convergence should also be affine covariant.

This is not true of proofs found in many books!

Moreover, any sensible strategy for globalising the
convergence of Newton’s method from poor initial
guesses x0 must also preserve this property. This
insight leads to the current state of the art for
globalising Newton’s method.

Peter Deuflhard, 1944–2019
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Bonus: the Newton–Kantorovich theorem

Section 6

Bonus: the Newton–Kantorovich theorem
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Bonus: the Newton–Kantorovich theorem

The generalisation of Newton’s method to infinite-dimensional (Banach)
spaces is called the Newton–Kantorovich algorithm.

▶ Invented linear programming
when consulting for the
Leningrad Plywood Trust.

▶ Instrumental in saving millions
of lives during the siege of
Leningrad.

▶ Involved in the Soviet nuclear
bomb project.

▶ Nearly sent to the gulag for
“shadow prices”.

▶ Pseudo-Nobel prize in
Economics (1975).

Leonid Kantorovich (1912–1986).
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Bonus: the Newton–Kantorovich theorem
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Bonus: the Newton–Kantorovich theorem

Kantorovich’s theorem (1948) is an example of the application of the
Banach contraction mapping theorem. It does not assume the existence of
a solution: given certain conditions on the residual and initial guess, it
proves the existence and local uniqueness of a solution, and the
convergence of the Newton iteration.

With a good initial guess, and great cleverness, it is possible to devise
computer-assisted proofs of the existence of solutions to
infinite-dimensional nonlinear problems.
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Bonus: the Newton–Kantorovich theorem

Theorem (Kantorovich (1948) in finite dimensions)
Let F ∈ C1(RN ,RN ) be the residual of our nonlinear problem, and let
x0 ∈ RN be an initial guess such that the Jacobian DF (x0) is invertible.
Let B(x0, r) denote the open ball of radius r centred at x0.

Assume that there exists a constant r > 0 such that
(1) ∥DF (x0)

−1F (x0)∥ ≤ r
2 ,

(2) For all x̃,x ∈ B(x0, r),

∥DF (x0)
−1 (DF (x̃)−DF (x)) ∥ ≤ 1

r
∥x̃− x∥.

P. E. Farrell (Oxford) Higher-dimensional rootfinding 22 / 48



Bonus: the Newton–Kantorovich theorem

Theorem (Kantorovich (1948) in finite dimensions)
Let F ∈ C1(RN ,RN ) be the residual of our nonlinear problem, and let
x0 ∈ RN be an initial guess such that the Jacobian DF (x0) is invertible.
Let B(x0, r) denote the open ball of radius r centred at x0.

Assume that there exists a constant r > 0 such that
(1) ∥DF (x0)

−1F (x0)∥ ≤ r
2 ,

(2) For all x̃,x ∈ B(x0, r),

∥DF (x0)
−1 (DF (x̃)−DF (x)) ∥ ≤ 1

r
∥x̃− x∥.

P. E. Farrell (Oxford) Higher-dimensional rootfinding 22 / 48



Bonus: the Newton–Kantorovich theorem

Theorem (Kantorovich (1948))
Then
(1) DF (x) is invertible at each x ∈ B(x0, r).

(2) The Newton sequence (xi)
∞
i=0 defined by

xi+1 = xi −DF (xi)
−1F (xi)

satisfies xi ∈ B(x0, r) for all i, and converges to a root x⋆ of F .
(3) For each i ≥ 0,

∥x⋆ − xi∥ ≤ r

2i
.

(4) The root x⋆ is locally unique, i.e. x⋆ is the only root of F in the ball
ĞB(x0, r).
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Bonus: The Davidenko differential equation

Newton’s method applied to F (x) = 0 produces a sequence
x0,x1,x2, . . . , xi ∈ RN .

Philosophical question
Is there a curve x(s), s ∈ [0,∞), associated with this sequence?

Yes. The Davidenko differential equation is

dx

ds
= −[DF (x)]−1F (x).

The Newton iteration is the forward Euler discretisation
of the Davidenko differential equation with ∆s = 1:

dx

ds
≈ x(s+∆s)− x(s)

∆s
= −[DF (x(s))]−1F (x(s)).

Victor Davidenko, 1914–1983
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Bonus: The Davidenko differential equation

Why is this useful?

Theorem
For any x0 ∈ RN , the solution curve of the Davidenko differential equation
ends either at
▶ a root x⋆, or at
▶ a singular point of DF .

This shows us that the tangent of the curve—the Newton update
[DF (x)]−1F (x)—is a special direction to go to find a root, even far away
from a solution. It’s just that it might be too long.

You can use these ideas to build effective globalisation strategies for
Newton’s method.
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Newton fractals

Section 8

Newton fractals
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Newton fractals

One last beautiful idea about Newton’s method in higher dimensions.

Consider the problem

find z ∈ C such that z3 − 1 = 0.

We could also think of this as a problem in R2.

