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Index of Notation
𝐵(𝑎, 𝑟) the open ball of radius 𝑓 centred at 𝑎.
̄𝐵(𝑎, 𝑟) the closed ball of radius 𝑟 centred at 𝑎.

ℬ(𝑋, 𝑌) the space of bounded linear maps 𝛽∶ 𝑋 → 𝑌 between normed vector spaces 𝑋 and 𝑌 .

B𝑋 the closed ball ̄𝐵(0𝑋 , 1) of radius 1 centred at 0𝑋 in a normed vector space 𝑋 .

𝒞𝑘(𝑈, 𝑌) for 𝑘 a non-negative integer this is the space of continuous functions 𝑓∶ 𝑈 → 𝑌
defined on an open subset 𝑈 of a normed vector space 𝑋 taking values in a normed
vector space 𝑌 which are 𝑘 times continuously differentiable.

𝒞∞(𝑈, 𝑌) the space of infinitely differentiable functions on an open subset𝑈 of a normed vec-
tor space 𝑋 taking values in a normed vector space 𝑌 .

ℒ(𝑉,𝑊) the space of linear maps 𝛼∶ 𝑉 → 𝑊 between vector spaces 𝑉 and𝑊 .

Mat𝑚,𝑛(ℝ) the space of 𝑛 × 𝑚matrices with entries in ℝ.

Mat𝑛(ℝ) the space of 𝑛 × 𝑛matrices with entries in ℝ.

0𝑋 the zero vector in a vector space 𝑋 . If 𝑉 = ℝ𝑛 we write 0𝑛 in place of 0ℝ𝑛 , and if
the vector space in question is clear from the context we suppress the subscript and
write 0 rather than 0𝑋 .

𝑂𝑌 (‖𝑥‖) the space of functions𝑓 definedonaneighbourhoodof 0𝑋 in a normedvector space𝑋
taking values in a normed vector space𝑌 with the property that there exist constants
𝐶, 𝑟 > 0 such that ‖𝑓(𝑥)‖

‖𝑥‖
≤ 𝐶 for all 𝑥 ∈ 𝐵(0𝑋 , 𝑟).

𝑜𝑌 (‖𝑥‖) the space of functions 𝑓 defined on a neighbourhood of 0𝑋 in a normed vector space
𝑋 taking values in a normed vector space 𝑌 with the property that lim𝑥→0

‖𝑓(𝑥)‖
‖𝑥‖

= 0.

(𝑈, 𝑎) a pointed set, i.e. 𝑈 is a set and 𝑎 ∈ 𝑈 is an element of 𝑈.

Course Outline

• Definition of a derivative of a function from ℝ𝑛 to ℝ𝑚; examples; elementary properties;
partial derivatives; the chain rule; the gradient of a function from ℝ𝑛 to ℝ; Jacobian. Con-
tinuous partial derivatives imply differentiability. Mean Value Theorems. [3 lectures]

• The Inverse Function Theorem and the Implicit Function Theorem (proofs are not exam-
inable). Lagrange multipliers [3 lectures]

• The definition of a submanifold of ℝ𝑛. Its tangent and normal space at a point, examples,
including two-dimensional surfaces in ℝ3. [2 lectures]
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1 Review from A1: Linear maps and continuity
Everything in sections §1.1 and §1.2 apart fromDefinition 1.10 is covered in theMetric Spaces part of
theA.1 core course. The only significant new result is proved in section §1.3: Theorem1.17 shows that
a linear map between normed vector spaces whose domain is finite-dimensional is automatically
continuous.

1.1 Normed vector spaces

Before discussing the notion of differentiability for functions of many (real) variables, we begin
by reviewing the relationship between the conditions of continuity and linearity for functions,
in the natural context where both notions are defined, namely that of normed vector spaces.

Definition 1.1. A normed vector space (𝑋, ‖.‖) is a pair consisting of a real1 vector space 𝑋 and a
function ‖.‖∶ 𝑋 → ℝwhich satisfies, for all 𝑣, 𝑤 ∈ 𝑋 and 𝜆 ∈ ℝ:

1. ‖𝑣‖ ≥ 0with equality if and only if 𝑣 = 0. (Positivity.)

2. ‖𝜆.𝑣‖ = |𝜆|.‖𝑣‖. (Homogeneity.)

3. ‖𝑣 + 𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖. (Triangle inequality.)

We write 0𝑋 for the zero vector in 𝑋 (or simply 0 if there is no possibility for confusion). Taking
𝜆 = 0 in (2)we see that ‖0𝑋‖ = 0 and thus by (2) and (3)we must have

0 = ‖0𝑋‖ ≤ ‖𝑣‖ + ‖ − 𝑣‖ = 2‖𝑣‖.

Hence (2) and (3) in fact imply the inequality in (1), however the implication ‖𝑣‖ = 0 ⟹ 𝑣 = 0
does not follow from (2) and (3). A normed vector space is automatically a metric space, where
the distance between 𝑣1, 𝑣2 ∈ 𝑉 is defined to be ‖𝑣1 − 𝑣2‖.

Remark 1.2. We will normally write ‖.‖ for the norm on an arbitrary vector space, as it will be
clear from context which vector space is in question. When there might be ambiguity2, such as
when we consider more than one norm on the same vector space, we will decorate the normwith
a subscript, e.g. ‖.‖𝑋 or ‖.‖1.

We will largely follow the notational conventions of the Metric Spaces and Complex Analysis
course, and write, for example, for 𝑎 ∈ 𝑋 and 𝑟 ≥ 0

𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑋 ∶ ‖𝑥 − 𝑎‖ < 𝑟}, ̄𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑋 ∶ ‖𝑥 − 𝑎‖ ≤ 𝑟},

for the open and closed balls respectively about 𝑎 of radius 𝑟. Note that in a normed vector space,
unlike in a general metric space, if 𝑟 > 0 then the closed ball ̄𝐵(𝑎, 𝑟) is always the closure 𝐵(𝑎, 𝑟) of
𝐵(𝑎, 𝑟). When 𝑉 = ℝ𝑛 we will write 0𝑛 in place of 0ℝ𝑛 .

We will also write B𝑋 for the closed ball ̄𝐵(0𝑋 , 1) and 𝑆𝑋 = {𝑣 ∈ 𝑋 ∶ ‖𝑣‖ = 1} for its boundary,
the unit sphere centred at 0𝑋 .

Recall that if 𝑋 is a normed vector space and 𝑎 ∈ 𝑋 we say that a subset 𝑈 ⊆ 𝑋 is a neighbour-
hood of 𝑎 if there is some 𝑟 > 0 such that the open ball 𝐵(𝑎, 𝑟) of radius 𝑟 centred at 𝑎 is contained
in 𝑈. We say 𝑈 is open if it is a neighbourhood of each of its points, that is, for every 𝑥 ∈ 𝑈 there
is some 𝑟𝑥 > 0 such that 𝐵(𝑥, 𝑟𝑥) ⊆ 𝑈.

Example 1.3. If 𝑋 is one-dimensional, it is easy to understand all possible norms on 𝑋 . Indeed if
wepick 𝑒1 ∈ 𝑋\{0}, then for any 𝑣 ∈ 𝑋 there is a unique 𝜆 ∈ ℝ such that 𝑣 = 𝜆.𝑒1. Now if𝑓∶ 𝑋 → ℝ≥0
is homogeneous, so that 𝑓(𝑡.𝑣) = |𝑡|.𝑓(𝑣) for all 𝑡 ∈ ℝ, then 𝑓(𝑣) = |𝜆|.𝑓(𝑒1). Since it is easy to check

1In fact one just needs afieldwith a sensible notionof “absolute value” – for example the complexnumbers equipped
with the modulus function.

2If you find an ambiguity I have missed, please let me know.
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that the absolute-value function 𝑡 ↦ |𝑡| on ℝ is a norm, it follows from the formula 𝑓(𝑣) = |𝜆|𝑓(𝑒1)
that 𝑓 is a norm on 𝑋 provided 𝑓 is not identically zero. Since any norm on 𝑋 necessarily satisfies
the homogeneity condition, it follows that any norm ‖.‖ on 𝑋 has the form ‖𝑣‖ = 𝑐.|𝜆| for 𝑐 > 0 a
positive real number (where, as above, 𝑣 = 𝜆.𝑒1).

If dim(𝑋) > 1 – indeed even for dim(𝑋) = 2 – one cannot give such an explicit classification of
all possible norms3, but we will shortly see that, for finite dimensional vector spaces, all norms
are equivalent in a sensewhich immediately implies they all yield the samenotion of convergence,
continuity, and uniform continuity.

Example 1.4. Let 𝑋 = ℝ𝑛. Then there are many norms which are natural to consider. Perhaps the
three most commonly used ones are the following: For 𝑣 = (𝑣1,… , 𝑣𝑛) ∈ ℝ𝑛, we set

‖𝑣‖∞ = max
1≤𝑖≤𝑛

|𝑥𝑖|,

‖𝑣‖1 =
𝑛
∑
𝑖=1

|𝑥𝑖|

‖𝑣‖2 = (
𝑛
∑
𝑖=1

𝑥2𝑖 )
1/2

Where it is important to emphasizewhichnormweareusingonℝ𝑛, wewillwriteℓ𝑛† for thenormed
vector space (ℝ𝑛, ‖.‖†) (where † ∈ {1, 2,∞}).

Example 1.5. The normed vector space ℓ𝑛2 is an example of an inner product space, meaning that
the norm comes from a positive definite symmetric bilinear form (or inner product): if 𝑥, 𝑦 ∈ ℝ𝑛,
then the pairing ⟨𝑥, 𝑦⟩ = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 (the standard “dot product”) is such a form and ‖𝑥‖ = ⟨𝑥, 𝑥⟩1/2.
Inner product spaces have both a notion of distance and angle.

If 𝑋 and 𝑌 are are finite-dimensional inner product spaces, and we write ⟨𝑣1, 𝑣2⟩𝑋 denote the
inner product on 𝑋 and ⟨𝑤1, 𝑤2⟩𝑌 the inner product on 𝑌 , then, as in A0 Linear Algebra, for any
𝑇 ∈ ℒ(𝑋, 𝑌), there is a unique 𝑇∗ ∈ ℒ(𝑌, 𝑋) such that

⟨𝑇(𝑣), 𝑤⟩𝑌 = ⟨𝑣, 𝑇∗(𝑤)⟩𝑋 , ∀𝑣 ∈ 𝑋,𝑤 ∈ 𝑌. (†)
Indeed if one picks orthonormal bases 𝐵𝑋 and 𝐵𝑌 for 𝑋 and 𝑌 respectively, then applying (†)

to the elements of 𝐵𝑋 and 𝐵𝑌 shows that if 𝑇 has matrix 𝐴 with respect to these bases then 𝑇∗

must have matrix 𝐴𝑡. On the other hand it is easy to see using bilinearity (“multiplying out”) that
if 𝑇∗ satisfies (†) for 𝑣 ∈ 𝐵𝑋 and 𝑤 ∈ 𝐵𝑌 then it satisfies (†) for all 𝑣 ∈ 𝑋 and 𝑤 ∈ 𝑌 , thus 𝑇∗ is just
the linear map corresponding to the matrix 𝐴𝑡 and the bases 𝐵𝑋 , 𝐵𝑌 . Notice that this also shows
tr(𝑇) = tr(𝑇∗) since the trace of a matrix is equal to that of its transpose.

When 𝑋 and 𝑌 are inner product spaces, we can make ℒ ∶= ℒ(𝑋, 𝑌)) into an inner product
spaces by setting

⟨𝑆1, 𝑆2⟩ℒ = tr𝑋(𝑆∗1𝑆2) = tr𝑌 (𝑆∗2𝑆1), ∀𝑆1, 𝑆2 ∈ ℒ(𝑋, 𝑌)
where the second equality holds because (𝑆∗1𝑆2)∗ = 𝑆∗2(𝑆∗1)∗ = 𝑆∗2𝑆1 and since, as noted above, for
any 𝑇 ∈ ℒ(𝑋, 𝑌)we have tr(𝑇∗) = tr(𝑇), this is a symmetric bilinear form.

If we pick orthonormal bases 𝐵𝑋 = {𝑏1,… , 𝑏𝑛} and 𝐵𝑌 = {𝑐1,… 𝑐𝑚} of 𝑋 and 𝑌 respectively, then
if 𝐴 = (𝑎𝑖𝑗) = 𝐵𝑌 [𝑆]𝐵𝑋 is the matrix of 𝑆 with respect to these bases, we have 𝑎𝑖𝑗 = ⟨𝑐𝑖, 𝑆(𝑏𝑗)⟩𝑌 , and
hence

⟨𝑆, 𝑆⟩ℒ = tr(𝐴𝑡𝐴) = ∑
1≤𝑘≤𝑛
1≤𝑗≤𝑚

𝑎𝑡𝑘𝑗𝑎𝑗𝑘 = ∑
1≤𝑘≤𝑛
1≤𝑗≤𝑚

𝑎2𝑗𝑘

3Giving a norm ‖.‖ on a real vector space 𝑉 is equivalent to giving the set 𝐵‖.‖ = {𝑣 ∈ 𝑉 ∶ ‖𝑣‖ ≤ 1} of vectors in its
closed unit ball. Such a set 𝐵‖.‖ must be convex and “symmetric” in the sense that it is preserved by the map 𝑥 ↦ −𝑥,
and satisfy both⋃𝑡>0 𝑡𝐵 = 𝑉 and⋂𝑡>0 𝑡𝐵 = {0}, but is otherwise unconstrained.
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hence ⟨𝑆, 𝑇⟩ℒ is positive definite – indeed it follows that ℒ has an orthonormal basis consisting
of the linear maps corresponding to the elemenary matrices {𝐸𝑖𝑗}1≤𝑖,𝑗≤𝑛. The associated norm on
ℒ(𝑋, 𝑌) is called the Hilbert-Schmidt norm, ‖𝑆‖𝐻𝑆 = ⟨𝑆, 𝑆⟩1/2ℒ .

1.2 Bounded linear maps

Definition 1.6. If 𝑋 and 𝑌 are vector spaces, we write ℒ(𝑋, 𝑌) for the vector space of all linear
maps from 𝑋 to 𝑌 . If 𝑋 = 𝑌 then we write 𝐼𝑋 for the identity map from 𝑋 to itself. (In the case
where 𝑋 = ℝ𝑛 we will usually write 𝐼𝑛 rather than 𝐼ℝ𝑛 .)

Ifwepickbases𝐵𝑋 = {𝑒1,… , 𝑒𝑛}of𝑋 and𝐵𝑌 = {𝑓1,… , 𝑓𝑚}of𝑌 respectively, thenwecan identify
ℒ(𝑋, 𝑌) with Mat𝑚,𝑛(ℝ) the space of 𝑛-by-𝑚matrices where if 𝛼 ∈ ℒ(𝑋, 𝑌) the 𝛼 ↦ 𝐴 = (𝑎𝑖𝑗) with
𝛼(𝑒𝑗) = ∑𝑚

𝑖=1 𝑎𝑖𝑗𝑓𝑖. If dim(𝑋) = dim(𝑌) = 𝑛, then we write Mat𝑛(ℝ) instead of Mat𝑛,𝑛(ℝ).

Definition 1.7. A linear map 𝑇 ∶ 𝑋 → 𝑌 is said to be bounded if there is some constant 𝐶 > 0 such
that

‖𝑇(𝑥)‖ ≤ 𝐶.‖𝑥‖, ∀𝑥 ∈ 𝑋.
Wewill writeℬ(𝑋, 𝑌) for the set of bounded linearmaps from𝑋 to 𝑌 . Note that, for 𝑥 ≠ 0, this con-
dition is equivalent to ‖𝑇( 𝑥

‖𝑥‖
)‖≤ 𝐶, thus 𝑇 is bounded if and only if ‖𝑇(𝑥)‖ is bounded on ̄𝐵(0𝑋 , 1).

Exercise 1.8. In Problem Sheet 1, you are asked to show that a linear map 𝑇 ∈ ℒ(𝑋, 𝑌) is bounded
if and only if it takes bounded subsets of 𝑋 to bounded subsets of 𝑌 .

Bounded linear maps are clearly continuous, indeed Lipschitz continuous: if 𝐶 is an upper
bound for 𝑇 ∶ 𝑋 → 𝑌 on ̄𝐵(0𝑋 , 1) then if 𝑥1, 𝑥2 ∈ 𝑋 then ‖𝑇(𝑥1) − 𝑇(𝑥2)‖ = ‖𝑇(𝑥1 −𝑥2)‖ ≤ 𝐶.‖𝑥1 −𝑥2‖,
so that 𝑇 is Lipschitz continuous with Lipschitz constant 𝐶. The following Lemma refines this
observation slightly, using the notational conventions described in §5.1 of the Appendix.

Lemma 1.9. Let 𝑋 and 𝑌 be normed vector spaces. Then if 𝒞0(𝑋, 𝑌) denotes the space of continuous
functions from 𝑋 to 𝑌 we have

ℬ(𝑋, 𝑌) = 𝑂𝑌 (‖𝑣‖) ∩ ℒ(𝑋, 𝑌) = 𝒞0(𝑋, 𝑌) ∩ ℒ(𝑋, 𝑌) = 𝒩0(𝑋, 𝑌) ∩ ℒ(𝑋, 𝑌)

In particular, ℬ(𝑋, 𝑌) is a vector space.

Proof. If 𝑇 ∶ 𝑋 → 𝑌 is bounded then it is clear from the definition that it lies in 𝑂𝑌 (‖.‖), and we
have already seen above that it must be continuous. Since continuity implies continuity at 0𝑋 , to
complete the proof it suffices to show that if 𝑇 is continuous at 0𝑋 , then it is bounded. But if 𝑇 is
continuous at 0𝑋 , then there is a 𝛿 > 0 such that ‖𝑇(𝑣)‖ < 1 for all 𝑣 ∈ 𝐵(0𝑋 , 𝛿). But then for any
𝑣 ∈ 𝑋 with ‖𝑣‖ ≤ 1, we have (1/2𝛿).𝑣 ∈ 𝐵(0𝑋 , 𝛿) so that ‖𝑇((𝛿/2).𝑣)‖ ≤ 1, and hence for all 𝑣 ∈ 𝑉 with
‖𝑣‖ ≤ 1we have ‖𝑇(𝑣)‖ ≤ 2/𝛿, that is, 𝑇 is bounded. □

Definition 1.10. The space of bounded linear maps ℬ(𝑋, 𝑌) is a normed vector space, with the
norm, known as the operator norm given by 𝑇 ↦ ‖𝑇‖∞, where ‖𝑇‖∞ is defined as above. Using
standard facts about suprema, you can check that this norm is submultiplicative, in the sense
that if 𝑋, 𝑌 and 𝑍 are normed vector spaces, 𝑆∶ 𝑋 → 𝑌 and, as above 𝑇 ∶ 𝑌 → 𝑍, then ‖𝑇 ∘ 𝑆‖∞ ≤
‖𝑇‖∞.‖𝑆‖∞.

Remark 1.11. InMetric Spaces, you studied the space𝐵(𝑋)of real-valued bounded functionson an
arbitrary set𝑋 and, for ametric space𝑋, the space of bounded, real-valued, continuous functions
𝒞𝑏(𝑋). In that setting, a function is said to be bounded if its image is a bounded set. The image
of a non-zero linear map 𝛼∶ 𝑋 → 𝑌 between normed vector spaces is never bounded, thus the
usages are not, at first sight, consistent.

This apparent inconsistency is not, however, impossible to resolve4: Since it is compatible
with scaling, a linear map 𝛼 is completely determined by its values on B𝑋 = ̄𝐵(0𝑋 , 1), indeed if

4It, of course, is perfectly acceptable to just remember the apparent inconsistency in usage.
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𝑣 ≠ 0 then 𝑢 = 𝑣/‖𝑣‖ ∈ B𝑋 and 𝛼(𝑣) = ‖𝑣‖𝛼(𝑢). Thuswe get an injectivemap 𝑟∶ ℬ(𝑋, 𝑌) → 𝒞(B𝑋 , 𝑌),
from ℬ(𝑋, 𝑌) to the space of continuous functions on B𝑋 taking values in 𝑌 . Here 𝑟(𝛼) is just the
restriction of 𝛼 to the closed ball B𝑋 . By definition, it gives an isometric embedding of ℬ(𝑋, 𝑌),
equipped with the operator norm, into 𝒞𝑏(B𝑋 , 𝑌), where the latter space is equipped with the
usual supremum norm: ‖𝑓‖∞ = sup{‖𝑓(𝑥)‖ ∶ 𝑥 ∈ B𝑋 }.
Definition 1.12. If 𝑋 and 𝑌 are normed vector spaces, we say that 𝛼 ∈ ℬ(𝑋, 𝑌) is a topological
isomorphism if it has a bounded linear inverse. More precisely, 𝛼 ∈ ℬ(𝑋, 𝑌) is a topologial isomor-
phism if there is a 𝛽 ∈ ℬ(𝑌, 𝑋) such that 𝛼 ∘ 𝛽 = 𝐼𝑌 and 𝛽 ∘ 𝛼 = 𝐼𝑋 . By Lemma 1.9, this is equivalent
to the condition that 𝛼 has a continuous linear inverse. When such an isomorphism exists, we say
that 𝑋 and 𝑌 are topologically isomorphic.

Note that because a linear map is continuous if and only if it is uniformly continuous, and
indeed Lipschitz continuous, if 𝑋 and 𝑌 are normed vector spaces and 𝑋 is a complete, then if
𝑌 is topologically isomorphic to 𝑋, it must also be complete, since uniformly continuous maps
preserve Cauchy sequences.

Definition 1.13. If 𝑋 is a vector spacewith two norms ‖.‖𝑎 and ‖.‖𝑏, then ‖.‖𝑎 and ‖.‖𝑏 are equivalent
if the identity map is a topological isomorphism from (𝑋, ‖.‖𝑎) to (𝑋, ‖.‖𝑏).

