B3.2 GEOMETRY OF SURFACES

Dictionary of some terminology from topology and analysis

Comments and corrections are welcome: ritter@maths.ox.ac.uk Prof. Alexander F. Ritter, Mathematical Institute, Oxford.

1. TOPOLOGY: A DICTIONARY

- \diamond A **topological space** is a set X and a collection of subsets of X called *open sets* such that:
 - (1) the empty set is open,
 - (2) the whole set is open,
 - (3) a finite intersection of open sets is open,
 - (4) an arbitrary union of open sets is open.

Example. A metric¹ space (X, d) is a topological space: the open sets are any union of balls $B_r(x) = \{y \in X : d(x, y) < r\}$ (for centres $x \in X$, radii r > 0).

- \diamond Convention: our spaces are always understood to be topological spaces.
- \diamond A subset is called closed if it is the complement of an open set.
- \diamond A **neighbourhood**² of $x \in X$ is a subset which contains an open set U with $x \in U$.
- \diamond A map $f: X \to Y$ is **continuous** if f^{-1} (open set) is always open.
 - (1) A composition of continuous functions is continuous,
 - (2) f continuous \Rightarrow f(compact subset) is compact,
 - (3) f continuous \Rightarrow f(connected subset) is connected.
 - (4) Continuous bijection from a compact space to a Hausdorff space \Rightarrow homeomorphism.
 - (5) Continuous surjection from a compact space to a Hausdorff space \Rightarrow quotient map.
- $\diamond f: X \to Y$ is a **quotient map** if $U \subset Y$ open $\Leftrightarrow f^{-1}(U) \subset X$ is open.
- $\diamond X$ is **Hausdorff** if any two points can be separated by open sets.³
- $\diamond X$ is **compact** if every open cover by open sets has a finite subcover.⁴
- \diamond Heine-Borel theorem: subsets of \mathbb{R}^n are compact \Leftrightarrow they are closed and bounded.
- \diamond **Example.** For metric spaces X, Y:
 - (1) A subset $S \subset X$ is closed $\Leftrightarrow S \ni x_n \to x$ implies $x \in S$.
 - (2) A map $f: X \to Y$ is continuous $\Leftrightarrow f(x_n) \to f(x)$ whenever $x_n \to x$.
 - (3) X is automatically Hausdorff.
 - (4) X is compact \Leftrightarrow any sequence has a convergent subsequence.⁵
- $\diamond X$ is **connected** if every continuous function $f: X \to \mathbb{Z}$ is constant.
- $\diamond X$ is **path-connected** if any two points are joined by a continuous path.⁶
- $\diamond X$ path-connected $\Rightarrow X$ connected, but the converse is false in general.⁷
- $\diamond X$ is simply-connected if it is connected and any loop in X is contractible.⁸
- \diamond A continuous deformation of $f: X \to Y$ is a continuous map $F: X \times [0,1] \to Y$ with

Date: This version of the notes was created on September 22, 2016.

¹So a function $d: X \times X \to \mathbb{R}$ with $d(x, y) = d(y, x) \ge 0$ with equality if and only if x = y, and such that the triangle inequality holds: $d(x, y) \le d(x, z) + d(z, y)$.

 $^{^{2}}$ We do not require the neighbourhood to be an open set. We say open neighbourhood in that case.

³For any $x, y \in X$, there are open sets U_x, U_y containing x, y respectively, with $U_x \cap U_y = \emptyset$.

⁴So if $X = \bigcup U_i$ for some open sets U_i , then $X = U_{i_1} \cup \cdots \cup U_{i_m}$ for some indices i_1, \ldots, i_m .

⁵So $x_n \in X$ implies $x_{n_j} \to x \in X$ for some $n_1 < n_2 < \cdots$

⁶For any $x, y \in X$ there is a continuous map $f : [0,1] \to X$ with f(0) = x, f(1) = y.

⁷The two notions become equivalent if you assume the space is **locally path-connected**. This means: for any $x \in X$ and any open U containing x, there is an open $V \subset U$ which is path-connected, with $x \in V$.

