B3.2 GEOMETRY OF SURFACES

Dictionary of some terminology from topology and analysis

Comments and corrections are welcome: ritter@maths.ox.ac.uk Prof. Alexander F. Ritter, Mathematical Institute, Oxford.

1. Topology: a dictionary

\diamond A topological space is a set X and a collection of subsets of X called open sets such that:
(1) the empty set is open,
(2) the whole set is open,
(3) a finite intersection of open sets is open,
(4) an arbitrary union of open sets is open.

Example. A metrid ${ }^{11}$ space (X, d) is a topological space: the open sets are any union of balls $B_{r}(x)=\{y \in X: d(x, y)<r\}$ (for centres $x \in X$, radii $r>0$).
\diamond Convention: our spaces are always understood to be topological spaces.
\diamond A subset is called closed if it is the complement of an open set.
\diamond A neighbourhood ${ }^{2}$ of $x \in X$ is a subset which contains an open set U with $x \in U$.
\diamond A map $f: X \rightarrow Y$ is continuous if f^{-1} (open set) is always open.
(1) A composition of continuous functions is continuous,
(2) f continuous $\Rightarrow f$ (compact subset) is compact,
(3) f continuous $\Rightarrow f$ (connected subset) is connected.
(4) Continuous bijection from a compact space to a Hausdorff space \Rightarrow homeomorphism.
(5) Continuous surjection from a compact space to a Hausdorff space \Rightarrow quotient map.
$\diamond f: X \rightarrow Y$ is a quotient map if $U \subset Y$ open $\Leftrightarrow f^{-1}(U) \subset X$ is open.
$\diamond X$ is Hausdorff if any two points can be separated by open sets 3^{3}
$\diamond X$ is compact if every open cover by open sets has a finite subcover 4
\diamond Heine-Borel theorem: subsets of \mathbb{R}^{n} are compact \Leftrightarrow they are closed and bounded.
\diamond Example. For metric spaces X, Y :
(1) A subset $S \subset X$ is closed $\Leftrightarrow S \ni x_{n} \rightarrow x$ implies $x \in S$.
(2) A map $f: X \rightarrow Y$ is continuous $\Leftrightarrow f\left(x_{n}\right) \rightarrow f(x)$ whenever $x_{n} \rightarrow x$.
(3) X is automatically Hausdorff.
(4) X is compact \Leftrightarrow any sequence has a convergent subsequence 5
$\diamond X$ is connected if every continuous function $f: X \rightarrow \mathbb{Z}$ is constant.
$\diamond X$ is path-connected if any two points are joined by a continuous path ${ }^{6}$
$\diamond X$ path-connected $\Rightarrow X$ connected, but the converse is false in general. ${ }^{7}$
$\diamond X$ is simply-connected if it is connected and any loop in X is contractible δ
\diamond A continuous deformation of $f: X \rightarrow Y$ is a continuous map $F: X \times[0,1] \rightarrow Y$ with

[^0]$F(x, 0)=f(x)$. So $F_{s}(x)=F(x, s)$ is a family of maps, $F_{0}=f$, and F_{1} is the deformed map. \diamond A map $f: X \rightarrow Y$ is bijective if there exists a map $g: Y \rightarrow X$ such that $f \circ g=\operatorname{id}_{Y}$ and $g \circ f=\operatorname{id}_{X}$ are the identity maps. Such a g is unique and called the inverse $g=f^{-1}$.
\diamond A homeomorphism $f: X \rightarrow Y$ is a continuous bijection, with continuous inverse f^{-1}.
$\diamond X, Y$ are homeomorphic if there exists a homeomorphism $f: X \rightarrow Y$.