To make this explicit, let 𝜄∶ (𝑋, ‖.‖𝑎) → (𝑋, ‖.‖𝑏) be the identity map viewed as a map between
two different normed vector spaces (𝑋, ‖.‖𝑎) and (𝑋, ‖.‖𝑏). The fact that 𝜄 is bounded is equivalent
to the existence of a constant 𝐶1 > 0 such that, for all 𝑣 ∈ 𝑋 we have ‖𝑣‖𝑏 = ‖𝜄(𝑣)‖𝑏 ≤ 𝐶1.‖𝑣‖𝑎. On
the other hand, the fact that 𝜄−1 is bounded is equivalent to the existence of a constant 𝐶2 > 0
such that ‖𝑣‖𝑎 = ‖𝜄−1(𝑣)‖𝑎 ≤ 𝐶2.‖𝑣‖𝑏. Setting 𝑐 = 𝐶−1

1 and 𝐶 = 𝐶2, this is equivalent to the existence
of constants 𝑐, 𝐶 > 0 such that

𝑐.‖𝑣‖𝑏 ≤ ‖𝑣‖𝑎 ≤ 𝐶.‖𝑣‖𝑏 ∀𝑣 ∈ 𝑋. (1.1)

If ‖.‖𝑎 and ‖.‖𝑏 are equivalent, then they yield the same notions of continuity, convergence,
and uniform continuity and a function 𝑓 is 𝑜(‖𝑥‖𝑎) if and only if it is 𝑜(‖𝑥‖𝑏).
Example 1.14. Consider the norms ‖.‖1 and ‖.‖2 onℝ𝑛 defined above. We claim that they are equiv-
alent. Indeed if 𝑥 = (𝑥1,… , 𝑥𝑛), then clearly

‖𝑥‖22 =
𝑛
∑
𝑖=1

|𝑥𝑖|2 ≤
𝑛
∑
𝑖=1

|𝑥𝑖|2 + 2∑
𝑖<𝑗

|𝑥𝑖|.|𝑥𝑗 | = (
𝑛
∑
𝑖=1

|𝑥𝑖|)
2 = ‖𝑥‖21.

so that ‖𝑥‖2 ≤ ‖𝑥‖1. On the other hand, applying Cauchy-Schwarz to the vectors 𝑢1 = (1, 1… , 1)
and 𝑢2 = (|𝑥1|,… , |𝑥𝑛|), we see that

‖𝑥‖1 =
𝑛
∑
𝑖=1

|𝑥𝑖| =
𝑛
∑
𝑖=1

1.|𝑥𝑖| ≤ 𝑛1/2.‖𝑥‖2,

Remark 1.15. Let 𝑋 = 𝐶([0, 1]) be the space of continuous functions on the interval [0, 1] and
let 𝑌 = 𝐶1

0([0, 1]) be the space of continuously differentiable functions on the same interval (with
one-sided derivatives at the end-points) which vanish at the origin. View both𝑋 and 𝑌 as normed
vector spaces using the supremum norm. Then we have a linear map 𝑇 ∶ 𝑋 → 𝑌 , where if 𝑓 ∈ 𝑋,

𝑇(𝑓)(𝑥) = ∫
𝑥

0
𝑓(𝑡)𝑑𝑡.

The fundamental theorem of calculus shows that 𝑇(𝑓) is indeed in 𝑌 = 𝐶1
0([0, 1]) if 𝑓 ∈ 𝐶([0, 1]),

and the triangle equality for integrals shows that ‖𝑇(𝑓)‖ ≤ ∫1
0 |𝑓(𝑡)|𝑑𝑡 ≤ ‖𝑓‖∞, so that 𝑇 ∈ ℬ(𝑋, 𝑌).

While 𝑇 is invertible with inverse 𝐷∶ 𝑌 → 𝑋, where 𝐷(𝑔) = 𝑔′ for all 𝑔 ∈ 𝑌 , it is easy to see that 𝐷
is unbounded. Thus while 𝑇 is a linear isomorphism, it is not a topological isomorphism.

This difference between integration and differentiation is closely related to the ideas dis-
cussed in Picard’s Theorem in Differential Equations 1.

6



1.3 Finite dimensional normed vector spaces

Lemma 1.16. Let 𝑋 be a normed vector space and let 𝑇 ∶ ℓ𝑛1 → 𝑋 be a linear map, (where ℓ𝑛1 =
(ℝ𝑛, ‖.‖1)). Then 𝑇 is automatically bounded, and moreover, if 𝑇 is bijective, then it is a topological
isomorphism.

Proof. Let {𝑒1,… , 𝑒𝑛} be the standard basis of ℝ𝑛, and set𝑀1 = max{‖𝑇(𝑒𝑖)‖ ∶ 1 ≤ 𝑖 ≤ 𝑛}. Now any
𝑥 ∈ ℝ𝑛 can be written as 𝑥 = ∑𝑛

𝑖=1 𝜆𝑖𝑒𝑖, and hence

‖𝑇(𝑥)‖ = ‖
𝑛
∑
𝑖=1

𝜆𝑖𝑇(𝑒𝑖)‖ ≤
𝑛
∑
𝑖=1

|𝜆𝑖|.‖𝑇(𝑒𝑖)‖ ≤ 𝑀1.‖𝑥‖1,

and so 𝑇 is bounded.
Now suppose that 𝑇 is bijective. Its set-theoretic inverse is automatically linear, and to show

it is continuous, i.e. bounded, we must show there is some 𝑀2 > 0 such that ‖𝑇−1(𝑣)‖1 ≤ 𝑀2‖𝑣‖,
for all 𝑣 ∈ 𝑋, or equivalently (setting 𝑥 = 𝑇−1(𝑣) and 𝐶 = 𝑀−1

2 ) some 𝐶 > 0 such that

𝐶.‖𝑥‖1 ≤ ‖𝑇(𝑥)‖ ⟺ 𝐶 ≤ ‖
‖‖𝑇 (

𝑥
‖𝑥‖1

)‖‖‖ .

Now if 𝑆1 = {𝑥 ∈ ℝ𝑛 ∶ ‖𝑥‖1 = 1} (the “sphere” of unit radius in the ‖.‖1-norm) then, by Bolzano-
Weierstrass, 𝑆1 is compact, and 𝑥 ↦ ‖𝑇(𝑥)‖ is continuous, its image is closed and bounded in ℝ.
Now since ‖𝑇(𝑥)‖ > 0 for all 𝑥 ∈ 𝑆1 (since ‖.‖ is a norm) 𝑚 = min{‖𝑇(𝑥)‖ ∶ 𝑥 ∈ 𝑆1} > 0, and hence
we may take 𝐶 = 𝑚. □

Theorem 1.17. Let 𝑋 and 𝑌 be normed vector spaces. If 𝑋 is finite-dimensional then ℒ(𝑋, 𝑌) =
ℬ(𝑋, 𝑌), that is, every linear map from 𝑋 to 𝑌 is automatically continuous. In particular, any two
norms on 𝑋 are equivalent.

Proof. Let 𝑛 = dim(𝑋) and suppose 𝑇 ∶ 𝑋 → 𝑌 is a linear map. Picking a basis 𝐵 = {𝑣1,… , 𝑣𝑛}
of 𝑋 induces an bijective linear map 𝜙𝐵 ∶ ℝ𝑛 → 𝑋 given by 𝜙𝐵(𝜆1,… , 𝜆𝑛)𝑡 = ∑𝑛

𝑖=1 𝜆𝑖𝑣𝑖. Then by
the previous Lemma we see that 𝜙𝐵 is a topological isomorphism, and also that the composition
𝑇 ∘𝜙𝐵 ∶ ℝ𝑛 → 𝑌 is continuous. But then 𝑇 = (𝑇 ∘𝜙𝐵)∘𝜙−1𝐵 is a composition of continuous functions
and hence is continuous as required.

For the final sentence, let ‖.‖𝑎 and ‖.‖𝑏 be two norms on 𝑋, By the first part of the Lemma, the
identitymap, viewed as amap from (𝑋, ‖.‖𝑎) to (𝑋, ‖.‖𝑏) is continuous, as is its inverse, which is the
identity map viewed as a map from (𝑋, ‖.‖𝑏) to (𝑋, ‖.‖𝑎), which precisely says that ‖.‖𝑎 and ‖.‖𝑏 are
equivalent. □

Corollary 1.18. Let 𝑋 be a normed vector space and let 𝐹 be a finite dimensional subspace. Then 𝐹
is a closed subset of 𝑋 .

Proof. If dim(𝐹) = 𝑘, then Theorem 1.17 show that a linear isomorphism 𝜙∶ ℝ𝑘 → 𝐹 is automat-
ically continuous (viewing ℝ𝑘 as a normed vector space with the ‖.‖1-norm). Since a continuous
linear map is automatically Lipschitz continuous, and ℝ𝑘 is complete, so is 𝐹. As a complete sub-
space of a metric space it must be closed (see the proof of Lemma 6.2.1 in [G] – a closed subset of
a complete metric space is complete, but a complete subspace of a metric space is always closed
whether or not the the ambient space is complete). □

Remark 1.19. The upshot of the previous discussion is that, for the purposes of this course, we
do not lose any generality by assuming our normed vector spaces are of the form ℝ𝑛 equipped
with the ‖.‖2 norm associated to the standard dot product (and thus the spaces of linear maps
between them can also be viewed as an inner product space using the Hilbert-Schmidt norm, or
as a normed vector space using the operator norm). However, the results of this section shows
that we are free to use whichever norm is convenient (e.g. in the proof of the previous corollary,
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the ‖.‖1 norm is the simplest to consider) and that, even if we state results for (ℝ𝑛, ‖.‖2), they hold
for any finite-dimensional normed vector space.

Indeed part of our goal in this course is to show the advantages of being able to choose good
“local” coordinates when studying differentiable functions, by analogywith theway inwhichwe
study linear maps by finding a basis with respect to which they are as simple as possible (e.g.
diagonalisable) we will take care however to point out when the concepts we study require a
choice of basis for our vector space or not.
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2 The derivative in higher dimensions
Suppose that 𝑈 is an open subset of ℝ𝑛 and 𝑓∶ 𝑈 → ℝ𝑚 is an ℝ𝑚-valued function. We would like
to extend the one-variable notion of the differentiability to functions of this kind, which have
both higher-dimensional input and output. First however, it is important to note that we must
equipℝ𝑛 andℝ𝑚 withmetrics in order for the notion of a limit tomake sense, and if such ametric
obeys some natural compatibilities with vector addition and scalar multiplication, it is induced
by a norm. Thus a more invariant (or “coordinate free”) way to phrase our goal, is the following:
Given (finite-dimensional) normed vector spaces 𝑋 and 𝑌 and an open subset 𝑈 of 𝑋, what is a
sensible definition of the derivative of a function 𝑓∶ 𝑈 → 𝑌?

To extend the notion of differentiability to the case where 𝑛 > 1, it is useful to recall some
of the natural interpretations of the (one-variable) derivative: In dynamics, the derivative arises
from the notion of instantaneous speed or velocity, while in geometry, the derivative at a point 𝑎
gives the slope of the tangent line to the graph of 𝑓 at the point (𝑎, 𝑓(𝑎)).

2.1 The one-dimensional case

Let us first consider the case of a function 𝑓∶ 𝑋 → 𝑌 , where dim(𝑋) = dim(𝑌) = 1. Recall that, for
a function 𝑔∶ ℝ → ℝ, the derivative of 𝑔 at a point 𝑎 ∈ ℝ is defined to be

𝐷𝑔(𝑎) = 𝑔′(𝑎) ∶= lim
𝑥→𝑎

𝑔(𝑥) − 𝑔(𝑎)
𝑥 − 𝑎

= lim
ℎ→0

𝑔(𝑎 + ℎ) − 𝑔(𝑎)
ℎ

(2.1)

But now if we are given a function 𝑓∶ 𝑋 → 𝑌 between two 1-dimensional different vector
spaces, the if 𝑥 ≠ 𝑎 are vectors in 𝑋, the difference 𝑓(𝑥) − 𝑓(𝑎) is a vector in 𝑌 , while 𝑥 − 𝑎 is
a vector in 𝑋, so it seems meaningless to consider their quotient. The obvious response to this
problem is to pick coordinates so that we can identify both 𝑋 and 𝑌 with ℝ, and then apply the
standard definition. Thus let us pick a basis vector 𝑒1 ∈ 𝑋 and a basis vector 𝑒2 ∈ 𝑌 , and let us
identify 𝑋 withℝ via 𝑡 ↦ 𝑖1(𝑡) = 𝑎+𝑡𝑒1, and similarlywe identify 𝑌 withℝ via 𝑠 ↦ 𝑖2(𝑠) = 𝑓(𝑎)+𝑠𝑒2,
that is, we centre our coordinates at 𝑎 and 𝑓(𝑎) respectively.

Using these identifications, we obtain a scalar function 𝐹𝑒1,𝑒2 ∶ ℝ → ℝ, which is given by the
equation

𝑓(𝑎) + 𝐹𝑒1,𝑒2(𝑡).𝑒2 = 𝑓(𝑎 + 𝑡𝑒1).
One can view this equation as the requirement that, in the diagram:

𝑎 ∈ 𝑋 𝑓 // 𝑌 ∋ 𝑓(𝑎)

0 ∈ ℝ
𝑖1

OO

𝐹𝑒1,𝑒2
// ℝ ∋ 0

𝑖2

OO

if one goes from the bottom left to top right by either of the possible compositions, one gets the
same answer, that is 𝑓 ∘ 𝑖1 = 𝑖2 ∘ 𝐹𝑒1,𝑒2 . Note that 𝐹𝑒1,𝑒2(0) = 0, and, as a function from ℝ to itself we
can ask if 𝐹𝑒1,𝑒2 is differentiable at 𝑡 = 0, that is, as 𝐹𝑒1,𝑒2(0) = 0, if

lim
𝑡→0

𝐹𝑒1,𝑒2(𝑡)
𝑡

exists. If it does, we denote it by 𝐷𝑒1,𝑒2𝑓(𝑎) = 𝐹′𝑒1,𝑒2(0).
If 𝐷𝑒1,𝑒2𝑓(𝑎) was actually independent of the choice of bases {𝑒1}, {𝑒2}, then it would give a

natural defintion of the derivative of 𝑓 at 𝑎. However, if we choose different basis vectors 𝑒′1 = 𝜆.𝑒1
and 𝑒′2 = 𝜇.𝑒2, then the associated scalar function 𝐹𝑒′1,𝑒′2 is given by 𝐹𝑒′1,𝑒′2(𝑡) = 𝜇−1.𝐹𝑒1,𝑒2(𝜆.𝑡), and
hence 𝐹′𝑒′1,𝑒′2(0) = (𝜆/𝜇).𝐹′𝑒1,𝑒2(0). In other words 𝐷𝑒′1,𝑒′2𝑓(𝑎) = (𝜆/𝜇)𝐷𝑒1,𝑒2𝑓(𝑎).
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Remark 2.1. One conclusion we might draw from the calculations above is that this is not the
correct definition. With a bit more thought, however, it turns out that the correct conclusion to
take from them is that the derivative 𝐷𝑓(𝑎) is not in fact a scalar! It is instead an object to which
we can associate a scalar once we choose bases of 𝑋 and 𝑌 respectively. Moreover, if we know
this scalar for one choice of bases {𝑒1}, {𝑒2}, we can determine the scalar associated to any other
choice of bases provided we can express those bases in terms of the bases {𝑒1}, {𝑒2}.

If this sounds esoteric, it is worth noticing that in fact we already knew this from physics:
Recall that if a particle moves in space so that its position 𝑥(𝑡) is a function of the time 𝑡, then
the derivative 𝑑𝑥

𝑑𝑡
(𝑡) is the velocity of the particle at time 𝑡. But velocity is not a dimensionless

scalar, it has (S.I.) units𝑚𝑠−1, and the factor 𝜆/𝜇we found above matches those units: the choice
of 𝑒1 provided our “units”, or scale, for the domain of 𝑓 (which in the case of 𝑥(𝑡) is time, which is
measured in seconds) and the choice of 𝑒2 provides “units” for the codomain of 𝑓, which for 𝑥(𝑡)
is space, and distance is measured in metres. Viewing a change of the choice of bases from {𝑒1}
and {𝑒2} to {𝑒′1} and {𝑒′2} as a change of units, for example, changing the unit of time to hours, so
that ℎ = 3600𝑠, and the unit of distance to kilometres, so that 𝑘𝑚 = 1000𝑚, then if the velocity is
𝑣(𝑡) = 𝑑𝑥

𝑑
(𝑡) in 𝑚𝑠−1, it becomes 3.6 = 3600/1000 times 𝑣(𝑡) in 𝑘𝑚.ℎ−1, which is precisely the factor

(𝜆/𝜇)which we just observed above.

The previous remark hopefully confirms that 𝐷𝑓(𝑎) has to be something other than a scalar,
but perhaps it does not quite tell us how what kind of object we should expect 𝐷𝑓(𝑎) to be. We
can gain some insight into this simply by considering more carefully where we are forced to take
coordinates (rather than just picking coordinates wherever we can). Noticing that in a vector
space we can of course divide by any nonzero scalar, we see that it makes sense to ask if the limit

lim
𝑡→0

𝑓(𝑎 + 𝑡𝑒1) − 𝑓(𝑎)
𝑡

exists – that is, the standard formula for the derivative becomes syntactically coherent as soon
as we chose a basis {𝑒1} of 𝑋, so we did not need to pick a basis for 𝑌 . For 𝑒1 ∈ 𝑋 non-zero, wemay
therefore define

𝐷𝑒1𝑓(𝑎) ∶= lim
𝑡→0

𝑓(𝑎 + 𝑡.𝑒1) − 𝑓(𝑎)
𝑡 (2.2)

wherever this limit exits. Note that 𝐷𝑒1𝑓𝑎 is now an element of 𝑌 , rather than a scalar. However,
as

𝑓(𝑎 + 𝑡𝑒1) − 𝑓(𝑎)
𝑡 =

𝐹𝑒1,𝑒2(𝑡)
𝑡 .𝑒2,

it follows easily that that 𝐷𝑒1𝑓(𝑎) = 𝐷𝑒1,𝑒2𝑓(𝑎).𝑒2. Thus simply by replacing 𝐷𝑒1,𝑒2𝑓(𝑎) by the cor-
responding multiple of 𝑒2 we remove the dependence on the choice of a basis is 𝑌 . Now consider
(2.2) when 𝑒1 ∈ 𝑋 is arbitrary:

(i) If we take 𝑒1 = 0𝑋 in (2.2), then 𝑓(𝑎 + 𝑡.0𝑋) = 𝑓(𝑎) and hence the limit on the right-hand side
exists, and is equal to 0𝑌 .

(ii) It follows that if the limit in (2.2) exists for some non-zero vector in 𝑋, say a vector 𝑒0 with
‖𝑒0‖ = 1. Then (2.2) defines, for any 𝑣 ∈ 𝑋, a vector 𝐷𝑣𝑓(𝑎) in 𝑌 where if 𝑣 = 𝜆.𝑒0 then
𝐷𝑣𝑓(𝑎) = 𝜆.𝐷𝑒0𝑓(𝑎). Since dim(𝑋) = 1, this shows that 𝑣 ↦ 𝐷𝑣𝑓(𝑎) is a linear map from 𝑋 to
𝑌 .

Thus we have finally have a natural description of what 𝐷𝑓(𝑎) is: it is a linear map from 𝑋 to 𝑌
sending 𝑣 ∈ 𝑋 to 𝐷𝑣𝑓(𝑎) ∈ 𝑌 .

Remark 2.2. Of course, in addition to velocity and speed, the classic interpretation of the deriva-
tive of a function 𝑓 at a point 𝑎 is as the “slope of the tangent line” to the graph of 𝑓 at (𝑎, 𝑓(𝑎)).
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Indeed the tangent line is just the graph of the function 𝑓(𝑡) = 𝑓(𝑎) + 𝑓′(𝑎)(𝑡 − 𝑎). Here again we
can see that viewing the derivative, or slope, as a scalar is adequate if one is considering func-
tions from ℝ to itself, but as soon as we consider functions 𝑓∶ 𝑋 → 𝑌 between two arbitrary
one-dimensional vector spaces, we see that the tangent line must be the graph of a function of
the form 𝑡 ↦ 𝑓(𝑎) + 𝛼(𝑡 − 𝑎), where 𝛼 ∈ ℒ(𝑋, 𝑌) is linear. Thus we are also led to consider 𝐷𝑓(𝑎) as
a linear function from 𝑋 to 𝑌 by the “slope” interpretation of the derivative.

Notice thatwhen𝑋 = 𝑌 , the scalarmultiplication action ofℝ on𝑋 gives a natural isomorphism
ℝ → ℒ(𝑋, 𝑋). Thus when 𝑋 = 𝑌 = ℝ the linear map really is just the scalar which gives its slope.

Remark 2.3. The considerations above for the one-dimensional case also really only used the
fact that dim(𝑋) = 1 – the dimension of 𝑌 was not important. Thus we have in fact obtained a
definition of the derivative for functions from an open subset of a one-dimensional vector space
to a vector space of arbitrary dimension.

Definition 2.4. (The 1-dimensional case.) Let 𝑋 and 𝑌 be normed vector spaces and suppose that
dim(𝑋) = 1. Let 𝑈 ⊆ 𝑋 be an open set and suppose 𝑓∶ 𝑈 → 𝑌 is a function. If 𝑎 ∈ 𝑈 then we
define the derivative of 𝑓 at 𝑎 to be the linear map 𝐷𝑓𝑎 ∈ ℒ(𝑋, 𝑌) given by

𝐷𝑓𝑎(𝑣) = lim
𝑡→0

𝑓(𝑎 + 𝑡.𝑣) − 𝑓(𝑎)
𝑡 ,

where this limit exists. As noted above, the limit is compatible with scalar multplication, so that
𝐷𝑓𝑎(𝜆.𝑣) = 𝜆.𝐷𝑓𝑎(𝑣) for any 𝜆 ∈ ℝ and 𝑣 ∈ 𝑋, and as 𝑋 is 1-dimensional, this implies 𝐷𝑓𝑎 is a linear
map. Indeed this also shows that if we know 𝐷𝑓𝑎(𝑣) exists for a single non-zero vector 𝑣0 ∈ 𝑋,
then it exists for any 𝑣 ∈ 𝑋 .