⁸So for any continuous $f: S^1 \to X$ there is a continuous $F: \mathbb{D} \to X$ with $F|_{S^1} = f$. Here $S^1 = \{z \in \mathbb{C} : |z| = 1\}$ is a circle, $\mathbb{D} = \{z \in \mathbb{C} : |z| \le 1\}$ is a disc. By parametrizing \mathbb{D} by sz with $z = e^{it} \in S^1$, $s \in [0, 1]$, you can view F as a family of loops $F: S^1 \times [0, 1] \to X$ from the constant loop $F_0 = F(\cdot, 0)$ to $F_1 = F(\cdot, 1) = f$.

F(x,0) = f(x). So $F_s(x) = F(x,s)$ is a family of maps, $F_0 = f$, and F_1 is the deformed map. \diamond A map $f: X \to Y$ is **bijective** if there exists a map $g: Y \to X$ such that $f \circ g = \operatorname{id}_Y$ and $g \circ f = \mathrm{id}_X$ are the identity maps. Such a g is unique and called the inverse $g = f^{-1}$.

 \diamond A homeomorphism $f: X \to Y$ is a continuous bijection, with continuous inverse f^{-1} .

 $\diamond X, Y$ are **homeomorphic** if there exists a homeomorphism $f: X \to Y$.

2. Analysis

 $\diamond f: \mathbb{R}^n \to \mathbb{R}^m$ is **continuously differentiable** if all first order partial derivatives exist and are continuous.¹

Explicitly: in coordinates: $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$ maps to $f(x) = (f_1(x), \ldots, f_m(x)) \in \mathbb{R}^m$ for some functions $f_i : \mathbb{R}^n \to \mathbb{R}$, called the *components* of f. So we require that $\frac{\partial f_i}{\partial x_j}$ exist and are continuous for all i, j. We abbreviate $\partial_{x_j} f_i = \frac{\partial f_i}{\partial x_j}$.

 \diamond The **Jacobian matrix** of $f : \mathbb{R}^n \to \mathbb{R}^m$ is the matrix $A(x) = (A_{ij}(x)) = (\partial_{x_i} f_j)$ of partial derivatives:

$$A(x) = \begin{pmatrix} \partial_{x_1} f_1 & \partial_{x_2} f_1 & \cdots & \partial_{x_n} f_1 \\ \partial_{x_1} f_2 & \partial_{x_2} f_2 & \cdots & \partial_{x_n} f_2 \\ \vdots \\ \partial_{x_1} f_m & \partial_{x_2} f_m & \cdots & \partial_{x_n} f_m \end{pmatrix}$$

The linear map given by "multiplication by A(x)" is the **derivative map**

 $Df: \mathbb{R}^n \to \mathbb{R}^m, v \mapsto D_x f \cdot v = A(x)v.$

Example. For $f : \mathbb{R} \to \mathbb{R}$, A(x) = (f'(x)), $Df : \mathbb{R} \to \mathbb{R}$ is multiplication by f'(x).

 \diamond Chain rule: Compositions of differentiable maps are differentiable and $D(q \circ f) = Dq \circ Df$:

$$D_x(g \circ f) = D_{f(x)}g \circ D_x f.$$

Example. For $f, g : \mathbb{R} \to \mathbb{R}$ recall $(g \circ f)'(x) = g'(f(x)) \cdot f'(x)$.

 \diamond Convention: the vector $\partial_{x_i} f$ denotes the *j*-th column of that matrix.

 \diamond Example. Linear maps $L: \mathbb{R}^n \to \mathbb{R}^m$ are differentiable with derivative map L. The whole point of the derivative map is to find the best linear approximation to a map: f(x) = f(p) + f(p) $D_p f \cdot (x-p) + \text{error}$, where $\frac{\text{error}}{\|x-p\|} \to 0$ as $x \to p$.