2. Analysis

$\diamond f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is continuously differentiable if all first order partial derivatives exist and are continuous 1
Explicitly: in coordinates: $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ maps to $f(x)=\left(f_{1}(x), \ldots, f_{m}(x)\right) \in \mathbb{R}^{m}$ for some functions $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, called the components of f.
So we require that $\frac{\partial f_{i}}{\partial x_{j}}$ exist and are continuous for all i, j. We abbreviate $\partial_{x_{j}} f_{i}=\frac{\partial f_{i}}{\partial x_{j}}$.
\diamond The Jacobian matrix of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the matrix $A(x)=\left(A_{i j}(x)\right)=\left(\partial_{x_{i}} f_{j}\right)$ of partial derivatives:

$$
A(x)=\left(\begin{array}{cccc}
\partial_{x_{1}} f_{1} & \partial_{x_{2}} f_{1} & \cdots & \partial_{x_{n}} f_{1} \\
\partial_{x_{1}} f_{2} & \partial_{x_{2}} f_{2} & \cdots & \partial_{x_{n}} f_{2} \\
\cdots & & & \\
\partial_{x_{1}} f_{m} & \partial_{x_{2}} f_{m} & \cdots & \partial_{x_{n}} f_{m}
\end{array}\right)
$$

The linear map given by "multiplication by $A(x)$ " is the derivative map

$$
D f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, v \mapsto D_{x} f \cdot v=A(x) v
$$

Example. For $f: \mathbb{R} \rightarrow \mathbb{R}, A(x)=\left(f^{\prime}(x)\right), D f: \mathbb{R} \rightarrow \mathbb{R}$ is multiplication by $f^{\prime}(x)$.
\diamond Chain rule: Compositions of differentiable maps are differentiable and $D(g \circ f)=D g \circ D f$:

$$
D_{x}(g \circ f)=D_{f(x)} g \circ D_{x} f
$$

Example. For $f, g: \mathbb{R} \rightarrow \mathbb{R}$ recall $(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)$.
\diamond Convention: the vector $\partial_{x_{j}} f$ denotes the j-th column of that matrix.
\diamond Example. Linear maps $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are differentiable with derivative map L. The whole point of the derivative map is to find the best linear approximation to a map: $f(x)=f(p)+$ $D_{p} f \cdot(x-p)+$ error, where $\frac{\text { error }}{\|x-p\|} \rightarrow 0$ as $x \rightarrow p$.
$\diamond f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is smooth if it has partial derivatives of all orders (they are automatically continuous) 2^{2}
Fact: for smooth functions, partial derivatives commute, e.g. $\partial_{x_{1}} \partial_{x_{2}} f=\partial_{x_{2}} \partial_{x_{1}} f$.
For open $U, V \subset \mathbb{R}^{n}, f: U \rightarrow V$ is a diffeomorphism if f is a homeomorphism, and f, f^{-1} are smooth.
\diamond Integration by substitution (change of variables): If $f: V \rightarrow U$ is a diffeomorphism, for open subsets $U, V \subset \mathbb{R}^{n}$, and $G=G\left(x_{1}, \ldots, x_{n}\right): U \rightarrow \mathbb{R}$ is a smooth function, then

$$
\int_{U} G(x) d x_{1} \cdots d x_{n}=\int_{V} G(f(y))\left|\operatorname{det} D_{y} f\right| d y_{1} \cdots d y_{n}
$$

Examples.