2.2 The general case

Our consideration of the one-dimensional case gives some indication of what we should seek in
the higher dimensional context: If 𝑋 and 𝑌 are arbitrary finite-dimensional vector spaces, and
𝑓∶ 𝑈 → 𝑌 is a function defined on an open subset 𝑈 of 𝑋, then for 𝑎 ∈ 𝑈, given our examination
of the one-dimensional case, it is natural to demand that the derivative5 𝐷𝑓𝑎 of 𝑓 at 𝑎 is an element
of ℒ(𝑋, 𝑌).

Moreover, our definition in the one-dimensional case also yields a sensible notion in higher
dimensions:

Definition 2.5. Let 𝑓∶ 𝑈 → 𝑌 be as above and suppose 𝑎 ∈ 𝑈 and 𝑣 ∈ 𝑋 . The directional derivative
of 𝑓 at 𝑎 ∈ 𝑈 in the direction 𝑣 is defined to be

𝜕𝑣𝑓(𝑎) = lim
𝑡→0

𝑓(𝑎 + 𝑡.𝑣) − 𝑓(𝑎)
𝑡 ,

where this limit exists. Assuming it exists, it is an easy exercise to check that, for any 𝑠 ∈ ℝ, we
have 𝜕𝑠.𝑣𝑓(𝑎) = 𝑠.𝜕𝑣𝑓(𝑎). That is, the directional derivative is homogeneous in 𝑣. For this reason,
when taking a directional derivative we normally assume the direction vector 𝑣 has unit length,
i.e. ‖𝑣‖ = 1. Note also that, if dim(𝑋) = 1, then we have 𝐷𝑓𝑎(𝑣) = 𝜕𝑣𝑓(𝑎).

The above definition and its relation to the derivative in the one-dimensional case suggests
that either of following might be reasonable:
Provisional Definitions: If 𝑓∶ 𝑈 → 𝑌 is a function defined on an open subset 𝑈 of a normed
vector space 𝑋 taking values in a normed vector space 𝑌 , then:

1. Proposal 1: 𝑓 is differentiable at 𝑎 if all the directional derivatives at 𝑎 exist, and we define
its derivative6 at 𝑎 to be the function 𝑃1𝑓𝑎(𝑣) = 𝜕𝑣𝑓(𝑎).

5We write𝐷𝑓𝑎 rather than𝐷𝑓(𝑎) because𝐷𝑓𝑎 ∈ ℒ(𝑋,𝑌) so it is a function itself, and𝐷𝑓𝑎(𝑣) is more compact to
read than𝐷𝑓(𝑎)(𝑣).

6The use of the letter “𝑃” is to indicate “provisional”.
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Figure 1: Graph of 𝑓(𝑥1, 𝑥2) = 𝑥1𝑥2(𝑥1 + 𝑥2)/(𝑥21 + 𝑥22). All its directional derivatives exist at 02 but
it is not differentiable there.

2. Proposal 2: 𝑓 is differentiable at 𝑎 if there is a linear map 𝑇 ∈ ℒ(𝑋, 𝑌) such that for all 𝑣 ∈ 𝑋,
we have 𝑇(𝑣) = 𝜕𝑣𝑓(𝑎). This linearmap 𝑇, if it exists, is certainly unique, andwill be denoted
𝑃2𝑓𝑎. Clearly, when it exists 𝑃2𝑓𝑎 = 𝑃1𝑓𝑎.

The following examples show that these proposals are genuinely different:

Example 2.6.

(i) Let 𝑓∶ ℝ2 → ℝ in Figure 1 given by

𝑓1(𝑥1, 𝑥2) = { 𝑥1𝑥2(𝑥1 + 𝑥2)/(𝑥21 + 𝑥22), (𝑥1, 𝑥2) ≠ (0, 0),
0, (𝑥1, 𝑥2) = (0, 0)

Consider the directional derivative of 𝑓1 in the direction 𝑣 = (𝑣1,2 ).

𝜕𝑣𝑓(0) = lim
𝑡→0

𝑓1(𝑡𝑥1, 𝑡𝑥2)
𝑡 = lim

𝑡→0
𝑡3𝑣1𝑣2(𝑣1 + 𝑣2)
𝑡(𝑡2𝑣21 + 𝑡2𝑣22)

= 𝑣1.𝑣2(𝑣1 + 𝑣2)
𝑣21 + 𝑣22

= 𝑓(𝑣)

Thus all the directional derivatives exist, and so using Proposal 1, 𝑓1 is differentiable at 02
with 𝑃1𝑓02 = 𝑓1, that is, 𝑓1 is its own derivative at 02! On the other hand, since 𝑓1 is clearly not
a linear function, 𝑓1 is not differentiable in the sense of Proposal 2.

(ii) Let Ω be the open subset {(𝑥1, 𝑥2) ∈ ℝ2 ∶ 0 < 𝑥1, 0 < 𝑥2 < 𝑥21} and let 𝑓2 = 1Ω be the
indicator function of Ω, so that 𝑓2(𝑥1, 𝑥2) = 1 if (𝑥1, 𝑥2) ∈ Ω and 𝑓2(𝑥1, 𝑥2) = 0 otherwise. To
calculate the directional derivatives of 𝑓2 at 02, suppose that 𝑣 = (𝑣1, 𝑣2) ∈ 𝑆ℝ2 . Clearly, since
𝑓2(𝑡.(𝑣1, 𝑣2)) = 0 whenever 𝑣1.𝑣2 ≤ 0, 𝜕𝑣𝑓2(02) = 0 unless 𝑣1.𝑣2 > 0. But if 𝑣1.𝑣2 > 0, then
if |𝑡| < |𝑣2|/𝑣21, 𝑡.(𝑣1, 𝑣2) ∉ Ω, hence lim𝑡→0 𝑓2(𝑡.(𝑣1, 𝑣2))/𝑡 = lim𝑡→0 0/𝑡 = 0. Hence all of the
directional derivative 𝜕𝑣𝑓2(0) exists and equal 02. It follows that 𝑓2 is differentiable in the
sense of both proposals, with it derivative 𝑃2𝑓02 being the zero linear map.

The function 𝑓1 above shows the difficulty with Proposal 1: this notion of differentiability
will only be useful if we first develop a theory of homogeneous functions, as 𝐷𝑓𝑎 will only be ho-
mogeneous, i.e. be compatible with scalar multiplication, rather than linear. If you note that a
homogeneous function is determined by its values on the unit sphere 𝑆𝑋 , and that any contin-
uous function 𝑓∶ 𝑆𝑋 → 𝑌 from the unit sphere on 𝑋 to a normed vector space 𝑌 extends to a
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homogeneous function from 𝑋 to 𝑌 provided 𝑓(−𝑥) = −𝑓(𝑥) for all 𝑥 ∈ 𝑆𝑋 , it is clear that the
space of continuous homogeneous functions from 𝑋 to 𝑌 is a much more complicated one that
the space of linear maps from 𝑋 to 𝑌 , so any such theory will be much harder than linear algebra.
Indeed the function 𝑓1 in Example 2.6 is differentiable at 02 according to suggestion 1, but by the
provisional definition 𝑃1 the derivative is 𝐷𝑓1,02(𝑣) = 𝑓1(𝑣), so that passing to 𝐷𝑓1 does not provide
a simpler object to study.

On the other hand, the function 𝑓2 shows that simply demanding that the directional deriva-
tives yield a linear functionmay not be the correct condition: If we recall the idea that the deriva-
tive at a point 𝑎 should provide the tangent plane to the function at 𝑎, then the plane 𝑇 given by
𝑥3 = 0, that is, 𝑇 = {(𝑥1, 𝑥2, 0) ∶ 𝑥1, 𝑥2 ∈ ℝ} does not seem like a reasonable candidate for the
tangent plane to the graph of 𝑓2 at 02.

Moreover, 𝑓2 is not even continuous at the origin. Indeed if we consider the curve 𝑐(𝑡) = (𝑡, 𝑡3)
for 𝑡 ∈ ℝ, then since for 𝑡 ∈ (0, 1) we have 0 < 𝑡3 < 𝑡2, we see that lim𝑡↓0 𝑓2(𝑐(𝑡)) = 1, while
lim𝑡↓0 𝑓2(𝑡.𝑣) = 0 for all 𝑣 ∈ ℝ2, 𝑣 ≠ 02. This example suggests one way in which our consider-
ations so far might be deficient: In one dimension there are only two ways to approach a point
(from the left or the right), however, even in two dimensions, there are infinitely many different
curves through which one can approach a point, and moreover many more than simply by trav-
elling along a straight line – focusing on directional derivatives therefore does an injustice to the
geometry of linear spaces of dimension greater than 1.

This issue canbe resolved easily however, in that itwas already addressed in theMetric Spaces
material of A0: if 𝑓∶ 𝑋 → ℝ is a real-valued function on a metric space, then for 𝑓(𝑥) to tend to a
limit 𝛼 as 𝑥 → 𝑎 ∈ 𝑋, the values of 𝑓 must be close to 𝛼 for all 𝑥 sufficiently close to 𝑎. There is
simply noneed to specify a curve onwhich 𝑥 lies as it tends to 𝑎. In order to be able to use this idea
however, we need to rewrite the expression we have for a directional derivative in a way which
only uses the norm functions. Let us do this first in the one-dimensional case: the condition that
𝐷𝑓𝑎(𝑣) is given by the directional derivative as

lim
𝑡→0

𝑓(𝑎 + 𝑡𝑣) − 𝑓(𝑎) − 𝐷𝑓𝑎(𝑡𝑣)
𝑡 = 0𝑌 ⟺ lim

𝑡→0
1
|𝑡|‖𝑓(𝑎 + 𝑡.𝑣) − 𝑓(𝑎) − 𝐷𝑓𝑎(𝑡.𝑣)‖ = 0 ∀𝑣 ∈ 𝑋, 𝑣 ≠ 0.

Notice that this formulation does not utilise the norm on 𝑋 . This is however a relic of the
Prelims definitionwe startedwith: by the homogeneity of directional derivatives, wemay assume
‖𝑣‖ = 1, and then if we let 𝑥 = 𝑎 + 𝑡.𝑣 ∈ 𝑋, then ‖𝑥 − 𝑎‖ = |𝑡|, and the above condition becomes

lim
𝑥→𝑎

‖𝑓(𝑥) − 𝑓(𝑎) − 𝐷𝑓𝑎(𝑥 − 𝑎)‖
‖𝑥 − 𝑎‖ → 0 (2.3)

But it makes sense to ask for the same limit to hold for any 𝑓∶ 𝑈 → 𝑌 defined on an open
subset 𝑈 ⊆ 𝑋 taking values in 𝑌 , where 𝑋 and 𝑌 are normed vector spaces, and this (finally!)
gives us the definition of the derivative in higher dimensional that we will use:

Definition 2.7. Let 𝑋 and 𝑌 be finite-dimensional normed vector spaces and let𝑈 ⊆ 𝑋 be an open
subset of 𝑋 . If 𝑓∶ 𝑈 → 𝑌 is a function and 𝑎 ∈ 𝑈, we say that 𝑓 is differentiable at 𝑎 if there is a
linear map 𝑇 ∈ ℒ(𝑋, 𝑌) such that if the function 𝜖∶ 𝑈 → 𝑌 given by 𝜖(𝑎) = 0 and, for 𝑥 ∈ 𝑈\{𝑎} by
the equation

𝑓(𝑥) = 𝑓(𝑎) + 𝑇(𝑥 − 𝑎) + ‖𝑥 − 𝑎‖.𝜖(𝑥),
then 𝜖 is continuous at 𝑎, that is lim𝑥→𝑎 𝜖(𝑥) = 0𝑌 = 𝜖(𝑎). If such a map 𝑇 exists, it is unique and
we denote it by 𝐷𝑓𝑎.7

Remark 2.8. This definition takes some time to absorb!
7The total derivative in this sense is sometimes called the Fréchet derivative.
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1. Note that for 𝑥 ≠ 𝑎,
𝜖(𝑥) = 𝑓(𝑥) − 𝑓(𝑎) − 𝑇(𝑥 − 𝑎)

‖𝑥 − 𝑎‖
so that the continuity of 𝜖 at 𝑎 is precisely the condition of Equation (2.3).

2. The function 𝑓2 from Example 2.6 is not differentiable at 𝑎 = 02 in the above sense. Indeed
because all of the directional derivatives of 𝑓2 exist and equal 0, the only candidate for 𝐷𝑓2,𝑎
is the zero linear map. But since 02 lies in the closure of Ω, we have |𝑓2(𝑥) − 𝑓2(02)| = 1 for 𝑥
arbitrarily close to 02, and so |𝑓(𝑥) − 𝑓(02)|/‖𝑥‖ is unbounded near 02, hence the zero linear
map fails to satisfy the requirement of Definition 2.7. In particular, it is important to note
that Definition 2.7 requires more than the existence of all directional derivatives.

3. As the previous point notes, the linear map 𝐷𝑓𝑎 is unique if it exists, because its values are
givenby thedirectional derivatives,which are certainly unique (again, assuming they exist).
One can also prove the uniqueness of the linear map 𝐷𝑓𝑎 directly, and the problem set asks
you to do this.

4. One can write the condition required of the linear map 𝐷𝑓𝑎 using the little 𝑜 notation, that
is, as 𝑓(𝑎 + ℎ) = 𝑓(𝑎) + 𝐷𝑓𝑎(ℎ) + 𝑜(‖ℎ‖), where ℎ = 𝑥 − 𝑎.

5. If 𝑈 is an open subset of ℝ𝑛 and 𝑓∶ 𝑈 → ℝ𝑚, then if 𝑓 = (𝑓1,… , 𝑓𝑚), then, as promised in
the discussion of the definition of differentiability, 𝑓 is differentiable at 𝑎 ∈ 𝑈 if and only if
each 𝑓𝑖 is, and 𝐷𝑓𝑎 = ∑𝑚

𝑖=1 𝐷𝑓𝑖,𝑎.𝑒𝑖, that is, if 𝑣 ∈ ℝ𝑛, we have 𝐷𝑓𝑎(𝑣) = ∑𝑚
𝑖=1 𝐷𝑓𝑖,𝑎(𝑣).𝑒𝑖. This

can be checked directly, and is in essence a very special case of the multi-variable version
of the Chain Rule, which we will prove shortly.

6. It is straight-forward to check that equivalent norms yield the samenotion of differentiabil-
ity, as theywill yield the same notion of convergence. Since all norms on finite-dimensional
vector space are equivalent, it follows that the definition of the derivative is independent
of the choice of norms on 𝑋 and 𝑌 when both 𝑋 and 𝑌 are finite-dimensional.
[*Non-examinable: Since norms on an infinite-dimensional space need not be equivalent how-
ever, in the infinite-dimensional setting, the notion of differentiability may depend on the
norm. Moreover, in the infinite-dimensional setting, the total derivative 𝐷𝑓𝑎 is required to
be a bounded linear map, a condition which, by Corollary 1.17, is automatic in the finite-
dimensional setting.]

7. If 𝑓∶ 𝑈 → 𝑌 is differentiable on 𝑈, then it defines a function 𝐷𝑓∶ 𝑈 → ℒ(𝑋, 𝑌). Viewed as
a function “taking values in (linear) functions” it appears to be a more complicated object
than the original function 𝑓. However, ℒ(𝑋, 𝑌) is just a dim(𝑋).dim(𝑌)-dimensional normed
vector space – using the operator norm ‖.‖∞ – and if we pick a basis of 𝑋 and 𝑌 then we can
identify it with Mat𝑚,𝑛(ℝ). Thus, at least in principle, 𝐷𝑓 is no more complicated an object
than 𝑓. We discuss this in more detail in Section 2.8.

As in the one-variable case, if 𝑓 is differentiable at a point 𝑎, then it is continuous there:

Lemma 2.9. Let 𝑋 and 𝑌 be normed vector spaces and let 𝑈 be an open subset of 𝑋 . If 𝑓∶ 𝑈 → 𝑌
is a function which is differentiable at 𝑎 ∈ 𝑈, then there are constants 𝐶, 𝑟 > 0 such that for all
𝑥 ∈ 𝐵(𝑎, 𝑟),

‖𝑓(𝑥) − 𝑓(𝑎)‖ ≤ 𝐶.‖𝑥 − 𝑎‖.
In particular, 𝑓 is continuous at 𝑎.

Proof. Replacing 𝑓(𝑥)with the function 𝑓(𝑥 − 𝑎) − 𝑓(𝑎)wemay assume that 𝑎 = 0𝑋 and 𝑓(𝑎) = 0𝑌 .
The statement of the Lemma is then simply that if 𝑓 is differentiable at 0𝑋 then 𝑓 ∈ 𝑂𝑌 (‖𝑥‖). But
𝑓(𝑥) = 𝐷𝑓0𝑋 (𝑥) + 𝑜𝑌 (‖𝑥‖), and since 𝐷𝑓0𝑋 is a bounded linear map it lies in 𝑂𝑌 (‖𝑥‖), while 𝑜𝑌 (‖𝑥‖)
is a subspace of 𝑂𝑌 (‖𝑥‖), hence 𝑓(𝑥) ∈ 𝑂𝑌 (‖𝑥‖) as required. □
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Definition 2.10. If 𝑋 and 𝑌 are normed vector spaces and 𝑈 is an open subset of 𝑋, then we
write 𝒞0(𝑈, 𝑌) for the vector space of continuous functions on𝑈 taking values in 𝑌 . The previous
Lemma thus shows that if 𝑓∶ 𝑈 → 𝑌 is differentiable on all of 𝑈 then 𝑓 ∈ 𝒞0(𝑈, 𝑌).
Example 2.11. Constant functions 𝑐∶ 𝑋 → 𝑌 are clearly differentiable, with derivative 0, since if
𝑐 is constant 𝑐(𝑥) = 𝑐(𝑎). If 𝑇 ∶ 𝑋 → 𝑌 is linear, that is 𝑇 ∈ ℒ(𝑋, 𝑌), then, for any 𝑎 ∈ 𝑋 we have
𝐷𝑓𝑎 = 𝑇, since

𝑇(𝑥) = 𝑇(𝑎) + 𝑇(𝑥 − 𝑎),
(and thus the error term 𝜖(𝑥).‖𝑥‖ is identically zero). Thus if 𝑓 = 𝑇 is linear, 𝐷𝑓∶ 𝑋 → ℒ(𝑋, 𝑌) is
the constant function 𝑥 ↦ 𝑇, for all 𝑥 ∈ 𝑈.

If 𝑈 is an open subset of 𝑋 and 𝑓, 𝑔∶ 𝑈 → 𝑌 are differentiable at a point 𝑎 ∈ 𝑈 then it is
easy to see that 𝑓 + 𝑔 is also, and 𝐷(𝑓 + 𝑔)𝑎 = 𝐷𝑓𝑎 + 𝐷𝑔𝑎. In particular, if 𝑓(𝑥) = 𝑇(𝑥) + 𝑏, where
𝑇 ∈ ℒ(𝑋, 𝑌) and 𝑏 ∈ 𝑌 , then 𝑓 is differentiable with 𝐷𝑓𝑎 = 𝑇 for all 𝑎 ∈ 𝑈. In order to try to avoid
ambiguous notation, we will write 𝑑𝑇 or 𝐷𝑇 for the derivative of a linear map 𝑇, that is for the
constant function taking the value 𝑇 rather than the linear map 𝑇 itself.
Example 2.12. If ‖.‖ is a norm on ℝ𝑛, we may view it as a function ‖.‖∶ ℝ𝑛 → ℝ. This function is
not differentiable at the origin: Indeed suppose that 𝑇 is a linear map. Then 𝜖(ℎ) = ‖ℎ‖−1(‖ℎ‖ −
𝑇(ℎ)) = 1−𝑇(ℎ/‖ℎ‖), and since 𝑇(ℎ/‖ℎ‖) is independent of ‖ℎ‖, if 𝜖(ℎ) → 0 as ‖ℎ‖ → 0wemust have
𝑇(ℎ/‖ℎ‖) = 1. But since 𝑇(−ℎ/‖ − ℎ‖) = −𝑇(ℎ/‖ℎ‖) this is impossible.

The question ofwhether a norm is differentiable at other points inℝ𝑛maydependon the norm
– consider for example the norms ‖.‖1, ‖.‖2 and ‖.‖∞.

2.3 Partial derivatives and the total derivative

We now relate the notion of the total derivative to the notion of partial derivatives which were
introduced in Prelims multivariable calculus:

In fact wework in slightly greater generality, as it clarifies the idea and reduces the notational
clutter.

Definition 2.13. Suppose that 𝑋 and 𝑌 are normed vector spaces and 𝑈 ⊆ 𝑋 is an open subset
with 𝑓∶ 𝑈 → 𝑌 a function defined on 𝑈. If we are further given a subspace 𝑍 of 𝑋, then we can
consider the function 𝑓𝑎,𝑍 ∶ 𝑍 → 𝑌 given by 𝑓𝑎,𝑍(𝑥) = 𝑓(𝑎 + 𝑧), and we set 𝜕𝑍𝑓(𝑎) = 𝐷𝑓𝑎,𝑍(0𝑍), so
that 𝜕𝑍𝑓(𝑎) satisfies

‖𝑓(𝑎 + 𝑧) − 𝑓(𝑎) − 𝜕𝑍𝑓(𝑎)(𝑧)‖
‖𝑧‖ → 0, as 𝑧 → 0, (𝑧 ∈ 𝑍).

It is immediate from thedefinitions that, if the total derivative𝐷𝑓(𝑎) exists, then𝐷𝑓(𝑎)|𝑍 = 𝜕𝑍𝑓(𝑎).
Similarly, the values of the partial derivative 𝜕𝑍𝑓(𝑎) ∈ ℒ(𝑍, 𝑌), like the total derivative, are given
by the corresponding directional derivatives of 𝑓, so it is unique if it exists.