We know this has three solutions,

z = 1, z = −1/2 + i
√
3/2, and z = −1/2− i

√
3/2.

Let’s take a subset of the complex plane and colour each point as follows.
For a given z0 ∈ C, we

1. run Newton’s method with that initial guess,
2. colour the point according to which root it converges to,
3. shade the colour by how many iterations it took.
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Newton fractals

The Newton fractal for z3 − 1 = 0.
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Newton fractals

The Newton fractal for z3 − 2z + 2 = 0.
P. E. Farrell (Oxford) Higher-dimensional rootfinding 30 / 48



Newton fractals

Some useful websites:
▶ https://attr.actor/snapshots/dxhdzbzwmylmtywj
▶ https://newtonfractal.starfree.app/
▶ https://www.youtube.com/watch?v=-RdOwhmqP5s
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Algorithms for optimisation problems

Section 9

Algorithms for optimisation problems
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Algorithms for optimisation problems

In this final lecture, we study how to apply rootfinding ideas to
optimisation.

Optimisation is fundamental to applied mathematics and engineering. It is
also the engine that powers machine learning.

Nature optimizes. Physical systems tend to a state of minimum energy.
The molecules in an isolated chemical system react with each other until
the total potential energy of their electrons is minimized. Rays of light
follow paths that minimize their travel time.

The ideas in this lecture are further explored in ASO Calculus of
Variations, B6.2 Optimisation for Data Science (new!), and C6.2
Continuous Optimisation.
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Algorithms for optimisation problems

Optimisation studies how to find an input x⋆ to a function f that achieves
a minimal value. (If you want to maximise f(x), just minimise −f(x).)

Let’s consider the optimisation problem: given f ∈ C2(RN ,R),

find x⋆ = argmin
x∈RN

f(x).

We assume f is bounded below (e.g. f(x) = −x2 has no min over R).

We want an argument x⋆ that satisfies f(x⋆) ≤ f(x) for all x ∈ RN .

This is usually too much to ask for, so instead we satisfy ourselves with
local minima x⋆ such that there is a neighbourhood N around x⋆ so that

f(x⋆) ≤ f(x) for all x ∈ N .
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Algorithms for optimisation problems

A very profitable line of thinking is to identify conditions that are satisfied
at local minima. These are called optimality conditions.

In our case, the optimality conditions are that the gradient g : RN → RN

is zero at a local minimiser:

g(x⋆) := ∇f(x⋆) = Df(x⋆)⊤ =


∂f
∂x1 (x

⋆)
...

∂f
∂xN (x⋆)

 = 0.

In other words, if we can find roots of g, we can find local minima of f !

…and local maxima, and saddle points: any point satisfying g(x) = 0 is
called a critical point.
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Algorithms for optimisation problems

To develop practical optimisation algorithms, we’ve already relaxed the
problem twice:

global minimisers ⊂ local minimisers ⊂ critical points.

We will have to be careful, when looking for critical points, to find only
the local minimisers we’re interested in.

Local minimisers can be distinguished by studying the second-order
sufficiency conditions. We won’t see these.

Finding global minimisers is so hard that it is its own branch of study,
global optimisation.
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Algorithms for optimisation problems

The model problem we’re considering in this lecture is
quite simplified. In most real optimisation problems,
there are constraints on the solution:

min
x∈RN

f(x)

subject to ci(x) ≥ 0, i ∈ I,
ce(x) = 0, i ∈ E .

For problems with constraints, the optimality conditions
are no longer as simple as ∇f(x) = 0. The optimality
conditions for the problem above are known as the
Karush–Kuhn–Tucker conditions.

In this lecture we consider the unconstrained problem,
since you need to understand that first to attack the
constrained one!

William Karush, 1917–1997

Harold Kuhn, 1925–2014

Albert Tucker, 1905–1995
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Newton’s method for optimisation
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Newton’s method for optimisation
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Newton’s method for optimisation

Let’s see what Newton iteration on the gradient looks like. If we take the
Jacobian of the gradient, we get the Hessian matrix:

Hf(a) = D∇f(a) :=


∂2f

∂x1x1 (a)
∂2f

∂x1x2 (a) · · · ∂2f
∂x1xN (a)

∂2f
∂x2x1 (a)

∂2f
∂x2x2 (a) · · · ∂2f

∂x2xN (a)
... ... ...

∂2f
∂xNx1 (a)

∂2f
∂xNx2 (a) · · · ∂2f

∂xNxN (a)

 .

The Hessian is always symmetric for f ∈ C2(RN ,R).

Applying Newton’s method to find roots of ∇f(x), we get

xi+1 = xi − [Hf(xi)]
−1∇f(xi) = xi − [Dg(xi)]

−1g(xi).
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Newton’s method for optimisation

There’s a nice geometric interpretation to this.

Suppose we’re at iterate xi and we’d like to minimise f . We don’t know
how, so we’ll replace f with a local quadratic model:

f(xi + δx) ≈ m(δx) := f(xi) +∇f(xi)
⊤δx+

1

2
δx⊤Hf(xi)δx.