[^1](1) Let f be the change of variables from polar coordinates r, θ to (x, y) in \mathbb{R}^{2}. So $f(r, \theta)=$ $(r \cos \theta, r \sin \theta)$, so $D f=\left(\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right)$, so $|\operatorname{det} D f|=r$, hence $\int G(x, y) d x d y=$ $\int G(r \cos \theta, r \sin \theta) r d r d \theta$.
(2) If $\gamma=\gamma(t):[0,1] \rightarrow \mathbb{R}^{2}$ is a smooth curve, and $f=f(s):[a, b] \rightarrow[0,1]$ reparametrizes time (so any strictly increasing smooth function), then the length of the curve, $\int \mid$ speed $\mid d$ (time), is well defined independently of the way we parametrize time: $\int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t=\int_{a}^{b}\left\|\gamma^{\prime}(f(s))\right\| f^{\prime}(s) d s$.
$\diamond f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a local diffeomorphism near p, if there are open neighbourhoods U, V of $p, f(p)$ respectively such that the restriction $\left.f\right|_{U}: U \rightarrow V$ is a diffeomorphism.
\diamond Convention: we say $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is defined near p to mean: there is an open set $U \subset \mathbb{R}^{n}$ containing p such that $f: U \rightarrow \mathbb{R}^{m}$ is defined. We say "for x, y close enough to $p, f(p)$ " to mean: there are open neighbourhoods U, V of $p, f(p)$ and the statement holds for $x \in U, y \in V$.
\diamond Inverse function theorem: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a smooth map defined near $p \in \mathbb{R}^{n}$.
If $D_{p} f$ is invertible, then f is a local diffeomorphism near p.
Explicitly: the theorem hands us a unique smooth map $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ defined near $f(p)$ such that $f(g(y))=y$ and $g(f(x))=x$ (for all x, y close enough to $p, f(p)$ respectively).
Arguably the most important theorem in analysis. It says simple linear algebra (the nonvanishing of the determinant of a matrix) ensures the smooth invertibility of the map, locally.
\diamond Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be smooth, and $n \geq m$. We want to describe the solutions of $f(x)=c$ near a given solution $f(a)=c$, where $x, a \in \mathbb{R}^{n}$ and $c \in \mathbb{R}^{m}$.
Implicit function theorem: If m columns of $D_{a} f$ are linearly independent, then the variables $x_{i_{1}}, \ldots, x_{i_{m}}$ corresponding to those columns are redundant. Namely, they can be replaced by unique smooth functions $g_{i_{1}}, \ldots, g_{i_{m}}$, depending only on the remaining variables, defined near $x=a$ and satisfying $g_{i_{1}}(a)=a_{i_{1}}, \ldots, g_{i_{m}}(a)=a_{i_{m}}$, so that

$$
\left.f(x)\right|_{\left(x_{i_{1}}=g_{i_{1}}, \ldots, x_{i_{m}}=g_{i_{m}}\right)}=c
$$

describes all solutions x near a.
Examples. Below, we seek solutions of $f=0$ near $x=(0, \ldots, 0)$.
(1) $f(x, y)=y: \partial_{y} f=1 \neq 0$, so $f(x, g(x))=0$ (indeed $\left.g(x)=0\right)$.
(2) $f(x, y)=x^{2}-y$: $\partial_{y} f=-1 \neq 0$, so $f(x, g(x))=0$ (indeed $g(x)=x^{2}$).
(3) $f(x, y)=(x+1)^{2}-1+y^{2}:\left.\partial_{x} f\right|_{x=0, y=0}=2 \neq 0$, so $f(g(y), y)=0$ (indeed $g(y)=$ $-1+\sqrt{1-y^{2}}$, which is defined near $y=0$, and notice $\left.g(0)=0\right)$.
Proof of the implicit function theorem: by relabeling coordinates, we may assume the last m columns of $D_{a} f$ are linearly independent. Abbreviate $k=n-m$. Consider F : $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, F\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, f\left(x_{1}, \ldots, x_{n}\right)\right)$. Notice that $D_{a} F$ is invertible (try writing the matrix). Apply the inverse function theorem. Then $F^{-1}\left(x_{1}, \ldots, x_{k}, c_{1}, \ldots, c_{m}\right)=$ $\left(x_{1}, \ldots, x_{k}, g_{k+1}, \ldots, g_{n}\right)$ for unique functions g_{k+1}, \ldots, g_{n} of x_{1}, \ldots, x_{k}, c.
Smooth dependence on c in the implicit function theorem: Notice above $g_{i_{1}}, \ldots, g_{i_{m}}$ depend smoothly on c. So there are unique smooth functions $G_{i_{1}}, \ldots, G_{i_{m}}: \mathbb{R}^{n-m} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ depending only on non-redundant x_{j} variables and $y \in \mathbb{R}^{m}$, defined near $x=a, y=c$ so that

$$
\left.f(x)\right|_{\left(x_{i_{1}}=G_{i_{1}}, \ldots, x_{i_{m}}=G_{i_{m}}\right)}=y
$$