If we have a decomposition of 𝑋 into a direct sum 𝑋 = 𝑋1 ⊕ 𝑋2, then the partial derivatives
𝜕𝑋1𝑓(𝑎) and 𝜕𝑋2(𝑓)(𝑎) determine 𝐷𝑓(𝑎): if 𝜋1∶ 𝑋 → 𝑋1 and 𝜋2∶ 𝑋 → 𝑋2 denote the projection maps
from 𝑋 to 𝑋1 and 𝑋2 respectively, and 𝜄1∶ 𝑋1 → 𝑋, 𝜄2∶ 𝑋2 → 𝑋 denote the inclusion maps, then

𝐼𝑋 = 𝜄1 ∘ 𝜋1 + 𝜄2 ∘ 𝜋2,
where 𝐼𝑋 denotes the identity map from 𝑋 to itself. Thus, noting that 𝐷𝑓(𝑎)|𝑋𝑗 = 𝐷𝑓(𝑎) ∘ 𝜄𝑗 (𝑗 ∈
{1, 2}), we have

𝐷𝑓(𝑎) = 𝐷𝑓(𝑎) ∘ 𝐼𝑋 = 𝐷𝑓(𝑎) ∘ (𝜄1𝜋1 + 𝜄2𝜋2) = (𝐷𝑓(𝑎)𝜄1) ∘ 𝜋1 + (𝐷𝑓(𝑎)𝜄2) ∘ 𝜋2
= 𝐷𝑓(𝑎)|𝑋1 ∘ 𝜋1 + 𝐷𝑓(𝑎)|𝑋2 ∘ 𝜋2

and hence
𝐷𝑓(𝑎) = 𝜕𝑋1𝑓(𝑎) ∘ 𝜋1 + 𝜕𝑋2𝑓(𝑎) ∘ 𝜋2 (2.4)

Note that the summands on the right-hand side lie in ℒ(𝑋1, 𝑌) and ℒ(𝑋2, 𝑌) respectively and give
the components of 𝐷𝑓(𝑎) in the decomposition ℒ(𝑋, 𝑌) = ℒ(𝑋1, 𝑌) ⊕ ℒ(𝑋2, 𝑌) of ℒ(𝑋, 𝑌).
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Remark 2.14. Obviously, in the same way, if we have any direct sum decomposition 𝑋 = ⨁𝑘
𝑖=1 𝑋𝑖

of 𝑋, the partial derivatives 𝜕𝑋𝑗𝑓(𝑎) determine 𝐷𝑓(𝑎), where if 𝜋𝑗 ∶ 𝑋 → 𝑋𝑗 denotes the projection
map to the 𝑗-th summand 𝑋𝑗,

𝐷𝑓(𝑎) =
𝑘
∑
𝑗=1

𝜕𝑋𝑗𝑓(𝑎) ∘ 𝜋𝑗 . (2.5)

Byabuseofnotation,wewill sometimeswrite 𝜕𝑖𝑓(𝑎) for 𝜕𝑋𝑖𝑓(𝑎) and,motivatedbymatrixnotation,
we may also write

𝐷𝑓𝑎 = (𝜕1𝑓(𝑎) |… | 𝜕𝑘𝑓(𝑎))
to express the decomposition of 𝐷𝑓(𝑎) given by (2.4).

2.3.1 Partial derivatives in multivariable calculus

Inmultivariable calculus, the term “partial derivative” usually refers to the directional derivatives
of a function in the directions given by a choice of basis of 𝑋 . This is essentially a special case
of the above setting, as we now explain: Let 𝐵𝑋 = {𝑣1, 𝑣2,… , 𝑣𝑛} be a basis of 𝑋, and let 𝑋𝑗 = ℝ.𝑣𝑗
denote the line spanned by 𝑣𝑗 (1 ≤ 𝑗 ≤ 𝑛). We thus obtain a direct sum decomposition 𝑋 =
𝑋1 ⊕…𝑋𝑛 of 𝑋 into 𝑛 lines, i.e., 1-dimensional subspaces.

Applying (2.5) to this decomposition, we see that 𝐷𝑓(𝑎) = ∑𝑛
𝑗=1 𝜕𝑋𝑗𝑓(𝑎) ∘ 𝜋𝑗 . But if 𝐵∗𝑋 =

{𝑥1,… , 𝑥𝑛}, so that if 𝑢 ∈ 𝑋, we have 𝑢 = ∑𝑛
𝑗=1 𝑥𝑗(𝑢).𝑣𝑗, and hence 𝜋𝑗(𝑢) = 𝑥𝑗(𝑢).𝑣𝑗 . Thus

𝜕𝑋𝑗𝑓(𝑎)𝜋𝑗(𝑢) = 𝜕𝑋𝑗𝑓(𝑎)(𝑥𝑗(𝑢)𝑣𝑗) = 𝑥𝑗(𝑢).𝜕𝑋𝑖𝑓(𝑎)(𝑣𝑗) = 𝑥𝑗(𝑢)𝐷𝑓𝑎(𝑣𝑗) = 𝑥𝑗(𝑢)𝜕𝑣𝑗𝑓(𝑎),

or equivalently, 𝜕𝑋𝑗𝑓∘𝜋𝑗 = 𝜕𝑣𝑗𝑓.𝑑𝑥𝑗 . Thus thedirectional derivative 𝜕𝑣𝑗𝑓(𝑎) completely determines
𝜕𝑋𝑗𝑓(𝑎) ∈ ℒ(𝑋𝑗 , 𝑌).
Definition 2.15. If we are given a basis 𝐵 = {𝑣1,… , 𝑣𝑛} of 𝑋, then we will write

𝜕𝑗𝑓(𝑎) =
𝜕𝑓
𝜕𝑥𝑗

(𝑎) ∶= 𝜕𝑣𝑗𝑓(𝑎) = lim
𝑡→0

𝑓(𝑎 + 𝑡𝑣𝑗) − 𝑓(𝑎)
𝑡 ∈ 𝑌

The fractional notation 𝜕𝑓
𝜕𝑥𝑗

is commonplace, but becomes cumbersomewhen considering higher-
order partial derivatives. We will normally prefer to write 𝜕𝑗𝑓.

Using this notation, the expression for the total derivative becomes

𝐷𝑓(𝑎) =
𝑛
∑
𝑗=1

𝜕𝑗𝑓𝑑𝑥𝑗 =
𝑛
∑
𝑗=1

𝜕𝑓
𝜕𝑥𝑗

𝑑𝑥𝑗 . (2.6)

We may refine this further if we pick a basis 𝐵𝑌 = {𝑤1,… ,𝑤𝑚} of 𝑌 : Using 𝐵𝑌 wemay write 𝑓(𝑥) =
∑𝑚

𝑖=1 𝑓𝑖(𝑥).𝑤𝑖 where 𝑓𝑖 ∶ 𝑈 → ℝ, and hence we have 𝐷𝑓 = ∑𝑚
𝑖=1 𝐷𝑓𝑖.𝑤𝑖. Applying (2.6) to each 𝐷𝑓𝑖

and summing we obtain

𝐷𝑓 =
𝑚
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝜕𝑗𝑓𝑖𝑑𝑥𝑗)𝑤𝑖 =
𝑚
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝜕𝑓𝑖
𝜕𝑥𝑗

.𝑑𝑥𝑗)𝑤𝑖 (2.7)

Notice that this last equation shows that the matrix of 𝐷𝑓 with respect to the bases 𝐵𝑋 of 𝑋
and 𝐵𝑌 of 𝑌 is just

𝐵𝑌 [𝐷𝑓]𝐵𝑋 = (
𝜕1𝑓1 … 𝜕𝑛𝑓1
⋮ ⋱ ⋮

𝜕1𝑓𝑚 … 𝜕𝑛𝑓𝑚
)

Thus, if we know the derivative exists, then we can compute its matrix with respect to a choice
of bases of 𝑋 and 𝑌 by computing the directional derivatives of the components of 𝑓 along the
directions given by the basis in 𝑋 .
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Definition 2.16. As inmulti-variable calculus, the abovematrix (𝜕𝑗𝑓𝑖) is called theJacobianmatrix
of the partial derivatives of 𝑓 at 𝑎. Note that the determinant det(𝐷𝑓) = det(𝜕𝑗𝑓𝑖), is also often
called the Jacobian. We will refer to it as the Jacobian determinant. It is often denoted 𝐽𝑓.
Remark 2.17. In a similar way, if 𝑋 = 𝑋1 ⊕ 𝑋2, the partial derivative 𝜕𝑋𝑗𝑓(𝑎) are given by block
submatrices of the Jacobian matrix, and if you like, you can think of them as essentially just a
notational shorthand for such submatrices. Indeed as we already noted above, if 𝐷𝑓𝑎 exists then
𝜕𝑋𝑗𝑓(𝑎) is just the restriction of 𝐷𝑓𝑎 to 𝑋𝑗 (𝑗 ∈ {1, 2}). But if our basis 𝐵𝑋 = {𝑣1,… , 𝑣𝑛} is adapted
to this direct sum decomposition, so that for some 𝑘, 1 ≤ 𝑘 ≤ 𝑛, the subsets 𝐵1 = {𝑣1,… , 𝑣𝑘} and
𝐵2 = {𝑣𝑘+1,… , 𝑣𝑛} are bases of 𝑋1 and 𝑋2 respectively, then

𝐵𝑌 [𝐷𝑓𝑎]𝐵𝑋 = ( 𝐵𝑌 [𝜕𝑋1𝑓(𝑎)]𝐵1 𝐵𝑌 [𝜕𝑋2𝑓(𝑎)]𝐵2 )
Example 2.18. If𝑈 is an open subset of ℂ and 𝑓∶ 𝑈 → ℂ is holomorphic, then, identifying ℂwith
ℝ2 via 𝑧 ↦ (ℜ(𝑧), ℑ(𝑧)), we may view 𝑓 as a function from ℝ2 to itself, which, for clarity, we write
as 𝐹. Since complex multiplication is ℝ-linear, 𝐹 is differentiable in the real sense: explicitly, if
𝑓′(𝑧) = 𝑎+𝑖𝑏 then the total derivative of 𝐹 at 𝑧 is theℝ-linearmap given bymultiplication by 𝑓′(𝑧),
and hence its matrix is

𝐷𝐹𝑧=(𝑥,𝑦) = ( 𝑎 −𝑏
𝑏 𝑎 )

The Cauchy-Riemann equations follow immediately from this – they express the fact that the
linear map given by the derivative is complex-linear rather than just real-linear, and so is given
by multiplication by a complex number.

Remark 2.19. Example 2.6 shows that the existence of all the partial derivatives for the function
𝑓2∶ ℝ2 → ℝ at the origin 0 is not sufficient to ensure that 𝑓2 is continuous at that point. Since
Lemma 2.9 shows that the existence of the total derivative at a point implies continuity at that
point, this gives another way of seeing that 𝑓2 is not differentiable at the origin. The function
𝑓1∶ ℝ2 → ℝ in the same Example is continuous at the origin, but nevertheless, even though all
of its directional derivatives exist at the origin, it is not differentiable there. (The first problem
sheet asks you to check this).

We will see shortly, however, that if the partial derivatives exist and are continuous, then this
is sufficient to show that the total derivative exists.

2.4 The Chain Rule

One of the fundamental properties of the differentiablity is that it is preserved under composi-
tion, just like continuity. The single variable version of this result is both a basic computational
tool, and also the key to one version of the Fundamental Theorem of Calculus. We now establish
its higher-dimensional analogue.

Theorem 2.20. Let 𝑋, 𝑌 and 𝑍 be normed vector spaces, let 𝑓∶ 𝑈1 → 𝑌 be a function defined on an
open subset 𝑈1 of 𝑋, and let 𝑔∶ 𝑈2 → 𝑍 be a function defined on an open subset 𝑈2 of 𝑌 . Suppose
that 𝑎 ∈ 𝑈1 and 𝑓(𝑎) = 𝑏 ∈ 𝑈2, then if 𝑓 is differentiable at 𝑎 and 𝑔 is differentiable at 𝑏, their
composition ℎ = 𝑔 ∘ 𝑓∶ 𝑓−1(𝑈2) → 𝑍 is differentiable at 𝑎 and its derivative is given by

𝐷ℎ𝑎 = 𝐷𝑔𝑓(𝑎) ∘ 𝐷𝑓𝑎.
Proof. Note that since 𝑓 is differentiable at 𝑎, it is continuous there, and hence 𝑓−1(𝑈2) is a neigh-
bourhood of 𝑎, hence it makes sense to ask if ℎ is differentiable at 𝑎. By translating if necessary,
we may assume that 𝑎 = 0𝑋 and 𝑓(𝑎) = 𝑏 = 0𝑌 . To avoid cluttered notation, we will write 0 for the
zero vector in all vector spaces in the rest of this proof.

Since 𝑓 is differentiable at 0 we see that 𝑓(𝑥) = 𝐷𝑓0(𝑥) + 𝜖1(𝑥) where 𝜖1(𝑥) ∈ 𝑜𝑌 (‖𝑥‖). Similarly
since 𝑔 is differentiable at 𝑓(0) = 0, we have 𝑔(𝑦) = 𝐷𝑔0(𝑦) + 𝜖2(𝑦), where 𝜖2(𝑦) ∈ 𝑜𝑍(‖𝑦‖). It follows
that

𝑔 ∘ 𝑓(𝑥) = 𝐷𝑔0(𝐷𝑓0(𝑥)) + 𝐷𝑔0(𝜖1(𝑥)) + 𝜖2(𝑓(𝑥)).
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Thus to complete the proof, we must show that 𝐷𝑔0(𝜖1(𝑥)) + 𝜖2(𝑓(𝑥)) ∈ 𝑜𝑍(‖𝑥‖), which certainly
follows if each summand lies in 𝑜𝑍(‖𝑥‖). But since the linear map 𝐷𝑔0 is bounded and 𝜖1(𝑥) ∈
𝑜𝑌 (‖𝑥‖),

‖𝐷𝑔0(𝜖1(𝑥))‖
‖𝑥‖ ≤ ‖𝐷𝑔0‖∞.

‖𝜖1(𝑥)‖
‖𝑥‖ → 0, as 𝑥 → 0.

hence 𝐷𝑔0(𝜖1(𝑥)) ∈ 𝑜𝑍(‖𝑥‖). For the second term, recall that we may write 𝜖2(𝑦) = ‖𝑦‖.𝜂(𝑦) where
𝜂(𝑦) → 0 = 𝜂(0) as 𝑦 → 0. Then

‖𝜖2(𝑓(𝑥))‖
‖𝑥‖ = ‖𝑓(𝑥)‖

‖𝑥‖ .‖𝜂(𝑓(𝑥))‖

But now since 𝑓 is differentiable at 0, we have 𝑓 ∈ 𝑂(‖𝑥‖), hence the ratio ‖𝑓(𝑥)‖/‖𝑥‖ is bounded
as 𝑥 → 0, hence it suffices to show that 𝜂(𝑓(𝑥)) → 0 as 𝑥 → 0. But by definition 𝜂(𝑦) → 0 as 𝑦 → 0,
thus we need only check 𝑓(𝑥) → 0 = 𝑓(0) as 𝑥 → 0, but this again follows from 𝑓 ∈ 𝑂(‖𝑥‖) (see
Lemma 2.9) and so we are done.

□

Remark 2.21. It is worth noticing that the proof of the Chain Rule is almost exactly the same as
the proof in the single-variable case. The only difference lies in the fact that in higher dimensions
we can only bound the ratio of norms ‖𝑓(𝑥) − 𝑓(𝑎)‖/‖𝑥 − 𝑎‖, whereas in the single-variable case,
the ratio (𝑓(𝑥) − 𝑓(𝑎))/(𝑥 − 𝑎) of course converges to 𝑓′(𝑎).

2.5 The Mean Value Inequality

For functions of a single variable, the Mean Value Theorem asserts that, if 𝑓∶ 𝑈 → ℝ is differen-
tiable on an open subset 𝑈 of ℝ and [𝑎, 𝑏] ⊂ 𝑈, then (𝑓(𝑏) − 𝑓(𝑎))/(𝑏 − 𝑎), the slope of the chord
between (𝑎, 𝑓(𝑎)) and (𝑏, 𝑓(𝑏)), is equal to 𝑓′(𝑐) for some 𝑐 ∈ (𝑎, 𝑏). In higher dimensions, as we
have noted before, we can only divide by scalars, and so to obtain a statement which at least is
syntactically correct, we can rewrite this as 𝑓(𝑏) − 𝑓(𝑎) = 𝑓′(𝑐).(𝑏 − 𝑎). There is however a more
fundamental issue here: Namely the condition that 𝑐 lies “between 𝑎 and 𝑏”, that is, 𝑐 ∈ (𝑎, 𝑏), is
not a meaningful one in higher dimensions: two points in an open subset 𝑈 of ℝ𝑛 do not bound
any region in 𝑈. One consequence of this is that the most naive attempt to generalize the Mean
Value Theorem to arbitrary dimensions is simply false:

Example 2.22. Let 𝑓∶ ℝ1 → ℝ2 be given by 𝑓(𝑡) = (cos(2𝜋𝑡), sin(2𝜋𝑡)). Then the derivative of 𝑓
is 𝑓′(𝑡) = 2𝜋(− sin(2𝜋𝑡), cos(2𝜋𝑡)), which is non-zero for all 𝑡. But if we take 𝑎 = 0 and 𝑏 = 1 then
𝑓(𝑏) − 𝑓(𝑎) = 0, while for any 𝑡0 ∈ [0, 1]we have (2𝜋 − 0)𝑓′(𝑡0) = 4𝜋2(− sin(2𝜋𝑡), cos(2𝜋𝑡)) ≠ 0.

Example 2.22 also suggests what the reason for the failure of the naive attempt at a gener-
alisation of the Mean Value Theorem: Notice that 𝑓′(𝑡) = 2𝜋(− sin(2𝜋𝑡), cos(2𝜋𝑡)), and so by the
Fundamental Theorem of Calculus8 we have

𝑓(1) − 𝑓(0) = ∫
1

0
𝑓′(𝑡)𝑑𝑡 = 2𝜋(∫

1

0
− sin(2𝜋𝑡)𝑑𝑡,∫

1

0
cos(2𝜋𝑡)𝑑𝑡 ) = (0, 0).

Thus it is still true that 𝑓(1) − 𝑓(0) is the average value of 𝑓′(𝑡) over the interval [0, 1], it is just
that this average value is not the value of 𝑓′(𝑡) for any 𝑡 ∈ [0, 1].9 This suggests that it should be
possible to bound ‖𝑓(𝑏)−𝑓(𝑎)‖ relative to |𝑏−𝑎| by bounding ‖𝐷𝑓𝑡‖∞, that is, wewill prove aMean
Value Inequality rather than an equality.

Proposition 2.23. Let 𝐼 be an open interval and let 𝛾∶ 𝐼 → 𝑌 be a differentiable function. If 𝑠0 ≤
𝑠1 ∈ 𝐼 and 𝐶 = sup{‖𝐷𝑓𝛾(𝑡)‖∞ ∶ 𝑧 ∈ [𝑠0, 𝑠1]} then

‖𝛾(𝑠1) − 𝛾(𝑠0)‖ ≤ 𝐶|𝑠1 − 𝑠0|.
8One can define the integral of a function 𝑓∶ [0, 1] → 𝑋 where 𝑋 is a finite-dimensional normed vector space by

picking a basis and integrating componentwise. The resulting integral does not depend on the choice of basis made.
9Note that in the one-variable case this cannot happen: the intermediate value theorem shows that the average

valuemust be a value attained by the function.
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Proof. It is enough to prove that, for all 𝜖 > 0we have ‖𝛾(𝑠1) − 𝛾(𝑠0)‖ ≤ (𝐶 + 𝜖)|𝑠1 − 𝑠0|. Given 𝜖 > 0,
let

𝑆𝜖 = {𝑡 ∈ [𝑠0, 𝑠1] ∶ ‖𝛾(𝑡) − 𝛾(0)‖ ≤ (𝐶 + 𝜖).|𝑡 − 𝑠0|}.
Clearly 𝑠0 ∈ 𝑆𝜖 ⊆ [𝑠0, 𝑠1], so that 𝜎 = sup(𝑆𝜖) exists, and Proposition clearly follows ifwe can shows
that 𝜎 = 1 ∈ 𝑆𝜖. Now since 𝛾 is differentiable at 𝜎, we have

𝛾(𝜎 + ℎ) = 𝛾(𝜎) + 𝛾′(𝜎).ℎ + |ℎ|𝜂(ℎ),

where 𝜂(ℎ) → 0 = 𝜂(0) as ℎ → 0. Thus there exists a 𝛿 > 0 such that (𝜎 − 𝛿, 𝜎 + 𝛿) ⊆ 𝐼 and if |ℎ| < 𝛿
then

‖𝛾(𝜎 + ℎ) − 𝛾(𝜎)‖ ≤ (‖𝛾′(𝜎)‖ + 𝜖)|ℎ| ≤ (𝐶 + 𝜖)|ℎ|.
But since 𝜎 = sup(𝑆𝜖) there exists some 𝑠 ∈ 𝑆𝜖 such that 𝜎 − 𝛿 < 𝑠 ≤ 𝜎, and hence if ℎ ∈ [0, 𝛿)

‖𝛾(𝜎 + ℎ) − 𝛾(0)‖ ≤ ‖𝛾(𝑠) − 𝛾(0)‖ + ‖𝛾(𝑠) − 𝛾(𝜎)‖ + ‖𝛾(𝜎 + ℎ) − 𝛾(𝜎)‖
≤ (𝐶 + 𝜖).𝑠 + (𝐶 + 𝜖).(𝜎 − 𝑠) + (𝐶 + 𝜖).ℎ
= (𝐶 + 𝜖).(𝜎 + ℎ)

Thus we see that [𝜎, 𝜎 + 𝛿) ∩ [0, 1] ⊆ 𝑆𝜖, and in particular that 𝜎 ∈ 𝑆𝜖. But since 𝜎 = sup(𝑆𝜖) it also
follows that 𝜎 = 1, and hence the inequality is established. □

Definition 2.24. If 𝑋 is a normed vector space and 𝑎, 𝑏 ∈ 𝑋 we write 𝛾𝑎,𝑏∶ [0, 1] → 𝑋 for the line-
segment path 𝛾𝑎,𝑏(𝑡) = (1 − 𝑡)𝑎 + 𝑡𝑏, and write [𝛾𝑎,𝑏] for its image, that is [𝛾𝑎,𝑏] = {𝛾𝑎,𝑏(𝑡) ∶ 𝑡 ∈ [0, 1]}.