 $\diamond f: \mathbb{R}^n \to \mathbb{R}^m$ is smooth if it has partial derivatives of all orders (they are automatically $continuous).^2$

Fact: for smooth functions, partial derivatives commute, e.g. $\partial_{x_1} \partial_{x_2} f = \partial_{x_2} \partial_{x_1} f$.

For open $U, V \subset \mathbb{R}^n$, $f: U \to V$ is a **diffeomorphism** if f is a homeomorphism, and f, f^{-1} are smooth.

 \diamond Integration by substitution (change of variables): If $f: V \rightarrow U$ is a diffeomorphism, for open subsets $U, V \subset \mathbb{R}^n$, and $G = G(x_1, \ldots, x_n) : U \to \mathbb{R}$ is a smooth function, then

$$\int_U G(x) \, dx_1 \, \cdots \, dx_n = \int_V G(f(y)) \, |\det D_y f| \, dy_1 \, \cdots \, dy_n$$

Examples.

¹The reason for requiring that the partial derivatives are also continuous is necessary to ensure that the derivative map exists, in the sense that $f(x+h) - f(x) = D_x f \cdot h + \text{error}$, where $\frac{\text{error}}{\|h\|} \to 0$ as $h \to 0$.

²For example, for the second order, it means: $A: \mathbb{R}^n \to \mathbb{R}^{nm}, x \mapsto A(x)$ is differentiable. As you increase the order, this becomes complicated since you choose the succession of which partial derivatives to take.

- (1) Let f be the change of variables from polar coordinates r, θ to (x, y) in \mathbb{R}^2 . So $f(r, \theta) =$ $(r\cos\theta, r\sin\theta)$, so $Df = \left(\cos\theta - r\sin\theta \\ \sin\theta - r\cos\theta \end{array} \right)$, so $|\det Df| = r$, hence $\int G(x, y) dx dy = \int G(x, y) dx dy$ $\int G(r\cos\theta, r\sin\theta) r \, dr \, d\theta.$
- (2) If $\gamma = \gamma(t) : [0,1] \to \mathbb{R}^2$ is a smooth curve, and $f = f(s) : [a,b] \to [0,1]$ reparametrizes time (so any strictly increasing smooth function), then the length of the curve, $\int |\text{speed}| d(\text{time})$, is well defined independently of the way we parametrize time: $\int_0^1 \|\gamma'(t)\| dt = \int_a^b \|\gamma'(f(s))\| f'(s) ds.$

 $\diamond f: \mathbb{R}^n \to \mathbb{R}^n$ is a local diffeomorphism near p, if there are open neighbourhoods U, V of p, f(p) respectively such that the restriction $f|_{U}: U \to V$ is a diffeomorphism.

 \diamond Convention: we say $f: \mathbb{R}^n \to \mathbb{R}^m$ is defined near p to mean: there is an open set $U \subset \mathbb{R}^n$ containing p such that $f: U \to \mathbb{R}^m$ is defined. We say "for x, y close enough to p, f(p)" to mean: there are open neighbourhoods U, V of p, f(p) and the statement holds for $x \in U, y \in V$. \diamond Inverse function theorem: Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map defined near $p \in \mathbb{R}^n$.

If $D_p f$ is invertible, then f is a local diffeomorphism near p.

Explicitly: the theorem hands us a unique smooth map $g: \mathbb{R}^n \to \mathbb{R}^n$ defined near f(p) such that f(q(y)) = y and q(f(x)) = x (for all x, y close enough to p, f(p) respectively).

Arguably the most important theorem in analysis. It says simple linear algebra (the nonvanishing of the determinant of a matrix) ensures the smooth invertibility of the map, locally.

 \diamond Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be smooth, and $n \ge m$. We want to describe the solutions of f(x) = cnear a given solution f(a) = c, where $x, a \in \mathbb{R}^n$ and $c \in \mathbb{R}^m$.