describes all solutions of $f(x)=y$ for x near a, and y near c.
\diamond A change of coordinates near $x=a$ means a local diffeomorphism $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ near $x=a$. A map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ becomes $\widetilde{f}=f \circ \varphi$ in the new coordinates. So $\widetilde{f}(z)=f(x)$ for $x=\varphi(z)$.
\diamond Nonlinear coordinates in the implicit function theorem: There is a change of coordinates of \mathbb{R}^{n} near $x=a$, and we call the new coordinates z_{1}, \ldots, z_{n} non-linear coordinates, so that solutions of $\widetilde{f}(z)=y$ near $z=\varphi^{-1}(a)$ are precisely described by the vanishing $z_{1}=0, \ldots, z_{m}=0$ of m coordinates (and the other z_{j} coordinates are free).
Proof. First permute coordinates of \mathbb{R}^{n} so that we may assume the i_{1}, \ldots, i_{m} above are $1, \ldots, m$. Then put $z_{1}=x_{1}-g_{1}, \ldots, z_{m}=x_{m}-g_{m}$, and the other $z_{j}=x_{j}$.

3. Complex analysis

\diamond A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic if it is complex differentiable
\diamond Fact: $f: \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic if and only if $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, F(x, y)=\left(f_{1}(x+i y), f_{2}(x+i y)\right)$ is differentiable with continuous partial derivatives and satisfies

$$
D F \circ J=J \circ D F
$$

where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (the matrix which rotates by 90°) corresponds to multiplication by i when we identify $\mathbb{R}^{2} \equiv \mathbb{C},(x, y) \equiv x+i y$.
Remark. $D F \circ J=J \circ D F \Leftrightarrow$ Cauchy-Riemann equations $\partial_{x} f_{1}=\partial_{y} f_{2}, \partial_{y} f_{1}=-\partial_{x} f_{2}$ hold.

$$
D F=\left(\begin{array}{ll}
\partial_{x} f_{1} & \partial_{y} f_{1} \\
\partial_{x} f_{2} & \partial_{y} f_{2}
\end{array}\right)=\left(\begin{array}{ll}
\partial_{x} f_{1} & -\partial_{x} f_{2} \\
\partial_{x} f_{2} & \partial_{x} f_{1}
\end{array}\right)=r\left(\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

where r, θ are determined by $f^{\prime}(z)=r e^{i \theta}$. Notice $\operatorname{Det} D F=\left|f^{\prime}(z)\right|^{2}=r^{2}$.
\diamond Fact: f holomorphic \Rightarrow the above $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is smooth.
\diamond Fact: f holomorphic near $p \Rightarrow f$ has an absolutely convergent Taylor series ${ }^{2}$ at p and f is equal to its Taylor series near p.
\diamond Identity theorem. If $f, g: \mathbb{C} \rightarrow \mathbb{C}$ are holomorphic near p, and there is a sequence $p \neq z_{n} \rightarrow p$ with $f\left(z_{n}\right)=g\left(z_{n}\right)$, then $f=g$ near p.
$\diamond f: \mathbb{C} \rightarrow \mathbb{C}$ is a biholomorphism if it is bijective and f, f^{-1} are both holomorphic.
Remark. Since the derivative map is a composition of scaling and rotation, it preserves angles between vectors. So biholomorphisms are conformal maps, meaning they preserve angles.
\diamond Inverse function theorem. For a holomorphic function $f: \mathbb{C} \rightarrow \mathbb{C}$ defined near p, if $f^{\prime}(p) \neq 0$ then f is a local biholomorphism near p.
Explicitly: the theorem hands us a unique holomorphic $g: \mathbb{C} \rightarrow \mathbb{C}$ defined near $f(p)$ such that $f(g(w))=w$ and $g(f(z))=z$ (for all z, w close enough to $p, f(p)$ respectively).
\diamond Riemann mapping theorem. If $U \neq \emptyset, \mathbb{C}$ is a simply connected open subset of \mathbb{C} then there is a biholomorphism $f: U \rightarrow D$ onto the open unit disc $D=\{z \in \mathbb{C}:|z|<1\}$.