Recall that a subset 𝐶 of 𝑋 is convex if, for any 𝑎, 𝑏 ∈ 𝐶 we have [𝛾𝑎,𝑏] ⊆ 𝐶.

Theorem 2.25. (Mean Value Inequality.) Let 𝑋 and 𝑌 be finite-dimensional normed vector spaces
and let 𝑈 ⊂ 𝑋 be an open subset. Suppose that 𝑓∶ 𝑈 → 𝑌 is differentiable, and 𝑎, 𝑏 ∈ 𝑈 are such
that the image of 𝛾𝑎,𝑏 lies entirely in 𝑈. Then if 𝑣 = 𝑏 − 𝑎,

‖𝑓(𝑧2) − 𝑓(𝑧1)‖ ≤ sup
𝑧∈[𝑧1,𝑧2]

‖𝐷𝑓𝑧(𝑧2 − 𝑧1)‖ ≤ sup
𝑧∈[𝑧1,𝑍2]

‖𝐷𝑓𝑧‖∞‖𝑧2 − 𝑧1‖

In particular, if 𝑈 is convex and ‖𝐷𝑓𝑥‖∞ ≤ 𝐾 for all 𝑥 ∈ 𝑈 then ‖𝑓(𝑥) − 𝑓(𝑦)‖ ≤ 𝐾.‖𝑥 − 𝑦‖ for all
𝑥, 𝑦 ∈ 𝑈, that is, 𝑓 is Lipchitz continuous with constant 𝐾.

Proof. We use the previous Proposition. Let 𝜂(𝑡) = 𝑎 + 𝑡(𝑏 − 𝑎) be the line segment path from 𝑎 to
𝑏 and we set 𝛾(𝑡) = 𝑓(𝜂(𝑡)) it follows from Proposition 2.23 that

‖𝛾(1) − 𝛾(0)‖ ≤ sup
𝑡∈[0,1]

(‖𝛾′(𝑡)‖).1

But since 𝜂′(𝑡) = 𝑏 − 𝑎 the chain rules implies that 𝛾′(𝑡) = 𝐷𝑓𝛾(𝑡)(𝑏 − 𝑎) and hence

sup
𝑡∈[0,1]

‖𝛾′(𝑡)‖ = sup
𝑡∈[0,1]

(‖𝐷𝑓𝛾(𝑡)(𝑏 − 𝑎)‖ ≤ sup
𝑧∈[𝑎,𝑏]

‖𝐷𝑓𝑧‖∞‖𝑏 − 𝑎‖.

□

Any easy application of this result is the following:

Proposition 2.26. Suppose that𝑈 is a connected open subset ofℝ𝑛 and𝑓∶ 𝑈 → ℝ𝑚. Then if𝐷𝑓𝑥 = 0
for all 𝑥 ∈ 𝑈 the function 𝑓 is constant.

Proof. Since 𝑈 is open and connected in ℝ𝑛, it is path connected, and in fact any two points can
be joined by piecewise-linear path. But if 𝛾𝑎,𝑏 is a line-segment path whose image lies in 𝑈 then
Proposition 2.25 and the hypothesis 𝐷𝑓 = 0 on 𝑈 shows that 𝑓(𝑏) = 𝑓(𝑎). It follows immediately
that 𝑓must be constant on 𝑈 as required. □
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2.6 Continuity of partial derivatives and the existence of the total derivative

If 𝑋 and 𝑌 are vector spaces, then their Cartesian product, 𝑋 ×𝑌 is naturally a vector space where
addition and scalar multiplication are defined componentwise. That is (𝑥1, 𝑦1) + 𝜆(𝑥2, 𝑦2)≔ (𝑥1 +
𝜆𝑥2, 𝑦1 + 𝜆𝑦2), for all 𝑥1, 𝑥2 ∈ 𝑋, 𝑦1, 𝑦2 ∈ 𝑌 and 𝜆 ∈ ℝ. If 𝑋 and 𝑌 are in addition normed, then one
can give 𝑋 × 𝑌 the structure of a normed vector space, but there is no canonical procedure for
doing this. In this course we will use the convention that, if 𝑋 and 𝑌 are normed vector spaces,
then 𝑋 × 𝑌 is a normed vector space with norm ‖(𝑥, 𝑦)‖≔ ‖𝑥‖ + ‖𝑦‖.

Example 2.27. If we start with ℝ = ℝ1 equipped with the norm given by absolute value |.|, then
inductively we obtain ℝ𝑛 = ℝ𝑛−1 × ℝ as the normed vector space ℓ𝑛1 , that is, ℝ𝑛 with norm ‖𝑣‖1 =
∑𝑛

𝑖=1 |𝑣𝑖|.

When𝑋1 and𝑋2 are subspaces of a normedvector space𝑋 there is a naturalmap 𝑎∶ 𝑋1×𝑋2 → 𝑋
given by 𝑎(𝑥1, 𝑥2) = 𝑥1+𝑥2. This map is a linear isomorphism if 𝑋1 ∪𝑋2 span 𝑋, that is 𝑋1+𝑋2 = 𝑋,
and 𝑋1 ∩ 𝑋2 = {0}. The former condition is equivalent to the surjectivity of 𝑎 while the latter
condition is equivalent to its injectivity. When the map 𝑎 is an isomorphismwewrite 𝑋 = 𝑋1⊕𝑋2
and, for 𝑗 = 1, 2, we write 𝜋𝑗 ∶ 𝑋 → 𝑋𝑗 for the projection maps given by 𝑎−1(𝑥) = (𝜋1(𝑥), 𝜋2(𝑥)).

When 𝑋 is a normed vector space, our convention views the Cartesian product 𝑋1 × 𝑋2 as a
normed vector space with norm ‖(𝑥1, 𝑥2)‖ = ‖𝑥1‖ + ‖𝑥2‖. Since the norm on all of 𝑋 need not
coincide with this, but when 𝑋 is finite-dimensional, it will be an equivalent norm, and hence we
may assume, when working with a decomposition 𝑋 = 𝑋1 ⊕𝑋2, that ‖𝑥‖ = ‖𝜋1(𝑥)‖ + ‖𝜋2(𝑥)‖.

*Remark 2.28. Note that the triangle inequality for the norm on 𝑋 shows that

‖𝑎(𝑥1, 𝑥2)‖ = ‖𝑥1 + 𝑥2‖ ≤ ‖𝑥1‖ + ‖𝑥2‖ = ‖(𝑥1, 𝑥2)‖,

and hence that 𝑎 is necessarily continuous. On the other hand, the continuity of 𝑎−1 is equivalent
to the continuity of its components, the projection maps 𝜋1, 𝜋2, or more explicitly, ‖𝑎−1(𝑥)‖/‖𝑥‖ =
‖𝜋1(𝑥/‖𝑥‖)‖ + ‖𝜋2(𝑥/‖𝑥‖)‖ so that 𝑎−1 is bounded if and only if 𝜋1 and 𝜋2 are bounded. In fact, pro-
vided𝑋 is a completenormedvector space, and𝑋1 and𝑋2 are closed subspacesof𝑋, theprojection
maps 𝜋1 and 𝜋2 are always continuous, whether or not 𝑋 is finite-dimensional.

Example 2.29. Let 𝑋 = ℓ21 = (ℝ2, ‖.‖1) and let 𝑛 ∈ ℕ be a positive integer. Take 𝑋1 = ℝ(𝑛, 1)⊺ and
𝑋2 = ℝ.(1, 0)⊺. Then if 𝑥 = (1, 1) we see that 𝑥 = 1.(𝑛, 1) − (𝑛 − 1).(1, 0) so that ‖𝑥‖1 = 2 while
‖𝜋1(𝑥)‖1 + ‖𝜋2(𝑥)‖1 = ‖(𝑛, 1)‖1 + (𝑛 − 1)‖(1, 0)‖1 = 2𝑛.

Example 2.30. If 𝑋 is an inner product space, then if 𝑋1 is a subspace, it has a natural complement
given by 𝑋2 = 𝑋⟂

1 = {𝑣 ∈ 𝑋 ∶ ⟨𝑣, 𝑥⟩ = 0, ∀𝑥 ∈ 𝑋1}. If 𝜋1, 𝜋2 denote the projection maps to 𝑋1 and
𝑋2 respectively, then

‖𝑥‖2 = ⟨𝑥, 𝑥⟩ = ⟨𝜋1(𝑥) + 𝜋2(𝑥), 𝜋1(𝑥) + 𝜋2(𝑥)⟩
= ⟨𝜋1(𝑥), 𝜋1(𝑥)⟩ + ⟨𝜋2(𝑥), 𝜋2(𝑥)⟩ = ‖𝜋1(𝑥)‖2 + ‖𝜋2(𝑥)‖2,

hence in this case (c.f. Example 1.14), ‖𝜋1(𝑥)‖ + ‖𝜋2(𝑥)‖ ≤ √2‖𝑥‖.

Theorem 2.31. Let 𝑋 and 𝑌 be finite-dimensional normed vector spaces and suppose that 𝑓∶ 𝑈 →
𝑌 is a function defined on an open subset of 𝑋 . Suppose that 𝑋 = 𝑋1 ⊕ 𝑋2, and that the partial
derivatives 𝜕𝑋1𝑓(𝑥), 𝜕𝑋2𝑓(𝑥) both exist for all 𝑥 ∈ 𝑈. Then if for some 𝑎 ∈ 𝑈 one of 𝜕𝑋1𝑓 and 𝜕𝑋2𝑓 is
continuous at 𝑎, then the total derivative of 𝑓 exists, where necessarily𝐷𝑓𝑎 = (𝜕𝑋1𝑓(𝑎) | 𝜕𝑋2𝑓(𝑎)) and
hence𝐷𝑓𝑎 is continuous at 𝑎 if and only if both 𝜕𝑋1𝑓 and 𝜕𝑋2𝑓 are continuous in some neighbourhood
of 𝑎.

Proof. First note that by picking a basis 𝐵𝑌 = {𝑒1,… , 𝑒𝑚} of 𝑌 and writing 𝑓(𝑥) = ∑𝑚
𝑖=1 𝑓𝑖(𝑥)𝑒𝑖 so

that 𝐷𝑓 = ∑𝑚
𝑖=1 𝐷𝑓𝑖.𝑒𝑖 we may reduce the statement of the Proposition to the case 𝑌 = ℝ. Next
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note that, since the values of 𝐷𝑓 and 𝜕𝑋𝑗𝑓 alike are given by the directional derivatives of 𝑓, if it
exists,𝐷𝑓must equal 𝜕𝑋1𝑓∘𝜋1+𝜕𝑋2𝑓∘𝜋2, where𝜋1, 𝜋2 are the projections to𝑋1 and𝑋2 respectively.
Thus to show that 𝐷𝑓𝑎 exists we must show that if

𝜂(ℎ) = 𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝜕𝑋1𝑓(𝑎)𝜋1(ℎ) − 𝜕𝑋2𝑓(𝑎) ∘ 𝜋2(ℎ)

then 𝜂(ℎ) ∈ 𝑜(‖ℎ‖). In the rest of the proof we will identify 𝑋 with 𝑋1 × 𝑋2 and write, for example
ℎ = (ℎ1, ℎ2) instead of 𝜋1(ℎ) + 𝜋2(ℎ), and, since the conclusions of the theorem are local to 𝑎, that
is, are only required to hold either at 𝑎 or in some neighbourhood of 𝑎, by shrinking 𝑈 to an open
ball 𝐵(𝑎, 𝑟) ⊆ 𝑈 we may assume that 𝑈 is convex.

Let us assume (as we may by symmetry) that 𝜕𝑋2𝑓 exists on 𝑈 and is continuous at 𝑎. Let

𝜂1(ℎ) = 𝑓(𝑎 + (ℎ1, 0)) − 𝑓(𝑎) − 𝜕𝑋1𝑓(𝑎)(ℎ1), 𝜂2(ℎ) = 𝑓(𝑎 + (ℎ1, ℎ2)) − 𝑓(𝑎 + (ℎ1, 0)) − 𝜕𝑋2𝑓(𝑎)(ℎ2)

so that 𝜂(ℎ) = 𝜂2(ℎ)+𝜂1(ℎ). Now it followsdirectly fromthedefinitionof 𝜕𝑋1𝑓(𝑎) that 𝜂1(ℎ)/‖ℎ1‖ → 0
as ℎ → 0. Thus given 𝜖 > 0 we may find 𝛿1 > 0 such that if ‖ℎ1‖ < 𝛿1 then ‖𝜂1(ℎ)‖ < 𝜖‖ℎ1‖. Next we
apply the Mean Value Inequality to the function 𝑔(ℎ2) = 𝑓(𝑎+ (ℎ1, ℎ2)) −𝑓(𝑎+ (ℎ1, 0)) − 𝜕𝑋2𝑓(𝑎)(ℎ2)
we see that

‖𝜂2(ℎ)‖ = ‖𝑓(𝑎 + ℎ) − 𝑓(𝑎 + (ℎ1, 0)) − 𝜕𝑋2𝑓(𝑎)(ℎ2)‖ ≤ sup
𝑡∈[0,1]

‖𝜕𝑋2𝑓(𝑎 + (ℎ1, 𝑡ℎ2)) − 𝜕𝑋2𝑓(𝑎)‖∞‖ℎ2‖.

Thus by the continuity of 𝜕𝑋2𝑓 at 𝑎, there is a 𝛿2 > 0 such that if ‖ℎ‖ < 𝛿2, then ‖𝜕𝑋2𝑓(𝑎 + ℎ) −
𝜕𝑋2𝑓(𝑎)‖∞ < 𝜖, and hence since ‖(ℎ1, 𝑡ℎ2)‖ = ‖ℎ1‖+𝑡‖ℎ2‖ ≤ ‖ℎ1‖+‖ℎ2‖ = ‖ℎ‖ it follows that ‖𝜂2(ℎ))‖ <
𝜖‖ℎ2‖. Finally, if we set 𝛿 = min{𝛿1, 𝛿2}, it follows that if ‖ℎ‖ < 𝛿 then ‖𝜂(ℎ)‖ ≤ ‖𝜂1(ℎ)‖ + ‖𝜂2(ℎ)‖ <
𝜖(‖ℎ1‖ + ‖ℎ2‖)

as required.
□

Definition 2.32. If 𝑋 and 𝑌 are finite dimensional normed vector spaces and 𝑈 is an open subset
of 𝑋 then if 𝑓∶ 𝑈 → 𝑌 , we say that 𝑓 is continuously differentiable if 𝐷𝑓∶ 𝑈 → ℒ(𝑋, 𝑌) is contin-
uous.10 This is equivalent to requiring the continuity of all of the partial derivatives 𝜕𝑗𝑓𝑖, where
𝑓 = (𝑓1,… , 𝑓𝑚) and 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚. Wewill write 𝒞1(𝑈, 𝑌) for the vector space of continuously
differentiable functions on 𝑈 taking values in 𝑌 .

Corollary 2.33. If 𝑓∶ 𝑈 → 𝑌 is as in the Theorem 2.31, and 𝐵𝑋 = {𝑣1,… , 𝑣𝑛}, 𝐵𝑌 = {𝑤1,… ,𝑤𝑚} are
bases of 𝑋 and 𝑌 respectively, then 𝑓 is continuously differentiable on 𝑈 if and only if its partial
derivative 𝜕𝑗𝑓𝑖 exist and are continuous on 𝑈, where 𝑓(𝑣) = ∑𝑚

𝑖=1 𝑓𝑖(𝑣).𝑤𝑖

Proof. Since𝐷𝑓 = ∑𝑚
𝑖=1 𝐷𝑓𝑖.𝑤𝑖, it is clear that 𝑓 is continuously differentiable if and only if each 𝑓𝑖

is, hence we may assume that𝑊 = ℝ. Now if 𝐷𝑓 exists and is continuous, then 𝜕𝑖𝑓(𝑎) = 𝐷𝑓𝑎(𝑣𝑖) is
certainly continuous on 𝑈, so the “only if” assertion is clear. For the converse, we use induction
on 𝑛 = dim(𝑋) = |𝐵𝑋 | and the previous Theorem. For 𝑛 = 1 there is nothing to prove, while if
𝑛 > 1 let 𝑋1 = span{𝑣1,… , 𝑣𝑛−1} and 𝑋2 = ℝ.𝑣𝑛 so that 𝑋 = 𝑋1⊕𝑋2. By induction, 𝜕𝑋1𝑓 exists and is
continuous, and by assumption 𝜕𝑋2𝑓 = 𝜕𝑛𝑓.𝑥𝑛 is also continuous on 𝑈, so that Theorem 2.31 thus
shows that 𝐷𝑓 exists and is continuous on 𝑈 as required. □

*Remark 2.34. If 𝑓∶ 𝑈 → 𝑌 and 𝑎 ∈ 𝑈, we say that 𝑓 is strongly differentiable at 𝑎 if there is a
linear map 𝑇 ∈ ℒ(𝑋, 𝑌) such that, for any 𝜖 > 0 there is a 𝛿 > 0

‖𝑓(𝑥) − 𝑓(𝑦) − 𝑇(𝑥 − 𝑦)‖ ≤ 𝜖‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐵(𝑎, 𝛿).

Equivalently, lim𝑥,𝑦→𝑎 ‖𝑓(𝑥) − 𝑓(𝑦) − 𝑇(𝑥 − 𝑦)‖/‖𝑥 − 𝑦‖ = 0. The linear map 𝑇 is then the strong
derivative of 𝑓 at 𝑎. Taking 𝑦 = 𝑎 one sees immediately that if the strong total derivative exists,

10Since, as 𝑋 is finite-dimensional, ℒ(𝑋,𝑌) = ℬ(𝑋,𝑌) and hence the operator norm gives ℒ(𝑋,𝑌) the structure of
a normed vector space. Thus it makes sense to ask if𝐷𝑓∶ 𝑈 → ℒ(𝑋,𝑌) is continuous.
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then 𝑓 is differentiable and the total derivative is equal to 𝑇. On the other hand, a function which
is differentiable at a point need not be strongly differentiable there.

Modifying the proof of Theorem 2.33 by applying the same technique used for 𝜕𝑋2𝑓 to 𝜕𝑋1𝑓 as
well, one can show that if 𝑋 and 𝑌 are finite-dimensional and the partial derivatives of 𝑓∶ 𝑈 → 𝑌
exist in a neighbourhood of 𝑎 ∈ 𝑈 and are continuous at 𝑎, then 𝑓 is strongly differentiable at 𝑎.

2.7 Real-valued functions on an inner product space

Let 𝐸 be a normed finite-dimensional vector space. (If you prefer you can take 𝐸 to be ℝ𝑛, the
reason we do not do that here is to try and make clearer what structures are being used where).

If 𝑈 ⊆ 𝐸 is an open subset and 𝑓∶ 𝐸 → ℝ is differentiable on 𝑈, then its derivative 𝐷𝑓 takes
values in 𝐸∗ = ℒ(𝐸,ℝ). If the norm on 𝐸 comes from an inner product (𝑣, 𝑤) ↦ 𝑣 ⋅ 𝑤 however, we
can use it to identify 𝐸 and 𝐸∗ via the map 𝜗∶ 𝐸 → 𝐸∗, where 𝜗(𝑎)(𝑣) = 𝑎 ⋅ 𝑣 for all 𝑎, 𝑣 ∈ 𝐸.
Definition 2.35. If 𝑓∶ 𝑈 → ℝ is differentiable on 𝑈 then we define ∇𝑓∶ 𝑈 → 𝐸 to be the gradient
vector field of 𝑓, where ∇𝑓(𝑎) = 𝜗−1(𝐷𝑓𝑎). Thus ∇𝑓(𝑎) is characterized by the property that

𝐷𝑓𝑎(𝑣) = ∇𝑓(𝑎) ⋅ 𝑣, ∀𝑣 ∈ 𝐸.
Example 2.36. If we take 𝐸 = ℝ𝑛, with the standard dot product, then we may view 𝐷𝑓𝑎 as a row
vector, with entries 𝜕𝑖𝑓(𝑎). The vector field ∇𝑓(𝑎) is then just the corresponding column vector.

∇𝑓(𝑎) points in the direction of greatest change for 𝑓. More precisely, if 𝑣 ∈ 𝐸 is a direction
vector with norm 1, the directional derivative at 𝑎 of 𝑓 in the direction 𝑣 is

𝜕𝑣𝑓(𝑎) = 𝐷𝑓𝑎(𝑣) = ∇𝑓(𝑎) ⋅ 𝑣.
By the Cauchy-Schwarz inequality, |∇𝑓(𝑎) ⋅ 𝑣| ≤ ‖∇𝑓(𝑎)‖.‖𝑣‖ = ‖∇𝑓(𝑎)‖, with equality if and only
if 𝑣 and ∇𝑓(𝑎) are in the same direction. Thus the magnitude of the directional derivative of 𝑓 at
𝑎 is maximized when 𝑣 is in the direction of ∇𝑓(𝑎).
Definition 2.37. If 𝑓∶ 𝑋 → ℝ is a function and 𝑐 ∈ ℝ, the locus 𝑓−1({𝑐}) = {𝑥 ∈ 𝑋 ∶ 𝑓(𝑥) = 𝑐} is
known as a level set of the function 𝑓.

