Professor Joyce
B3.2 Geometry of Surfaces
MT 2022

Handout on Riemann surfaces

Ramification points, branch points, degree, and Riemann-Hurwitz

Let $f: X \rightarrow Y$ be a holomorphic map of Riemann surfaces, which is not locally constant (that is, there is no open $U \subset X$ with $U \neq \emptyset$ such that $f(U)=\{y\} \subset Y)$. Let $x \in X$ with $f(x)=y \in Y$. Choose local holomorphic coordinates w on X near x and z on Y near y, with x at $w=a$ and y at $z=b$. Then f is locally of the form $w \mapsto z(w)$ for a holomorphic function $z(w)$ defined near $w=a$ in \mathbb{C}, with $z(a)=b$.
(Equivalently: (U, V, w) is a chart on X with $x \in U$, and $\left(U^{\prime}, V^{\prime}, z\right)$ is a chart on Y with $y \in U^{\prime}$, and the function $w \mapsto z(w)$ is $z \circ f \circ w^{-1}$.)
As f is not locally constant, $z(w)$ is not locally constant. So by considering the Taylor series of z at a we see there is a least $m \geq 1$ with $c=\frac{\mathrm{d}^{m} z}{\mathrm{~d} w^{m}}(a) \neq 0$, and then $z(w)=b+\frac{c}{m!}(w-a)^{m}+O\left((w-a)^{m+1}\right)$. Define the ramification index of f at x to be $\nu_{f}(x)=m$. It is independent of the choice of local coordinates w, z on X, Y. It satisfies $\nu_{f}(x) \geq 1$ for all $x \in X$.
We call $x \in X$ a ramification point, and $y=f(x) \in Y$ a branch point, if $\nu_{f}(x)>1$. Ramification points are isolated in X. Thus, if X is compact, there are only finitely many ramification points in X, and hence only finitely many branch points in Y.
Now suppose that X, Y are both nonempty, compact and connected. (Actually we only really need Y connected, not X.) Then the degree $d=\operatorname{deg} f$ is the unique positive integer such that $\left|f^{-1}(y)\right|=d$ for any $y \in Y$ which is not a branch point. It also satisfies, for any $y \in Y$,

$$
d=\sum_{x \in X: f(x)=y} \nu_{f}(x),
$$

where the sum is finite. Note that this implies that $\nu_{f}(x) \leq d$ for all $x \in$ X, which can be useful for computing ramification indices. The RiemannHurwitz formula says that if f has ramification points x_{1}, \ldots, x_{k} then

$$
\chi(X)=d \chi(Y)-\sum_{i=1}^{k}\left(\nu_{f}\left(x_{i}\right)-1\right)
$$

If $f: X \rightarrow Y$ is degree 2 with ramification points x_{1}, \ldots, x_{k} and branch points y_{1}, \ldots, y_{k} (automatically distinct, also k is even) you can reconstruct X, f from Y and y_{1}, \ldots, y_{k}, by gluing 2 copies of Y along cut edges $y_{2 i-1} \rightarrow y_{2 i}$.