4. Differential equations

\diamond For smooth smooth $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, a flowline $\gamma:[a, b] \rightarrow \mathbb{R}^{n}$ is a solution of $\gamma^{\prime}(t)=V(\gamma(t))$. Idea: V is a vector field (a vector at each point of \mathbb{R}^{n}), γ is a curve running in the V-direction. \diamond Theorem. For each point $p \in \mathbb{R}^{n}$ there is a flowline $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n}$ of V with $\gamma(0)=p$, for small enough $\varepsilon>0$. Moreover, γ is smooth, unique and depends smoothly ${ }^{3}$ on p.

[^2]
[^0]: Date: This version of the notes was created on September 22, 2016.
 ${ }^{1}$ So a function $d: X \times X \rightarrow \mathbb{R}$ with $d(x, y)=d(y, x) \geq 0$ with equality if and only if $x=y$, and such that the triangle inequality holds: $d(x, y) \leq d(x, z)+d(z, y)$.
 ${ }^{2}$ We do not require the neighbourhood to be an open set. We say open neighbourhood in that case.
 ${ }^{3}$ For any $x, y \in X$, there are open sets U_{x}, U_{y} containing x, y respectively, with $U_{x} \cap U_{y}=\emptyset$.
 ${ }^{4}$ So if $X=\cup U_{i}$ for some open sets U_{i}, then $X=U_{i_{1}} \cup \cdots \cup U_{i_{m}}$ for some indices i_{1}, \ldots, i_{m}.
 ${ }^{5}$ So $x_{n} \in X$ implies $x_{n_{j}} \rightarrow x \in X$ for some $n_{1}<n_{2}<\cdots$
 ${ }^{6}$ For any $x, y \in X$ there is a continuous map $f:[0,1] \rightarrow X$ with $f(0)=x, f(1)=y$.
 ${ }^{7}$ The two notions become equivalent if you assume the space is locally path-connected. This means: for any $x \in X$ and any open U containing x, there is an open $V \subset U$ which is path-connected, with $x \in V$.
 ${ }^{8}$ So for any continuous $f: S^{1} \rightarrow X$ there is a continuous $F: \mathbb{D} \rightarrow X$ with $\left.F\right|_{S^{1}}=f$. Here $S^{1}=\{z \in \mathbb{C}$: $|z|=1\}$ is a circle, $\mathbb{D}=\{z \in \mathbb{C}:|z| \leq 1\}$ is a disc. By parametrizing \mathbb{D} by $s z$ with $z=e^{i t} \in S^{1}, s \in[0,1]$, you can view F as a family of loops $F: S^{1} \times[0,1] \rightarrow X$ from the constant loop $F_{0}=F(\cdot, 0)$ to $F_{1}=F(\cdot, 1)=f$.

[^1]: ${ }^{1}$ The reason for requiring that the partial derivatives are also continuous is necessary to ensure that the derivative map exists, in the sense that $f(x+h)-f(x)=D_{x} f \cdot h+$ error, where $\frac{\text { error }}{\|h\|} \rightarrow 0$ as $h \rightarrow 0$.
 ${ }^{2}$ For example, for the second order, it means: $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n m}, x \mapsto A(x)$ is differentiable. As you increase the order, this becomes complicated since you choose the succession of which partial derivatives to take.

[^2]: ${ }^{1}$ Meaning $f^{\prime}(z)=\lim _{h \rightarrow 0} \frac{f(z+h)-f(z)}{h}$ exists. Take $h=t \in \mathbb{R}$, let $t \rightarrow 0$: then $f^{\prime}(z)=\partial_{x} f=\partial_{x} f_{1}+i \partial_{x} f_{2}$. Take $h=i t \in i \mathbb{R}$, let $t \rightarrow 0: f^{\prime}(z)=-i \partial_{y} f=\partial_{y} f_{2}-i \partial_{y} f_{1}$. Equating gives the Cauchy-Riemann equations.
 ${ }^{2} \sum_{n=0}^{\infty} a_{n}(z-p)^{n}$ with $a_{n}=f^{(n)}(p) / n!$
 ${ }^{3}$ Meaning: there is a smooth map $F:(-\varepsilon, \varepsilon) \times U \rightarrow \mathbb{R}^{n}$, called flow, defined on a small enough neighbourhood U of p (and $\varepsilon>0$ depends on U), such that $t \mapsto F(t, q)$ is the flowline of V through $q=F(0, q)$.