An important property of the gradient vector field is that it is a normal vector to the level sets
of 𝑓, that is, in a suitable sense, it is perpendicular to the level sets of 𝑓: intuitively, if a particle is
moving along the level set the its velocity vector will be perpendicular to the gradient vector of
𝑓. More formally, if 𝛾∶ (−1, 1) → ℝ𝑛 is a curve such that 𝑓(𝛾(𝑡)) = 𝑐 for some constant 𝑐 ∈ ℝ, and
𝑝 = 𝛾(0), the gradient ∇𝑓𝑝 is perpendicular to 𝛾′(0), the “velocity vector” of 𝛾 at 𝑝, because, for all
𝑡 ∈ (−1, 1)we have 𝑔(𝑡) = 𝑓(𝛾(𝑡)) = 𝑐, hence by Theorem 2.20:

0 = 𝑑𝑔
𝑑𝑡 𝑡=0

= 𝐷𝑓𝛾(0)(𝛾′(0)) = ∇𝑓(𝑝).𝛾′(0) = 0.

We will explore this in more detail when we discuss tangent spaces.

2.8 *Higher order derivatives

We briefly wish to discuss the notion of higher derivatives for functions 𝑓∶ 𝑈 → 𝑌 , where as
before, the domain of 𝑓 is an open subset 𝑈 of a normed vector space 𝑋 and its codomain is a
normed vector space 𝑌 . There are twoways of thinking about these, the first ofwhich takes bases
and works concretely with partial derivatives, while the second works with the total derivative
in a coordinate-free manner.

Given bases {𝑣1,… , 𝑣𝑛} of 𝑋 and {𝑤1,… ,𝑤𝑚} of 𝑌 , we may write 𝑓(𝑥) = ∑𝑚
𝑖=1 𝑓𝑗(𝑥)𝑤𝑗 where the

𝑓𝑗 are the components 𝑓 with respect to the basis {𝑤1,… ,𝑤𝑚}. The directional derivatives in the
direction of the 𝑣𝑗s give the partial derivatives 𝜕𝑗𝑓𝑖. But these are just real-valued functions on𝑈,
and hence we can consider all of their partial derivatives 𝜕𝑗1𝜕𝑗2𝑓𝑖, where 𝑗1, 𝑗2 ∈ {1,… , 𝑛} and 𝑖 ∈
{1,… ,𝑚}. If these all exist and are continuous, we say that 𝑓 is twice continuously differentiable.
Indeed we can proceed inductively and define:
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Definition 2.38. If 𝑓∶ 𝑈 → 𝑌 is as above and 𝑓 = ∑𝑚
𝑖=1 𝑓𝑖.𝑤𝑖 so that the 𝑓𝑖 are the components of

𝑓, we define that higher partial derivatives of 𝑓 inductively as follows: If 𝑘 = 1 these are just the
partial derivatives 𝜕𝑗𝑓𝑖, (1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑚). For 𝑘 > 1, we suppose that by induction we have
defined the partial derivatives of order 𝑘 − 1, and write them as 𝜕𝛽𝑓𝑖 where 𝛽 = (𝑗1, 𝑗2,… , 𝑗𝑘−1) ∈
{1, 2,… , 𝑛}𝑘−1. The 𝑘-th partial derivatives of 𝑓 are indexed by pairs (𝛼, 𝑖) where 𝛼 ∈ {1, 2,… , 𝑛}𝑘
and 𝑖 ∈ {1, 2,… ,𝑚}, where if 𝛼 = (𝑗1, 𝑗2,… , 𝑗𝑛) then setting 𝛽 = (𝑗2,… , 𝑗𝑛) ∈ {1, 2,… , 𝑛}𝑘−1 we define

𝜕𝛼𝑓𝑖 ∶= 𝜕𝑗1(𝜕𝛽𝑓𝑖)
= 𝜕𝑗1𝜕𝑗2 …𝜕𝑗𝑘𝑓𝑖.

We say that 𝑓 is 𝑘-times continuously differentiable, and write 𝑓 ∈ 𝒞𝑘(𝑈, 𝑌) , if the partial
derivatives 𝜕𝛼𝑓𝑖 exist and are continuous for all 𝛼 ∈ {1,… , 𝑛}𝑘 and 𝑖 ∈ {1,… ,𝑚}. We say that 𝑓
is smooth or infinitely differentiable if the partial derivatives of all orders 𝑘 ≥ 1 exist, and write
𝒞∞(𝑈, 𝑌) for the space of smooth functions on 𝑈 taking values in 𝑌 .
Remark 2.39. One unsatisfactory aspect of this approach to the higher derivatives is that we do
not get any sense for how to think about the proliferation of partial derivatives 𝜕𝛼𝑓𝑖 we obtain
from 𝑓. In the case of the first derivative, the total derivative “organises” the partial derivatives
by showing that they are simply matrix entries for a linear map which is characterised by being,
asymptotically, the “best linear approximation” to 𝑓 near 𝑎. In the sameway, we gain amore con-
ceptual understanding of the higher derivatives by considering the higher total derivative 𝐷(𝐷𝑓)
of 𝐷𝑓. Theorem 2.33 shows that 𝑓 ∈ 𝒞1(𝑈, 𝑌) if and only if the total derivative exists and is con-
tinuous. The latter condition makes sense because the total derivative 𝐷𝑓 is a function from𝑈 to
ℒ(𝑋, 𝑌), andℒ(𝑋, 𝑌) is a normed vector space when equippedwith the operator norm ‖.‖∞. By the
same token, our definition of the derivative makes sense, and we can ask if 𝐷𝑓∶ 𝑈 → ℒ(𝑋, 𝑌) is
(continuously) differentiable! This leads to an alternative definition of 𝒞2(𝑈, 𝑌), namely

𝒞2(𝑈, 𝑌) = {𝑓∶ 𝑈 → 𝑌 ∶ 𝐷(𝐷𝑓)∶ 𝑈 → ℒ(𝑋,ℒ(𝑋, 𝑌)) exists and is continuous}.

To see how this relates to our definition using partial derivatives, notice that our choice of bases
for 𝑋 and 𝑌 allows us to identify ℒ(𝑋, 𝑌)with Mat𝑚,𝑛(ℝ), the space of𝑚×𝑛matrices11. The space
Mat𝑚,𝑛(ℝ) can then be identified withℝ𝑚𝑛, and the components of𝐷𝑓with respect to this identi-
fication are the (first) partial derivatives of 𝑓.12 Theorem 2.33 thus shows that 𝐷𝑓 is continuously
differentiable if and only if all the second partial derivatives exist and are continuous. In this way
you can show by induction that the condition the 𝑘-th total derivative of 𝑓 exists and is continu-
ous is equivalent to the condition that all the 𝑘-th partial derivatives exist and are continuous.

We still, however, havenot given a satisfactory answer to thequestionof howone should think
of the second derivative. with the total derivative approach we see that 𝐷2𝑓𝑎 ∈ ℒ(𝑋,ℒ(𝑋, 𝑌)), that
is 𝐷2𝑓𝑎 is a linear map from 𝑋 to the space of linear maps from 𝑋 to 𝑌 . Which is a mouthful.

The standard way to deal with this issue is to notice that ℒ(𝑋,ℒ(𝑋, 𝑌)) can be less painfully
thought of as the space of bilinear maps from 𝑋 × 𝑋 to 𝑌 ! The details of this identification are in
the Appendices, and we content ourselves here to trying to understand, explicitly, how one sees
this for real-valued functions on an open subset of a normed vector space 𝑋 .
Example 2.40. Let 𝑋 be an 𝑛-dimensional normed vector space, and let 𝐵 = {𝑒1,… , 𝑒𝑛} be a basis
for 𝑋 . Write 𝐵∗ = {𝑥1, 𝑥2,… , 𝑥𝑛} ⊂ 𝑋∗ for the corresponding dual basis.

Suppose that𝑈 is an open subset of 𝑋 and 𝑓∶ 𝑈 → ℝ is twice differentiable on 𝑈. The deriva-
tive of 𝑓 is a function 𝐷𝑓∶ 𝑈 → ℒ(𝑋,ℝ) = 𝑋∗. Its components with respect to the basis 𝐵∗ of 𝑋∗

are just the partial derivatives 𝜕𝑖𝑓 of 𝑓, since if 𝐷𝑓𝑎 = ∑𝑛
𝑗=1 𝑐𝑗(𝑎).𝑥𝑗, where 𝑐𝑗(𝑎) ∈ ℝ, then

𝑐𝑗(𝑎) = 𝐷𝑓𝑎(𝑒𝑗) = 𝜕𝑒𝑗𝑓(𝑎) = 𝜕𝑗𝑓(𝑎).
11If we associate a matrix to the linear map given by left-multiplication on column vectors, ℒ(ℝ𝑛,ℝ𝑚) is identified

with the space of matrices with𝑚 rows and 𝑛 columns.
12Here we are identifying the directional derivatives 𝜕𝐸𝑖𝑗 (𝐷𝑓)with the partial derivative associated to the subspace

ℝ.𝐸𝑖𝑗 .
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and so 𝐷𝑓 = ∑𝑛
𝑗=1(𝜕𝑗𝑓)𝑑𝑥𝑗, where we write 𝑑𝑥𝑗 for the constant function from 𝑈 to 𝑋∗ taking the

value 𝑥𝑖, in order to distinguish it from the restriction of the function 𝑥𝑖 ∈ 𝑋∗ to 𝑈. But now, as
we already noted, the derivative 𝐷 is a linear map, hence to calculate 𝐷2𝑓 in terms of the second
partial derivatives, we simply apply the same reasoning to each component 𝜕𝑖𝑓∶ 𝑈 → ℝ of 𝐷𝑓:
Indeed since the derivative is linear, we have

𝐷(𝐷𝑓) = 𝐷 (
𝑛
∑
𝑖=1

𝜕𝑖𝑓.𝑑𝑥𝑖) =
𝑛
∑
𝑖=1

𝐷(𝜕𝑖𝑓)𝑑𝑥𝑖 =
𝑛
∑
𝑖=1

(
𝑛
∑
𝑗=1

𝜕𝑗(𝜕𝑖𝑓).𝑑𝑥𝑗)𝑑𝑥𝑖 = ∑
1≤𝑖,𝑗≤𝑛

(𝜕𝑗𝑖𝑓).(𝑑𝑥𝑗𝑑𝑥𝑖).

In the second equality we use the fact that if 𝑤 ∈ 𝑋∗ and 𝑔∶ 𝑈 → ℝ, then 𝐷(𝑔.𝑤) = (𝐷𝑔).𝑤,
which follows, for example, by the chain rule applied to the composition of 𝑔 with the (linear)
map 𝑡 ↦ 𝑡.𝑤 (for 𝑡 ∈ ℝ). Thus we see that the basis for ℒ2(𝑋, ℝ) = ℒ(𝑋, ℒ(𝑋,ℝ)) induced by our
choice of basis {𝑣1,… , 𝑣𝑛} of 𝑉 is the set {𝑥𝑗𝑥𝑖 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛}, of pairwise products of the dual basis
vectors.

It is useful to explicitly describe 𝑥𝑗 .𝑥𝑖 as an element ofℒ2(𝑋, ℝ): if 𝑣1 ∈ 𝑋 then (𝑥𝑗 .𝑥𝑖)(𝑣1) should
be an element of 𝑋∗, and we may obtain one simply by applying 𝑥𝑗 to 𝑣1 to obtain 𝑥𝑗(𝑣1).𝑥𝑖. Ex-
plicitly, it is the functional which assigns to a vector 𝑣2 ∈ 𝑋 the scalar 𝑥𝑗(𝑣1)𝑥𝑖(𝑣2).

But it is equally reasonable, however, to think of 𝑥𝑗 .𝑥𝑖 as a real-valued function of a pair of
vectors (𝑣1, 𝑣2) ∈ 𝑋 × 𝑋, namely the function (𝑣1, 𝑣2) ↦ 𝑥𝑗(𝑣1).𝑥𝑖(𝑣2). From this point of view it is
easy to check that {𝑥𝑗 .𝑥𝑖 ∶ 1 ≤ 𝑖, 𝑗 ≤ 𝑛} is a basis of the spaceℳ2(𝑋, ℝ) of bilinearmaps from 𝑋 ×𝑋
to ℝ, and hence, since it is just a linear combination of the 𝑥𝑗𝑥′𝑖𝑠 we may view 𝐷2𝑓𝑎 as a bilinear
form on 𝑋 × 𝑋 taking values in ℝ. To see this more concretely, if we let 𝐻 = (𝜕𝑗𝑖𝑓) be the Hessian
matrix of 𝐷2𝑓, and noting that if 𝑢 ∈ 𝑋 then 𝑢 = ∑𝑛

𝑖=1 𝑥𝑖(𝑢).𝑒𝑖, we see that for any 𝑣, 𝑤 ∈ 𝑋

𝐷2𝑓𝑎(𝑣)(𝑤) = ∑
1≤𝑖,𝑗≤𝑛

(𝜕𝑗𝑖𝑓).[(𝑥𝑗𝑥𝑖)(𝑣)](𝑤)
𝑛
∑
𝑖,𝑗=1

𝑥𝑗(𝑣)(𝜕𝑗𝑖𝑓).𝑥𝑖(𝑤) = x(𝑣)𝑡.𝐻.x(𝑤)

where we write x(𝑣) for the column vector (𝑥1(𝑣), 𝑥2(𝑣),… , 𝑥𝑛(𝑣))𝑡. Thus we see that the second
derivative is just the symmetric bilinear form given by the Hessian (where the symmetry is a con-
sequence of the symmetry of mixed partial derivatives – Appendix 5.3 gives more details on this
which are however non-examinable).
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3 The Inverse Function Theorem
In this chapter we will discuss the theorems which lie at the heart of all the main results of this
course.

Lemma 3.1. Let Ω ⊂ ℒ(𝑋, 𝑌) be the set of invertible linear maps from 𝑋 to 𝑌 . The we have

1. The set Ω is open.

2. The inverse map 𝜄∶ Ω → Ω given by 𝜄(𝛼) = 𝛼−1 is continuous.

Proof. The first problem sheet asks you to establish this carefully. If 𝑋 and 𝑌 have different di-
mensions, then Ω is empty and there is nothing to prove. If they have the same dimension, then
there is an isomorphism 𝛾∶ 𝑌 → 𝑋 and it induces a linear map 𝛾∗∶ ℒ(𝑋, 𝑌) → ℒ(𝑋, 𝑋) given
by 𝛼 ↦ 𝛾 ∘ 𝛼. Its inverse is (𝛾−1)∗ and since in the finite-dimensional setting all linear maps
are continuous, it follows that 𝛾∗ is a topological isomorphism, so we may assume that 𝑋 = 𝑌 .
But then Ω forms a group under composition, which acts on itself by left multiplication. Since
‖𝛼1 ∘ 𝛼2‖∞ ≤ ‖𝛼1‖∞.‖𝛼2‖∞, this action is by homeomorphisms, hence it follows that to show thatΩ
is open, it is enough to check that it is a neighbourhood of 𝐼𝑋 . In fact we have 𝐵(𝐼𝑋 , 1) ⊆ Ω.

To see this, note that any element of 𝐵(𝐼𝑋 , 1) can be written as 𝐼𝑋 −𝐻 where ‖𝐻‖∞ < 1. Now let
𝑠𝑛(𝐻) = ∑𝑛

𝑘=0𝐻𝑘. Then 𝑠𝑛(𝐻)(𝐼𝑋 −𝐻) = 𝐼𝑋 −𝐻𝑛+1, and since ‖𝐻𝑛+1‖∞ ≤ ‖𝐻‖𝑛+1∞ → 0, it follows that,
if we can show 𝑠𝑛(𝐻) converges, then its limit 𝑠(𝐻) is (𝐼𝑋 −𝐻)−1, and so in particular 𝐼𝑋 −𝐻 ∈ Ω as
claimed.

Butℒ(𝑋, 𝑋) is complete (since it is nfinite dimensional) hence it suffices to show that (𝑠𝑛(𝐻))𝑛≥0
is a Cauchy sequence. But if ‖𝐻‖∞ = 𝑟 < 1 then for𝑚 < 𝑛we have

‖𝑠𝑛(𝐻) − 𝑠𝑚(𝐻)‖∞ = ‖
𝑛−1
∑
𝑘=𝑚

𝐻𝑘‖∞ ≤
𝑛
∑

𝑘=𝑚+1
‖𝐻𝑘‖∞ ≤ 𝑟𝑚+1

1 − 𝑟,

and so since 𝑟𝑚/(1 − 𝑟) → 0 as𝑚 → ∞we see that (𝑠𝑛(𝐻))𝑛≥0 is Cauchy as required.
Finally, to see that the inversion map 𝜄 is continuous on Ω, the left action of Ω on itself can

again be used to show that it suffices to check that 𝜄 is continuous at 𝐼𝑋 . But 𝜄(𝐼𝑋) = 𝐼𝑋 , hence

‖𝜄(𝐼𝑋) − 𝜄(𝐼𝑋 − 𝐻)‖ = lim
𝑛→∞

‖𝑠0(𝐻) − 𝑠𝑛(𝐻)‖∞,

but we saw above that ‖𝑠0(𝐻) − 𝑠𝑛(𝐻)‖ ≤ ‖𝐻‖∞/(1 − ‖𝐻‖∞) → 0 as ‖𝐻‖∞ → 0, hence 𝜄 is continuous
at 𝐼𝑋 . □

3.1 The Inverse Function Theorem

Theorem 3.2. Suppose that 𝑋 and 𝑌 are finite-dimensional normed vector spaces, 𝑈 ⊆ 𝑋 an open
subset, and 𝑓∶ 𝑈 → 𝑌 is a differentiable function. If 𝑎 ∈ 𝑈 is such that 𝐷𝑓𝑎 is invertible and 𝐷𝑓 is
continuousat𝑎, then there is anopenneighbourhood𝑈1 ⊆ 𝑈 of𝑎 such that𝑓|𝑈1 is ahomeomorphism
from𝑈1 to𝑉1 = 𝑓(𝑈1)anopenneighbourhoodof 𝑏 = 𝑓(𝑎). Moreover if 𝑔∶ 𝑉1 → 𝑈1 denotes the inverse
of 𝑓, then 𝑔 is differentiable with

𝐷𝑔𝑦 = (𝐷𝑓𝑔(𝑦))−1, ∀𝑦 ∈ 𝑉1.

Thus by the Lemma 3.1, 𝐷𝑔 is continuous at 𝑦 whenever 𝐷𝑓 is continuous at 𝑥 = 𝑔(𝑦). In particular,
𝐷𝑔 is continuous at 𝑓(𝑎).

Strategy of proof: Since linear maps are their own derivatives, one can replace 𝑓 with (𝐷𝑓𝑎)−1 ∘ 𝑓
and hence assume 𝑓∶ 𝑋 → 𝑋 and 𝐷𝑓𝑎 = 𝐼𝑋 . Moreover, we can further replace 𝑓 by 𝑓(𝑥 + 𝑎) − 𝑓(𝑎)
and hence assume 𝑎 = 𝑓(𝑎) = 0.
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We then write 𝜑(𝑥) = 𝑥−𝑓(𝑥), so that 𝜑(𝑥)measures the difference between 𝑓 and the identity
map. The intuition is then that a function which is a “small perturbation” of the identity should
remain invertible, so that if 𝜑 is suitably “small”, 𝑓 should be invertible. The insight is then that a
“small perturbation” should be rigorously interpreted as a contraction mapping! Using the Mean
Value Inequality and the continuity of𝐷𝑓 at 0𝑋 , one can show that, in 𝐵(0𝑋 , 𝑟) for small enough 𝑟, 𝜑
is Lipschitz with a Lipschitz constant less than 1. This ensures 𝑓 is injective on 𝐵(0𝑋 , 𝑟) and, by an
applicationof the contractionmapping theorem, that𝑓(𝐵(0𝑋 , 𝑟)) is aneighbourhoodof 0𝑋 = 𝑓(0𝑋).
It then follows that there is an open set 𝑉1 containing 0𝑋 such that 𝑓|𝑉1 is a homeomorphism and
moreoverboth𝑓 and its inverse 𝑔 areLipschitz continuous. It is theneasy to check that the inverse
function 𝑔 is differentiable.

Remark 3.3. A few comments about the theorem:

• Checking the condition that𝐷𝑓𝑎 is invertible is straight-forward: It is equivalent to the non-
vanishing of the determinant 𝐽𝑓(𝑎) = det(𝐷𝑓𝑎) of the Jacobian matrix of 𝐷𝑓𝑎.

• Let𝑈 ⊆ 𝑋 and 𝑉 ⊆ 𝑌 be open subsets of normed vector spaces 𝑋 and 𝑌 respectively. We say
that a continuously differentiable function 𝑓∶ 𝑈 → 𝑌 is a diffeomorphism from𝑈 to 𝑉 if it is
injective with image 𝑓(𝑈) = 𝑉 , and its inverse 𝑔∶ 𝑉 → 𝑈 is continuously differentiable. The
inverse function theorem can then be stated as follows: Let 𝑓∶ 𝐷 → 𝑌 be a continuously
differentiable function on an open subset 𝐷 ⊆ 𝑋 taking values in a normed vector space 𝑌 .
If 𝐷𝑓𝑎 is invertible, then there is an open neighbourhood 𝑈 ⊆ 𝐷 of 𝑎 on which 𝑓 restricts to
a diffeomorphism between 𝑈 and its image 𝑓(𝑈) ⊆ 𝑌 .
[Warning: some references may only require 𝑓 and 𝑔 to be differentiable, while others may
require that 𝑓 and 𝑔 are infinitely differentiable. To avoid ambiguity, one can also say 𝒞1-
diffeomorphism.]

• The formula for the derivative of 𝑔 is forced on us by the chain rule – if 𝑔 is differentiable,
the chain rule applied to the composite 𝐼𝑌 = 𝑓 ∘ 𝑔, shows that 𝐼𝑌 = 𝐷𝐼𝑌 = 𝐷𝑓(𝑔(𝑦)) ∘ 𝐷𝑔(𝑦)
and so 𝐷𝑔(𝑦) = 𝐷𝑓(𝑔(𝑦))−1.