We can decide what the update δx should be by solving ∇m(δx) = 0,
which yields the update

δx = −[Hf(xi)]
−1∇f(xi).

So at every step, Newton’s method for optimisation approximates the
function with a paraboloid, and minimises that.
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Quasi-Newton methods

Section 11

Quasi-Newton methods
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Quasi-Newton methods

Problems with this:
1. We only want to find local minimisers.

We often have huge N ≫ 1, causing two more difficulties:
2. How do we store Hf(xi)? (Can’t store a full/dense matrix.)
3. How do we solve Hf(xi)δx = −∇f(xi)?

It is often possible to overcome these issues by exploiting some structure in
the problem. When minimising energy functions in physics, the matrix is
usually sparse, which can sometimes be exploited to solve the linear system
in time O(N) instead of O(N3).

But for many problems no such nice structure exists (e.g. neural networks).

The standard practice is to modify the algorithm to

xi+1 = xi −B−1
i ∇f(xi)

for carefully chosen matrices Bi. This is called a quasi-Newton scheme.
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Quasi-Newton methods

Here are some choices for Bi:
1. Bi = Hf(xi). Newton again. Quadratic convergence, often

impractical.

2. Bi = I ∈ RN×N . Gradient descent. Linear convergence, very slow.

The choice most used in practice is the BFGS algorithm (1970).

This builds up an approximation to the Hessian as the iterations proceed.
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Quasi-Newton methods

The BFGS approach demands that the symmetric matrix Bi+1 satisfy

Bi+1(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

which is the higher-order generalisation of the secant method.

In one dimension, this secant condition is enough to approximate f ′′(xi).
But in higher dimensions it is not; we have N equations, but N(N + 1)/2
variables to define Bi+1. So how do we fill in the missing information?

BFGS proposed to choose, among all symmetric matrices satisfying the
secant condition, the one whose inverse is closest to B−1

i :

Bi+1 = argmin
B∈RN×N

∥B−1 −B−1
i ∥

subject to B = B⊤,

B(xi+1 − xi) = ∇f(xi+1)−∇f(xi).

This means we now need to supply B0. With the right choice of norm, this
problem has an explicit solution for Bi+1 and B−1

i+1.
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Quasi-Newton methods

No matter the choice of Bi, we want to guarantee that

f(xi+1) < f(xi).

This will be achieved by ensuring that Bi is positive definite.

Definition (positive-definite)
A matrix A ∈ RN×N is said to be positive-definite if x⊤Ax > 0 for all
nonzero x ∈ RN . This is equivalent to all of its eigenvalues being positive.

Diagonal matrices
A diagonal matrix A is positive-definite iff all of its diagonal entries are
strictly positive. In this case,

xTAx = A11(x
1)2 +A22(x

2)2 + · · ·+ANN (xN )2 > 0.

BFGS gives a positive-definite Hessian approximation, if B0 is.
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Quasi-Newton methods

To ensure we satisfy
f(xi+1) < f(xi)

we modify the iteration
xi+1 = xi −B−1

i ∇f(xi)

to use a line search.

The basic idea is this. The direction di = −B−1
i ∇f(xi) might point

towards a minimum, but we may overshoot if ∥di∥ gets too large. We fix
this by adjusting the magnitude of the step.

Define
ϕi(t) := f(xi + tdi)

and consider its derivative at t = 0:
ϕ′
i(0) = ∇f(xi + 0di)

⊤di

= −∇f(xi)
TB−1

i ∇f(xi)

< 0.
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Quasi-Newton methods

Since ϕ′
i(0) < 0, this means that there exists t > 0 such that

ϕi(t) = f(xi + tdi) < f(xi) = ϕi(0)

so if we take a small enough step we will decrease f .

We therefore modify the algorithm to

xi+1 = xi − t⋆iB
−1
i ∇f(xi),

where t⋆i is an (approximate) minimiser of ϕ(t).
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Quasi-Newton methods

We end the course with a final example. Consider the problem

find (x, y)⋆ = argmin
(x,y)∈R2

f(x, y) := 100(y − x2)2 + (1− x)2.

This is the Rosenbrock function and has unique minimiser (x, y)⋆ = (1, 1).

We solve this from (x0, y0) = (−1.2, 1)⊤ with gradient descent, Newton’s
method, and BFGS, with a Wolfe line search, until ∥∇f(x)∥ < 10−5.

Gradient descent Newton’s method BFGS
1.827×10−4 3.48×10−2 1.70×10−3

1.826×10−4 1.44×10−2 1.17×10−3

1.824×10−4 1.82×10−4 1.34×10−4

1.823×10−4 1.17×10−8 1.01×10−6

∥(x, y)− (x, y)⋆∥ for the last 4 iterations.

Gradient descent took 5264 iterations, Newton’s method 21, and BFGS 34.
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