Implicit function theorem: If m columns of $D_a f$ are linearly independent, then the variables x_{i_1}, \ldots, x_{i_m} corresponding to those columns are redundant. Namely, they can be replaced by unique smooth functions g_{i_1}, \ldots, g_{i_m} , depending only on the remaining variables, defined near x = a and satisfying $g_{i_1}(a) = a_{i_1}, \ldots, g_{i_m}(a) = a_{i_m}$, so that

$$f(x)|_{(x_{i_1}=g_{i_1},\ldots,x_{i_m}=g_{i_m})} = c$$

describes all solutions x near a.

Examples. Below, we seek solutions of f = 0 near x = (0, ..., 0).

- (1) f(x,y) = y: $\partial_y f = 1 \neq 0$, so f(x,g(x)) = 0 (indeed g(x) = 0).
- (2) $f(x,y) = x^2 y$: $\partial_y f = -1 \neq 0$, so f(x,g(x)) = 0 (indeed $g(x) = x^2$). (3) $f(x,y) = (x+1)^2 1 + y^2$: $\partial_x f|_{x=0,y=0} = 2 \neq 0$, so f(g(y),y) = 0 (indeed g(y) = 0). $-1 + \sqrt{1 - y^2}$, which is defined near y = 0, and notice g(0) = 0).

Proof of the implicit function theorem: by relabeling coordinates, we may assume the last m columns of $D_a f$ are linearly independent. Abbreviate k = n - m. Consider F : $\mathbb{R}^n \to \mathbb{R}^n$, $F(x_1,\ldots,x_n) = (x_1,\ldots,x_k, f(x_1,\ldots,x_n))$. Notice that $D_a F$ is invertible (try writing the matrix). Apply the inverse function theorem. Then $F^{-1}(x_1,\ldots,x_k,c_1,\ldots,c_m) =$ $(x_1,\ldots,x_k,g_{k+1},\ldots,g_n)$ for unique functions g_{k+1},\ldots,g_n of x_1,\ldots,x_k,c .

Smooth dependence on c in the implicit function theorem: Notice above g_{i_1}, \ldots, g_{i_m} depend smoothly on c. So there are unique smooth functions $G_{i_1}, \ldots, G_{i_m} : \mathbb{R}^{n-m} \times \mathbb{R}^m \to \mathbb{R}$ depending only on non-redundant x_i variables and $y \in \mathbb{R}^m$, defined near x = a, y = c so that

$$f(x)|_{(x_{i_1}=G_{i_1},\dots,x_{i_m}=G_{i_m})} = y$$

describes all solutions of f(x) = y for x near a, and y near c.

 \diamond A change of coordinates near x = a means a local diffeomorphism $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ near x = a. A map $f : \mathbb{R}^n \to \mathbb{R}^m$ becomes $\tilde{f} = f \circ \varphi$ in the new coordinates. So $\tilde{f}(z) = f(x)$ for $x = \varphi(z)$. \diamond Nonlinear coordinates in the implicit function theorem: There is a change of coordinates of \mathbb{R}^n near x = a, and we call the new coordinates z_1, \ldots, z_n non-linear coordinates, so that solutions of $\tilde{f}(z) = y$ near $z = \varphi^{-1}(a)$ are precisely described by the vanishing $z_1 = 0, \ldots, z_m = 0$ of m coordinates (and the other z_j coordinates are free).

Proof. First permute coordinates of \mathbb{R}^n so that we may assume the i_1, \ldots, i_m above are $1, \ldots, m$. Then put $z_1 = x_1 - g_1, \ldots, z_m = x_m - g_m$, and the other $z_j = x_j$. \Box

3. Complex analysis

♦ A function $f : \mathbb{C} \to \mathbb{C}$ is **holomorphic** if it is complex differentiable.¹ ♦ Fact: $f : \mathbb{C} \to \mathbb{C}$ is holomorphic if and only if $F : \mathbb{R}^2 \to \mathbb{R}^2$, $F(x, y) = (f_1(x+iy), f_2(x+iy))$

 \diamond Fact: $f: \mathbb{C} \to \mathbb{C}$ is holomorphic if and only if $F: \mathbb{R}^2 \to \mathbb{R}^2$, $F(x,y) = (f_1(x+iy), f_2(x+iy))$ is differentiable with continuous partial derivatives and satisfies

$$DF \circ J = J \circ DF$$

where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (the matrix which rotates by 90°) corresponds to multiplication by *i* when we identify $\mathbb{R}^2 \equiv \mathbb{C}$, $(x, y) \equiv x + iy$.