• It is not sufficient, even if just wanted 𝑓 to have a continuous inverse, for the function 𝑓
to be differentiable with 𝑓′(𝑎) invertible: Consider the example 𝑓∶ ℝ → ℝ, where 𝑓(𝑥) =
𝑥 + 2𝑥2 sin(1/𝑥), which is extended by continuity to 𝑥 = 0, so 𝑓(0) = 0. Then computing
directly from the definition, we find 𝑓′(0) = 1 (which is invertible), but 𝑓 is not injective in
any neighborhood of 0.
[*For those who read Remark 2.34, the function 𝑓 is differentiable but not strongly differen-
tiable at 𝑥 = 0.]

• The hypotheses of the theorem are also not necessary for 𝑓 to have a continuous inverse
– the function 𝑓∶ ℝ → ℝ given by 𝑓(𝑥) = 𝑥3 is continuous and has a continuous inverse
𝑥 ↦ 𝑥1/3, however 𝑓′(0) = 0 so the inverse function theorem does not apply (and indeed the
inverse function is not differentiable at 0).

• If 𝑓∶ 𝑈 → ℝ𝑛 is continuously differentiable with 𝐷𝑓𝑥 invertible for all 𝑥 ∈ 𝑈, then although
𝑓(𝑈) is open in ℝ𝑛 (as we shall see below) 𝑓 need not give a diffeomorphism between 𝑈 and
𝑓(𝑈). Indeed 𝑓 need not be injective. This happens already in two dimensions: Suppose
that 𝑈 = ℝ2\{0} and 𝑓∶ 𝑈 → ℝ2 is given by 𝑓(𝑥1, 𝑥2) = (𝑥21 − 𝑥22, 2𝑥1𝑥2). Then 𝑓(𝑈) = 𝑈, and
we have

𝐷𝑓(𝑥1,𝑥2) = ( 2𝑥1 −2𝑥2
2𝑥2 2𝑥1

) .

Since det(𝐷𝑓(𝑥1,𝑥2)) = 4(𝑥21 + 𝑥22)we see that 𝐷𝑓(𝑥1,𝑥2) is invertible on all of ℝ2\{0}. But clearly
𝑓(𝑥1, 𝑥2) = 𝑓(−𝑥1, −𝑥2), so that 𝑓 is not injective on𝑈. If however we assume in addition that
𝑓∶ 𝑈 → ℝ𝑛 is injective, then it is indeed a diffeomorphism from 𝑈 to 𝑓(𝑈) – see below.
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3.2 *Proof of the Inverse Function Theorem

As noted above, by replacing 𝑓 with 𝐷𝑓−1𝑎 (𝑓(𝑥 + 𝑎) − 𝑓(𝑎)) we may assume that 𝑌 = 𝑋 and 𝐷𝑓𝑎 = 𝐼𝑋 ,
and that 𝑎 = 𝑓(𝑎) = 0𝑋 .

The heart of the proof is the following Proposition, which establishes a rigorous version of the
idea that a small perturbation of the identitymap should still be invertible, that is 𝐼𝑋+𝜑 should be
invertible is 𝜑 is sufficiently small” compared to 𝐼𝑋 . In the case of the space of linearmapsℒ(𝑋, 𝑋),
our proof of Lemma 3.1 shows that 𝐵(𝐼𝑋 , 1) consists of invertible elements, so in this case a “small
perturbation” can be taken to mean a linear map map of operator norm strictly less than 1. But a
linearmap𝛼has ‖𝛼‖∞ < 1 exactlywhen it is a contraction (that is, a Lipschitzmapwith a Lipschitz
factor less than 1), and thus a natural candidate for a “small perturbation” is a contractionmap i.e.
a Lipschitz mapwith Lipschitz constant less than 1. (Note this is consistent with the requirement
in the linear case at least!)

The next Proposition shows that using this notion of a small perturbation for functions de-
fined on a closed ball, the contraction mapping theorem does indeed provide the tools to show
that such a perturbation has a continuous (in fact Lipschitz continuous) inverse, at least if we
shrink the domain of 𝑓 to a ball of smaller radius.

Proposition 3.4. Let 𝑋 be a finite-dimensional normed vector space. Suppose that for some 𝑟 >
0, 𝐶 ∈ (0, 1) we are given a function 𝜑∶ ̄𝐵(0𝑋 , 𝑟) → 𝑋 satisfying 𝜑(0𝑋) = 0𝑋 and

‖𝜑(𝑥) − 𝜑(𝑦)‖ ≤ 𝐶.‖𝑥 − 𝑦‖ ∀𝑥, 𝑦 ∈ ̄𝐵(0, 𝑟).

Then if 𝑓∶ ̄𝐵(0𝑋 , 𝑟) → 𝑋 is given by 𝑓(𝑥) = 𝑥+𝜑(𝑥), and 𝑦 ∈ ̄𝐵(0, 1 − 𝐶).𝑟), there is a unique 𝑥 ∈ ̄𝐵(0, 𝑟)
such that 𝑓(𝑥) = 𝑦. Moreover, the function 𝑔∶ ̄𝐵(0, (1 − 𝐶).𝑟) → ̄𝐵(0, 𝑟) defined by 𝑓(𝑔(𝑦)) = 𝑦 is
Lipschitz continuous with Lipschitz constant (1 − 𝐶)−1.

Proof. Given 𝑦 ∈ ̄𝐵(0, (1 − 𝐶).𝑟), let 𝜑𝑦(𝑥) = 𝑦 − 𝜑(𝑥). Then we have

‖𝜑𝑦(𝑥)‖ = ‖𝑦 − 𝜑(𝑥)‖ ≤ ‖𝑦‖ + ‖𝜑(𝑥)‖ ≤ (1 − 𝐶).𝑟 + 𝐶.𝑟 = 𝑟,

so that 𝜑𝑦 maps ̄𝐵(0, 𝑟) to itself. Since ̄𝐵(0, 𝑟) ⊂ 𝑋 is closed and 𝑋 is complete, ̄𝐵(0, 𝑟) itself is com-
plete and non-empty (since 0𝑋 ∈ ̄𝐵(0, 𝑟)). Moreover,

‖𝜑𝑦(𝑥) − 𝜑𝑦(𝑥′)‖ = ‖𝜑(𝑥′) − 𝜑(𝑥)‖ ≤ 𝐶.‖𝑥 − 𝑥′‖, ∀𝑥, 𝑥′ ∈ ̄𝐵(0, 𝑟),

thus 𝜑𝑦 is a contraction on ̄𝐵(0, 𝑟). The Contraction Mapping Theorem thus implies that there is a
unique point 𝑥𝑦 with 𝜑𝑦(𝑥𝑦) = 𝑥𝑦, that is, 𝑓(𝑥𝑦) = 𝑥𝑦 +𝜑(𝑥𝑦) = 𝑦. Let 𝑔∶ ̄𝐵(0, 𝑟/2) → ̄𝐵(0, 𝑟) be given
by 𝑔(𝑦) = 𝑥𝑦.

To see that 𝑔 is continuous, let 𝑦1, 𝑦2 ∈ ̄𝐵(0, 𝑟). Then if 𝑥1 = 𝑔(𝑦1), 𝑥2 = 𝑔(𝑦2)we have

‖𝑓(𝑥1) − 𝑓(𝑥2‖ = ‖(𝑥1 − 𝑥2) + (𝜑(𝑥1) − 𝜑(𝑥2)‖ ≥ ‖𝑥1 − 𝑥2‖ − ‖𝜑(𝑥1) − 𝜑(𝑥2)‖
≥ ‖𝑥1 − 𝑥2‖ − 𝐶.‖𝑥1 − 𝑥2‖ = (1 − 𝐶).‖𝑥1 − 𝑥2‖,

thus ‖𝑔(𝑦1) − 𝑔(𝑦2)‖ ≤ (1 − 𝐶)−1.‖𝑦1 − 𝑦2‖ and hence 𝑔 is Lipschitz continuous on ̄𝐵(0, (1 − 𝐶).𝑟). □

The proof the Inverse Function Theorem for differentiable functions follows from this Proposi-
tion and two additional facts:

i) If 𝐷𝑓0𝑋 = 𝐼𝑋 and 𝐷𝑓𝑥 is continuous at 0𝑋 , then 𝑓 is a “small” perturbation of 𝐼𝑋 in ̄𝐵(0𝑋 , 𝑟) for
sufficiently small 𝑟 > 0, so that we can apply the above Proposition.

ii) The inverse function 𝑔 given by the Proposition is differentiable at 𝑦 = 𝑓(𝑥) provided 𝑓 is
differentiable at 𝑥.

Thefirst of these is an easy consequence of theMeanValue Inequality. Indeedwe can even choose
which value of 𝐶 we prefer, for example we may take 𝐶 = 1/2.
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Lemma 3.5. Suppose that 𝑋 is a finite-dimensional normed vector space, 𝑈 ⊂ 𝑋 is an open neigh-
bourhood of 0𝑋 , and let 𝑓∶ 𝑈 → 𝑋 be a differentiable function on 𝑈. If 𝐷𝑓 is continuous at 0𝑋
and 𝐷𝑓0𝑋 = 𝐼𝑋 , then if 𝜑∶ 𝑈 → 𝑋 is given by 𝜑(𝑥) = 𝑓(𝑥) − 𝑥, there is an 𝑟 > 0 such that for all
𝑥, 𝑦 ∈ ̄𝐵(0𝑋 , 𝑟) ⊂ 𝑈,

‖𝜑(𝑥) − 𝜑(𝑦)‖ ≤ 1
2.‖𝑥 − 𝑦‖.

Proof. By definition, since 𝑓 is differentiable at 𝑥 ∈ 𝑈, so is 𝜑. Indeed for all 𝑥 ∈ 𝑈 we have
𝐷𝜑𝑥 = 𝐷𝑓𝑥 − 𝐼𝑛. In particular, 𝐷𝜑0𝑋 = 0ℒ(𝑋,𝑋). Since 𝐷𝜑 is continuous at 𝑎, there is an 𝑟1 > 0 such
that ‖𝐷𝜑𝑥‖∞ ≤ 1/2 for all 𝑥 ∈ 𝐵(0𝑋 , 𝑟1). But then by the Mean Value Inequality (Theorem 2.25), we
have ‖𝜑(𝑥) − 𝜑(𝑦)‖ ≤ 1

2
‖𝑥 − 𝑦‖ for all 𝑥, 𝑦 ∈ 𝐵(0, 𝑟1) hence on ̄𝐵(0, 𝑟) for any 𝑟 ∈ (0, 𝑟1). □

The final part of the proof, that is, demonstrating that the inverse function is indeed differ-
entiable, is straight-forward:

Lemma 3.6. Suppose that 𝑋 is a finite-dimensional normed vector space, 𝑈 is an open subset of 𝑋,
and 𝑓∶ 𝑈 → 𝑋 a injective function whose image 𝑓(𝑈) contains an open subset 𝑉 . If 𝑔∶ 𝑉 → 𝑈 is the
inverse of the restriction of 𝑓 to 𝑓−1(𝑉) and 𝑔 is continuous at 𝑏 = 𝑓(𝑎) ∈ 𝑉 , where 𝐷𝑓𝑎 is invertible,
then 𝑔 is differentiable at 𝑏 and 𝐷𝑔𝑏 = (𝐷𝑓𝑎)−1.

Proof. By replacing 𝑓 by 𝑥 ↦ 𝐷𝑓−1𝑎 (𝑓(𝑎 + 𝑥) − 𝑓(𝑎)) we may assume that 𝑎 = 𝑓(𝑎) = 0𝑋 , and
𝐷𝑓0𝑋 = 𝐼𝑋 , so that

𝑓(𝑥) = 𝑥 + 𝜖(𝑥)‖𝑥‖ (3.1)

where 𝜖(𝑥) is continuous at 𝑥 = 0𝑋 and 𝜖(0𝑋) = 0𝑋 . In order to show that 𝑔 = 𝑓−1 is differentiable
at 0𝑋 with derivative equal to 𝐼−1𝑋 = 𝐼𝑋 , we must show that 𝑔(𝑦) = 𝑦 + 𝑜𝑋(‖𝑦‖).

But now 𝑔(𝑦) = 𝑥 and 𝑓(𝑥) = 𝑦, hence in terms of 𝑔, Equation (3.1) becomes 𝑔(𝑦) = 𝑦 −
‖𝑔(𝑦)‖𝜖(𝑔(𝑦)), and so we must show that ‖𝑔(𝑦)‖.𝜖(𝑔(𝑦)) ∈ 𝑜𝑋(‖𝑦‖), that is, we must show

‖𝑔(𝑦)‖
‖𝑦‖ .𝜖(𝑔(𝑦)) → 0 as ‖𝑦‖ → 0.

But 𝜖 and 𝑔 are continuous at 0𝑋 and 𝜖(0𝑋) = 𝑔(0𝑋) = 0𝑋 , and hence 𝜖(𝑔(𝑦)) → 𝜖(𝑔(0𝑋)) = 0𝑋 as
𝑦 → 0𝑋 . Thus it suffices to show that ‖𝑔(𝑦)‖/‖𝑦‖ is bounded for ‖𝑦‖ small. But by the continuity
of 𝜖(𝑔(𝑦)), there is a 𝛿 > 0 such that if ‖𝑦‖ < 𝛿 then ‖𝜖(𝑔(𝑦))‖ < 1/2. Thus if ‖𝑦‖ < 𝛿, since 𝑦 =
𝑔(𝑦) + 𝜖(𝑔(𝑦).‖𝑔(𝑦)‖, we have ‖𝑦‖ ≥ ‖𝑔(𝑦)‖ − (1/2).‖𝑔(𝑦)‖ = (1/2).‖𝑔(𝑦)‖, and hence ‖𝑔(𝑦)‖/‖𝑦‖ ≤ 2 as
required. □

Remark 3.7. In the context of the Inverse Function Theorem, we need to apply the previous
Lemma together with Lemma 3.5, and the latter ensures that 𝑔 is not just continuous but in fact
Lipschitz with parameter 1/2, which provides a quicker way to complete the proof of the above:
since 𝑔(0) = 0, ‖𝑔(𝑦)‖.‖𝜖(𝑔(𝑦))‖ ≤ 1

2
‖𝑦‖‖𝜖(𝑦)‖ = 𝑜(‖𝑦‖).

Remark 3.8. It is worth comparing the proof of the Inverse Function Theorem above to the proof
of the single-variable theorem. In that case, the differentiable inverse function theorem is also
deduced from a continuous inverse function theorem. This is often misleadingly13 presented as
follows: Each 𝑦 ∈ 𝑉 has 𝑦 = 𝑔(𝑥) for a unique 𝑥 ∈ 𝑈, or equivalently 𝑓(𝑥) = 𝑦, hence

lim
𝑦→𝑦0

𝑔(𝑦) − 𝑔(𝑦0)
𝑦 − 𝑦0

= lim
𝑦→𝑦0

𝑔(𝑓(𝑥)) − 𝑔(𝑓(𝑥0)
𝑓(𝑥) − 𝑓(𝑥0)

= lim
𝑦→𝑦0

𝑥 − 𝑥0
𝑓(𝑥) − 𝑓(𝑥0)

= lim
𝑥→𝑥0

𝑥 − 𝑥0
𝑓(𝑥) − 𝑓(𝑥0)

= 1/𝑓′(𝑥0)

The algebraic manipulation is of course straight-forward, however the real content in the deduc-
tion is the justification for the second-last equality, that is, showing that one can switch from
taking lim𝑦→𝑦0 to taking lim𝑥→𝑥0 . It is here that the continuity of the inverse function is essential,
since if 𝑔 = 𝑓−1 is continuous at 𝑦0 then and hence if 𝑦 → 𝑦0 then 𝑔(𝑦) → 𝑔(𝑦0), that is 𝑥 → 𝑥0, and
thus the change of limit is indeed legitimate.

13In that it hides the key point in a subscript.
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Remark 3.9. The continuous inverse function theorem in the single-variable case has a rather
different proof to the many-variable case. This is because it is usually stated for functions on a
closed interval, 𝑓∶ [𝑎, 𝑏] → ℝ. In this case, if 𝑓 is injective, you can show it must be strictly in-
creasing or decreasing, and replacing 𝑓 with (−𝑓) if necessary we can assume it is increasing. It
is then easy to see that the inverse, 𝑓−1∶ 𝑓([𝑎, 𝑏]) → [𝑎, 𝑏] is also increasing, and by the Interme-
diate Value Theorem, 𝑓([𝑎, 𝑏]) is the interval [𝑓(𝑎), 𝑓(𝑏)]. But an increasing function can only have
“jump” discontinuities, i.e., the one-sided limits 𝑓(𝑥0)+ = lim𝑥→𝑥+0 𝑓(𝑥) and 𝑓(𝑥0)

− = lim𝑥→𝑥−0 𝑓(𝑥)
both exist, and 𝑓(𝑥0)− ≤ 𝑓(𝑥) ≤ 𝑓(𝑥0)+, but some or all of the inequalities may all be strict. Since
the image of 𝑓−1 is, by assumption, the interval [a,b], there can be no such discontinuities in the
case of 𝑓−1, and so it is continuous.

Thus, rather bizarrely, the continuity of the inverse in the one-dimensional theoremproved in
Prelims is deduced froma criterion for continuity for increasing functions on an interval – namely
that it is necessary and sufficient for its image to be an interval. In higher dimensions there is no
reasonable notion of an increasing or decreasing function, so this argument does not generalise.

Remark 3.10. If, instead of assuming that 𝑓∶ 𝑈 → ℝ𝑛 is differentiable on 𝑈 with 𝐷𝑓 continuous
at 𝑎 = 0, we assume only that it is strongly differentiable at 𝑎 (see Remark 2.34), then one can
modify the proof of Lemma 2.9 to show that Proposition 3.4 still holds on ̄𝐵(0, 𝑟) for small enough
𝑟. Similarly, Lemma 3.6 can be adapted to show that the inverse 𝑔 is (strongly) differentiable at 𝑦
if 𝑓 is (strongly) differentiable at 𝑥 = 𝑔(𝑦).
**Remark 3.11. One can in fact somewhat weaken the hypotheses of the Inverse Function The-
orem in a number of ways: if 𝑈 is an open subset of ℝ𝑛 and 𝑓∶ 𝑈 → ℝ𝑛 has 𝐷𝑓𝑥 invertible for all
𝑥 ∈ 𝑈, then 𝑓 is locally invertible with differentiable inverse: More explicitly, for any 𝑎 ∈ 𝑈 there
are open sets𝑈1, 𝑉1 with 𝑎 ∈ 𝑈1 ⊆ 𝑈 and 𝑓(𝑎) ∈ 𝑈2 such that 𝑓 restricts to a bijection from𝑈1 to𝑈2
and if 𝑔 = 𝑓−1|𝑈1

∶ 𝑈2 → 𝑈1, then 𝑔 is differentiablewith derivative𝐷𝑓−1𝑔(𝑦) for all 𝑦 ∈ 𝑈2. Indeed by the
chain rule, it follows that invertibility of 𝐷𝑓𝑥 for all 𝑥 ∈ 𝑈 is equivalent to the local invertibility
of 𝑓.

More importantly, especially for applications in the study of partial differential equations,
the inverse function theorem holds for continuously differentiable functions on open subsets of
any complete normed vector space, whether or not it is finite dimensional. In this context, the
derivative must be a continuous linear map (that is, a bounded linear map – see Section 1). Thus
the condition that the derivative at a point be invertible has to demand instead that the inverse
linear map exists and is bounded, but then the whole theorem (and its proof) go through just as
above. In fact, it is the case (though we do not quite have the tools to show it) that in a complete
normed vector space (the ones in which the inverse function theorem holds) if a linear map is
invertible (i.e. has a linear inverse) then its inverse is automatically continuous.

3.3 Some consequences of the Inverse Function Theorem

Definition 3.12. Let (𝑋, 𝑑) and (𝑌 , 𝜌) be metric spaces. A continuous function 𝑔∶ 𝑋 → 𝑌 is said
to be an open mapping if, for any open set 𝑈 ⊂ 𝑋, its image 𝑔(𝑈) is open in 𝑌 . Notice that a
continuous bijection is a homeomorphism precisely if it is an open mapping.

Corollary 3.13. Let𝑈 ⊂ ℝ𝑛 be anopen set, and𝑓∶ 𝑈 → ℝ𝑛 be a continuously differentiable function
such that 𝐷𝑓𝑥 is invertible for every 𝑥 ∈ 𝑈. Then 𝑓 is an open mapping.
Proof. Let 𝑉 be an open subset of ℝ𝑛 contained in 𝐸. We want to show that 𝑓(𝑉) is open. Pick
𝑏 ∈ 𝑓(𝑉). We need to show that 𝑓(𝑉) contains some open ball centered at 𝑏. Now 𝑏 = 𝑓(𝑎) for
some 𝑎 ∈ 𝑂, and the inverse function theorem applies to 𝑓|𝑉 ∶ 𝑉 → ℝ𝑛 and 𝑎 ∈ 𝑉 . Hence there
are open sets 𝑉1, 𝑉2 with 𝑎 ∈ 𝑉1 ⊂ 𝑉 and 𝑓(𝑎) = 𝑏 ∈ 𝑉2 such that 𝑓 is a bijection between 𝑉1 and 𝑉2.
But then there is a 𝛿 > 0 such that 𝐵(𝑏, 𝛿) ⊂ 𝑉2 = 𝑓(𝑉1) ⊂ 𝑓(𝑉), and we are done. □

Remark 3.14. In fact the proof of this theorem used only the first part of the inverse function
theorem – the fact that the inverse of 𝑓 on 𝑈 is continuously differentiable was not needed.
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Another consequence of the inverse function theorem is the following:

Corollary 3.15. Let 𝐸 ⊂ ℝ𝑛 be an open subset and let 𝑓∶ 𝐸 → ℝ𝑛 be continuously differentiable,
such that 𝑓 is injective and𝐷𝑓𝑥 is invertible for all 𝑥 ∈ 𝐸. Then 𝑓 is a diffeomorphism between 𝐸 and
𝑓(𝐸).