Remark. $DF \circ J = J \circ DF \Leftrightarrow Cauchy-Riemann \ equations \ \partial_x f_1 = \partial_y f_2, \ \partial_y f_1 = -\partial_x f_2 \ hold.$

$$DF = \begin{pmatrix} \partial_x f_1 & \partial_y f_1 \\ \partial_x f_2 & \partial_y f_2 \end{pmatrix} = \begin{pmatrix} \partial_x f_1 & -\partial_x f_2 \\ \partial_x f_2 & \partial_x f_1 \end{pmatrix} = r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

where r, θ are determined by $f'(z) = re^{i\theta}$. Notice $\text{Det } DF = |f'(z)|^2 = r^2$.

 \diamond Fact: f holomorphic \Rightarrow the above $F:\mathbb{R}^2\to\mathbb{R}^2$ is smooth.

 \diamond Fact: f holomorphic near $p \Rightarrow f$ has an absolutely convergent Taylor series² at p and f is equal to its Taylor series near p.

◊ **Identity theorem.** If $f, g : \mathbb{C} \to \mathbb{C}$ are holomorphic near p, and there is a sequence $p \neq z_n \to p$ with $f(z_n) = g(z_n)$, then f = g near p.

 $\diamond f: \mathbb{C} \to \mathbb{C}$ is a **biholomorphism** if it is bijective and f, f^{-1} are both holomorphic.

Remark. Since the derivative map is a composition of scaling and rotation, it preserves angles between vectors. So biholomorphisms are conformal maps, meaning they preserve angles.

 \diamond **Inverse function theorem.** For a holomorphic function $f : \mathbb{C} \to \mathbb{C}$ defined near p, if $f'(p) \neq 0$ then f is a local biholomorphism near p.

Explicitly: the theorem hands us a unique holomorphic $g : \mathbb{C} \to \mathbb{C}$ defined near f(p) such that f(g(w)) = w and g(f(z)) = z (for all z, w close enough to p, f(p) respectively).

 \diamond **Riemann mapping theorem.** If $U \neq \emptyset$, \mathbb{C} is a simply connected open subset of \mathbb{C} then there is a biholomorphism $f: U \to D$ onto the open unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$.

4. Differential equations

◇ For smooth smooth $V : \mathbb{R}^n \to \mathbb{R}^n$, a **flowline** $\gamma : [a, b] \to \mathbb{R}^n$ is a solution of $\gamma'(t) = V(\gamma(t))$. *Idea:* V is a vector field (a vector at each point of \mathbb{R}^n), γ is a curve running in the V-direction. ◇ **Theorem.** For each point $p \in \mathbb{R}^n$ there is a flowline $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ of V with $\gamma(0) = p$, for small enough $\varepsilon > 0$. Moreover, γ is smooth, unique and depends smoothly³ on p.

¹Meaning $f'(z) = \lim_{h \to 0} \frac{f(z+h) - f(z)}{h}$ exists. Take $h = t \in \mathbb{R}$, let $t \to 0$: then $f'(z) = \partial_x f = \partial_x f_1 + i\partial_x f_2$. Take $h = it \in i\mathbb{R}$, let $t \to 0$: $f'(z) = -i\partial_y f = \partial_y f_2 - i\partial_y f_1$. Equating gives the Cauchy-Riemann equations.

 $[\]sum_{n=0}^{\infty} a_n (z-p)^n$ with $a_n = f^{(n)}(p)/n!$

³Meaning: there is a smooth map $F: (-\varepsilon, \varepsilon) \times U \to \mathbb{R}^n$, called **flow**, defined on a small enough neighbourhood U of p (and $\varepsilon > 0$ depends on U), such that $t \mapsto F(t, q)$ is the flowline of V through q = F(0, q).