Proof. By assumption, given 𝑦 ∈ 𝑓(𝐸) there is a unique 𝑥 ∈ 𝐸 with 𝑓(𝑥) = 𝑦, so that we can
define ℎ∶ 𝑓(𝐸) → 𝐸 by setting ℎ(𝑦) to be this point 𝑥. But then 𝑔 is continuously differentiable
by the inverse function theorem, since at any point 𝑦 ∈ 𝑓(𝐸), i f 𝑥 = 𝑔(𝑦) there are open sets
𝑈,𝑉 containing 𝑥 and 𝑦 respectively, such that 𝑓|𝑈 ∶ 𝑈 → 𝑉 is a diffeomorphism. But then 𝑔|𝑉 is
continuously differentiable, and so 𝑔 is continuously differentiable at 𝑦 ∈ 𝑉 . □

3.4 The Implicit Function Theorem and systems of local coordinates.

Thegoal of our studyof differentiable functions is to try to extend to such functions, in asmuchas
this makes sense, results from linear algebra. To try andmake this analogy between results in the
linear and non-linear setting a littlemore concrete, consider the notion of coordinates on a vector
space: If 𝑋 is an 𝑛-dimensional vector space, then picking a basis 𝐵𝑋 = {𝑣1,… , 𝑣𝑛} of 𝑋 gives us
coordinates for the vectors in 𝑉 : for any vector 𝑣 ∈ 𝑋 we assign to it the coordinates (𝑐1,… , 𝑐𝑛) ∈
ℝ𝑛 where 𝑣 = ∑𝑛

𝑖=1 𝑐𝑖𝑣𝑖. Equivalently, the basis defines an invertible linear map 𝜃∶ 𝑋 → ℝ𝑛 given
by sending𝐵𝑋 to the standard basis ofℝ𝑛. Thus giving such amap is equivalent to giving a (linear)
coordinate systems on 𝑋 . In the setting of differentiable functions, diffeomorphisms play the
same role: if 𝑈 is an open subset of 𝑋 and 𝑓∶ 𝑈 → ℝ𝑛 is a diffeomorphism onto its image 𝑓(𝑈) ⊆
ℝ𝑛, then we can use the components of 𝑓 to parameterise the points in 𝑈.

This gives one way of thinking of the Inverse Function Theorem, namely, it ensures that if 𝑈
is open in 𝑋 and 𝑓∶ 𝑈 → ℝ𝑛 is continuously differentiable, then if𝐷𝑓𝑝 is invertible, at least near 𝑝,
𝑓 is a diffeomorphism. In other words, if the derivative 𝐷𝑓𝑝 gives (linear) coordinates on 𝑋, then,
the components of 𝑓 provide a (non-linear) parameterization of neighbourhood of 𝑝.

Example 3.16. Suppose that 𝑋 is 2-dimensional with basis {𝑣1, 𝑣2}. The function 𝑔∶ ℝ2 → 𝑋 given
by 𝑔∶ (𝑟, 𝑠) ↦ 𝑟 cos(𝑠).𝑣1 + 𝑟 sin(𝑠).𝑣2 has Jacobian determinant 𝐽𝑔 = 𝑟, thus if we let 𝑉 = (0,∞) ×
(0, 2𝜋), then 𝑔∶ 𝑉 → 𝑈, where 𝑈 = 𝑋\{𝑡.𝑣1 ∶ 𝑡 ≥ 0}, and 𝐽𝑔 ≠ 0 on all of 𝑉 , so the inverse function
theorem ensures that 𝑔 has an inverse 𝑓∶ 𝑈 → 𝑉 = (0,∞) × (0, 2𝜋). Since 𝑔(𝑓(𝑣)) = 𝑣, the function
𝑓 simply assigns to 𝑣 ∈ 𝑉 its “polar coordinates” (𝑟, 𝜃).

Note that 𝑈, the domain of 𝑓, is not all of 𝑋 . If we enlarge the domain of definition of 𝑓 in
such a way that 𝑓 remains injective, then the domain of 𝑔 will need to be extended to some set
𝑉 ′ ⊇ 𝑉 . But two problems present themselves whenwe try to extend the definition of 𝑔 to a larger
set: Firstly, if 𝑠 is close to 2𝜋 and 𝑠′ is close to 0, then 𝑔(𝑟, 𝑠) and 𝑔(𝑟, 𝑠′) will both be close to 𝑟𝑣1,
indeed lim𝑠→2𝜋 𝑔(𝑟, 𝑠) = lim𝑠′→0 𝑔(𝑟, 𝑠′) = 𝑟𝑣1. This forces the inverse of 𝑔 to have a discontinuity
at 𝑟𝑣1 – the limits lim𝑡↓0 𝑔(𝑟𝑣1 + 𝑡𝑣2) = (𝑟, 0) while lim𝑡↑0 𝑔(𝑟𝑣1 + 𝑡𝑣2) = (𝑟, 2𝜋). Worse still, for 0𝑋 to
lie in the image of 𝑔, we must add to 𝑈 an element of (0, 𝑠), say (0, 𝑠0) but for any 𝑠1 ∈ ℝ we have
lim𝑟→0 𝑔(𝑟, 𝑠1) = 0𝑋 , so that any choice of 𝑠0 will for 𝑓 to be discontinuous at 0𝑋 .

This latter problem is a consequence of the fact that, although 𝑔 is defined on all of ℝ2, its
derivative is only nonsingular when 𝑟 ≠ 0. The former problem of the jump discontinuity of 𝑠
along 𝑟𝑣1 (𝑟 > 0) is an example of the local nature of the inverse function theorem– a continuously
differentiable inverse is only guaranteed to exist sufficiently close to the point you apply it to.
This is often less problematic – for examplewith polar coordinates, although any choicewill have
a discontinuity along any path which encircles the origin, we can control where this appears: for
example we can chose 𝑈 ′ = (0,∞) × (𝛼, 𝛼 + 2𝜋) for the domain of 𝑔 so that 𝑓 is discontinuous on
the ray 𝑡(cos(𝛼)𝑣1 + sin(𝛼)𝑣2).

Definition 3.17. A pointed set is a pair (𝑋, 𝑎) consisting of a set 𝑋 and an element 𝑎 of 𝑋 . If (𝑋, 𝑎)
and (𝑌, 𝑏) are pointed sets, then we will write 𝑓∶ (𝑋, 𝑎) → (𝑌, 𝑏) to indicate that 𝑓 is a function
from 𝑋 to 𝑌 such that 𝑓(𝑎) = 𝑏, and refer to it as a map (or function) of pointed sets.
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Remark 3.18. Many algebraic objects are naturally pointed – a vector space 𝑋 has a zero vector,
any group has an identity element etc.

Definition 3.19. Suppose that 𝑋 is a normed vector space and 𝑝 ∈ 𝑋 . A system of local coordi-
nates at 𝑝 is a diffeomorphism 𝜓∶ (𝑈, 𝑝) → (Ω, 0𝑛) from a connected14 open neighbourhood 𝑈 of
the origin 𝑝 in 𝑋 to a connected open neighbourhood Ω of 0𝑛 ∈ ℝ𝑛. The standard coordinates
(𝑥1,… , 𝑥𝑛) of ℝ𝑛 at 0𝑛 then give a system of coordinates (𝑡1,… , 𝑡𝑛) at 𝑝, where, for 𝑦 ∈ 𝑈, we set
𝑡𝑖(𝑦) = 𝑥𝑖 ∘ 𝜓(𝑦), for 𝑖 ∈ {1,… , 𝑛}.

If 𝑓∶ 𝑈 → ℝ𝑘 is any function, then by the chain rule, 𝑓 ∘ 𝜓−1 is continuously differentiable
when 𝑓 is, and similarly, if a function 𝑔∶ Ω → ℝ𝑘 is continuously differentiable, then so is 𝑔 ∘ 𝜓,
since, as 𝜓 is a diffeomorphism, both 𝜓 and 𝜓−1 are continuously differentiable. Thus the map
𝜓∗∶ 𝒞1(Ω,ℝ𝑘) → 𝒞1(𝑈,ℝ𝑘) given by 𝜓∗(𝑓) = 𝑓 ∘ 𝜓 is an isomorphism of vector spaces, with in-
verse (𝜓−1)∗ where (𝜓−1)∗(𝑔) = 𝑔 ∘ 𝜓−1. More prosaically, this just says that if we wish to check if a
function 𝑓∶ 𝑈 → ℝ𝑘 is continuously differentiable, we just need to check that it is continuously
differentiable when viewed as a function of the coordinates (𝑡1,… , 𝑡𝑛) given by the diffeomor-
phism 𝜓.

In this section we will use the Inverse Function Theorem to show that, for functions 𝑓 ∈
𝒞1(𝑈,ℝ𝑘), structural information about the linear map𝐷𝑓𝑝 at a point 𝑝 ∈ 𝑈 can often be extended
to give information about the behaviour of 𝑓 near 𝑝.

Our main example of this is the Implicit Function Theorem. The linear algebra toy model for
this theorem is the description of a surjective linear map 𝛼∶ 𝑋 → 𝑌 . If {𝑣1,… , 𝑣𝑙} is a basis for
ker(𝛼), then we may extend it to a basis {𝑣1,… , 𝑣𝑘+𝑙} of 𝑋 . The images of the additional vectors
{𝛼(𝑣𝑙+1),… , 𝛼(𝑣𝑙+𝑘)} yield a basis of 𝑌 , and in terms of the coordinates these bases provide for 𝑋
and 𝑌 the map 𝛼 takes the form 𝛼(𝑡1,… , 𝑡𝑘+𝑙) = (𝑡𝑘+1,… , 𝑡𝑘+𝑙).

From a computational point of view, however, the discussion above is incomplete in that it
does not describe howwe find a basis of ker(𝛼) (or indeed how it can be extended to a basis of 𝑋).
In practice if 𝛼∶ 𝑋 → 𝑌 is a surjective linearmap, where dim(𝑌) = 𝑘 ≤ 𝑛 = dim(𝑋), we are likely to
be given the 𝑘 × 𝑛matrix 𝐴 of 𝛼with respect to some bases 𝐵𝑋 , 𝐵𝑌 of 𝑋 and 𝑌 respectively, where
in general, these bases will have no particular compatibility with 𝛼.15 If 𝐵𝑋 = {𝑒1,… , 𝑒𝑛} then the
columns of 𝐴 give the coordinates with respect to 𝐵𝑌 of the vectors 𝛼(𝑒𝑖). As 𝛼 is surjective, some
𝑘-element subset of {𝛼(𝑒𝑖) ∶ 1 ≤ 𝑖 ≤ 𝑛} spans 𝑌 , or equivalently, some 𝑘 × 𝑘 submatrix of 𝐴 has
rank 𝑘. Now the process of putting 𝐴 into row-echelon form precisely picks out such a subset as
the columns with “leading 1s”, and so we may take 𝐵2 ⊆ 𝐵𝑋 to be the subset of 𝐵𝑋 corresponding
to those columns. It is a 𝑘-element subset of 𝐵𝑋 such that 𝛼(𝐵2) is a basis of 𝑌 . Let 𝐵1 = 𝐵𝑋\𝐵2, and
𝑋𝑖 = span(𝐵𝑖) for 𝑖 = 1, 2, so that 𝑋 = 𝑋1⊕𝑋2, and 𝛼|𝑋2 ∶ 𝑋2 → 𝑌 is an isomorphism, and so wemay
apply the following Lemma:

Lemma 3.20. Let 𝑋 = 𝑋1 ⊕ 𝑋2 be a finite-dimensional vector space with 𝜋1, 𝜋2 the projection maps
to 𝑋1 and 𝑋2 respectively. Suppose that 𝛼∶ 𝑋 → 𝑌 is a surjective linear map such that 𝛼|𝑋2 ∶ 𝑋2 → 𝑌
is an isomorphism.

i) Let 𝑇 ∶ 𝑋 → 𝑋1 ⊕ 𝑌 be given by 𝑇(𝑥) = (𝜋1(𝑥), 𝛼(𝑥)). Then 𝑇 is an isomorphism.

ii) ker(𝛼) = 𝑇−1(𝑋1 ⊕ {0}). Moreover 𝜋1(𝑇−1(𝑥1, 𝑦)) = 𝑥1, so that if 𝜃 = 𝜋2 ∘ 𝑇−1|𝑋1
we have

ker(𝛼) = 𝑇−1(𝑋1 ⊕ {0𝑌 }) = Γ(𝜃) = {(𝑥1, 𝜃(𝑥1) ∶ 𝑥1 ∈ 𝑋1} ⊆ 𝑋1 ⊕𝑋2 = 𝑋

where, if 𝑓∶ 𝑋1 → 𝑋2 is any function we write Γ(𝑓) = {(𝑥, 𝑓(𝑥)) ∶ 𝑥 ∈ 𝑋1} for its graph.
14the assumption thatΩ is connected is not necessary, but it is easy to ensure – if𝑉 is an arbitrary openneighborhood

of 0𝑋 then if 𝐶 is the connected component of 𝑉 containing 0𝑋 , it is again an open neighbourhood of 0𝑋 which is, of
course, connected.

15In the context of experimental science or economics, for example, the bases𝐵𝑋 and𝐵𝑌 are likely to be constructed
in a way that reflects those qualities we can most readily measure.
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iii) If 𝐵1 is any basis of 𝑋1 and 𝐵𝑌 is any basis of 𝑌 , then 𝐵𝑋 = 𝑇−1(𝐵1 ∪ 𝐵𝑌 ) is a basis of 𝑋, and

𝐵𝑌 [𝛼]𝐵𝑋 = (0𝑛−𝑘|𝐼𝑘),

Proof. Suppose that 𝑥 ∈ 𝑋 and 𝑇(𝑥) = (𝜋1(𝑥), 𝛼(𝑥)) = 0. Then 𝜋1(𝑥) = 0 so that 𝑥 ∈ 𝑋2, but
then 𝛼(𝑥) = 0 implies 𝑥 = 0 since 𝛼|𝑋2 is injective. Since 𝛼∶ 𝑋2 → 𝑌 is an isomorphism we have
dim(𝑋2) = dim(𝑌), hence dim(𝑋) = dim(𝑋1) + dim(𝑌), thus the injectivity of 𝑇 implies it is an
isomorphism (by rank-nullity).

Now if 𝑝1, 𝑝2 denote the projections from 𝑋1 ⊕ 𝑌 to 𝑋1 and 𝑌 respectively, then 𝛼 = 𝑝2 ∘ 𝑇,
and since ker(𝑝2) = 𝑋1 ⊕ {0𝑌 } it follows that ker(𝛼) = 𝑇−1(𝑋1 ⊕ {0𝑌 }). Now 𝑇(𝑥) = (𝜋1(𝑥), 𝛼(𝑥)), so
that if 𝑇−1(𝑥1, 𝑦) = 𝑧, then 𝑇(𝑇−1(𝑥1, 𝑦)) = (𝜋1(𝑧), 𝛼(𝑧)) = (𝑥1, 𝑦), thus 𝜋1 ∘ 𝑇−1(𝑥1, 𝑦) = 𝑥1. Setting
𝜃 = 𝜋2 ∘ 𝑇−1 it follows that 𝑇−1(𝑋1 ⊕ {0𝑌 }) = {(𝑥1, 𝜃(𝑥1)) ∶ 𝑥1 ∈ 𝑋1} as required.

Part 𝑖𝑖𝑖) is also immediate: since 𝑇−1 is an isomorphism, clearly 𝐵𝑋 = 𝑇−1(𝐵1 ∪ 𝐵𝑌 ) is a basis of
𝑋, and since 𝛼 = 𝑝2 ∘ 𝑇, the matrix of 𝛼 with respect to 𝐵𝑋 and 𝐵𝑌 is the same as that of 𝑝2 with
respect to 𝐵1 ∪ 𝐵𝑌 and 𝐵𝑌 , and this is clearly (0𝑛−𝑘|𝐼𝑘). □

Remark 3.21. The introduction of the linear map 𝑇 ∶ 𝑋 → 𝑋1 ⊕ 𝑌 may seem somewhat artificial
if one is only interested in how to obtain a basis for the kernel of the linear map 𝛼. There are two
reasons for doing so: the first is that if we view 𝑋1, the complement to the subspace 𝑋2 on which
𝛼 is an isomorphism as a “first guess” at ker(𝛼), the linear map 𝑇 (or rather 𝑇−1) tells us how to
correct that guess to obtain ker(𝛼). The second is that the map 𝑇 makes sense if 𝛼 is nonlinear,
and the description of the level-sets of 𝑓 as 𝑇−1(𝑋1⊕{𝑐}) for 𝑐 ∈ 𝑌 remains true, provided of course
that 𝑇 is invertible, hence the strategy of the previous Lemma will extend, at least locally, to the
𝒞1-setting.

We now state the Implicit Function Theorem: Its formulation is almost identical to the linear
algebra result given above: we take a differentiable function 𝑓∶ 𝑈 → 𝑌 in place of the linear map
𝛼, but then, for a point 𝑝 ∈ 𝑈 where the hypothesis of the previous Lemma are satisfied by the
derivative 𝐷𝑓𝑝 of our function at 𝑝, just as in the case of the Inverse Function Theorem, we obtain
a “local” consequence for the function 𝑓, that is, a statement about the nature of our function in
a neighbourhood of the point in question.

Definition 3.22. If 𝑋 and 𝑌 are normed vector spaces and 𝑓 ∈ 𝒞1(𝑈, 𝑌), and 𝑎 ∈ 𝑈 is such that
𝐷𝑓𝑎∶ 𝑋 → 𝑌 is surjective, the set 𝑈max = {𝑥 ∈ 𝑈 ∶ 𝐷𝑓𝑥 is surjective} is an open neighbourhood of
𝑎 and we say that the restriction of 𝑓 to 𝑈max is a submersion.

Exercise 3.23. Check that you see why 𝑈max is open – compare with Lemma 3.1.

Context of the Implicit Function Theorem: The statement of the Implicit Function Theorem
involves two main ingredients: First, we have a function 𝑓∶ 𝑈 → 𝑌 defined on an open subset 𝑈
of the normed vector space 𝑋, taking values in the normed vector space 𝑌 . We assume that 𝑓 is
differentiable on all of𝑈, that is, we assume that𝐷𝑓𝑥 exists for all 𝑥 ∈ 𝑈. The second ingredient is
a direct sum decomposition of 𝑋, that is 𝑋 = 𝑋1⊕𝑋2, where we write 𝜋1∶ 𝑋 → 𝑋1 and 𝜋2∶ 𝑋 → 𝑋2
for the projection maps with kernels 𝑋2 and 𝑋1 respectively. For 𝑖 = 1, 2, we write 𝜕𝑖𝑓(𝑥) for the
partial derivative 𝜕𝑋𝑖𝑓(𝑥) of 𝑓 with respect to 𝑋𝑖 at 𝑥 ∈ 𝑈, so that we have the decomposition

𝐷𝑓𝑥 = 𝜕1𝑓(𝑥) ∘ 𝜋1 + 𝜕2𝑓(𝑥) ∘ 𝜋2, ∀𝑥 ∈ 𝑈.

Theorem 3.24. (The Implicit Function Theorem.) Suppose that 𝑓∶ 𝑈 → 𝑌 is a differentiable func-
tion on 𝑈 ⊆ 𝑋 = 𝑋1 ⊕ 𝑋2 as above. If 𝑎 = (𝑎1, 𝑎2) ∈ 𝑈 is such that 𝐷𝑓 is continuous at 𝑎 and
𝛼≔ 𝜕2𝑓(𝑎) ∈ ℒ(𝑋2, 𝑌) is invertible, then there are open neighbourhoods 𝑉1 ⊆ 𝑋1, 𝑉2 ⊆ 𝑋2 of 0𝑋1 and
0𝑋2 respectively, and a diffeomorphism 𝜃∶ 𝑉1 × 𝑉2 → Ω, where Ω ⊆ 𝑈 is an open neighbourhood of
𝑎 = 𝜃(0𝑋) and if we set 𝜃𝑖(𝑦) = 𝜋𝑖(𝜃(𝑦) − 𝑎) for 𝑖 = 1, 2, then for all 𝑦 = (𝑦1, 𝑦2) ∈ 𝑉1 × 𝑉2 we have

𝑖) 𝜃1(𝑦) = 𝜋1(𝜃(𝑦)) = 𝜋1(𝑦) = 𝑦1, that is 𝜃(𝑦) = 𝑎 + 𝜋1(𝑦) + 𝜃2(𝑦).
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𝑖𝑖) 𝑓 ∘ 𝜃(𝑦) = 𝑓(𝑎) + 𝛼 ∘ 𝜋2(𝑦) = 𝑓(𝑎) + 𝛼(𝑦2). Equivalently, the following diagram commutes:16

𝑋1 ⊕𝑋2 𝑉1 × 𝑉2 Ω

𝑋2 𝑌
𝜋2

𝜃

𝑓
𝑓(𝑎)+𝛼

(3.2)

In particular, 𝑓|Ω is a submersion, and if we set 𝑔(𝑥1)≔ 𝜃2(𝑥1 − 𝑎1, 0), then

𝑓−1(𝑓(𝑎)) ∩ Ω = {(𝑥1, 𝑔(𝑥1)) ∶ 𝑥1 ∈ 𝜋1(Ω)} = Γ(𝑔), and 𝐷𝑔𝑥1 = −𝜕2𝑓(𝑥1, 𝑔(𝑥1))−1 ∘ 𝜕1𝑓(𝑥1, 𝑔(𝑥1)).

Proof. (Non-examinable:) Let 𝛽∶ 𝑌 → 𝑋2 be the inverse of 𝜕2𝑓(𝑝). By replacing 𝑓with 𝛽∘(𝑓(𝑎+𝑥)−
𝑓(𝑎)), we may assume that 𝑓∶ 𝑋 → 𝑌 = 𝑋2, 𝑎 = 0𝑋 , 𝑓(0𝑋) = 0𝑋2 and 𝜕2𝑓(0𝑋) = 𝐼𝑋2 . Let 𝐺∶ 𝑈 → 𝑋
be given by

𝐺(𝑥) = 𝜋1(𝑥) + 𝑓(𝑥) = (𝑥1, 𝑓(𝑥1, 𝑥2)), ∀𝑥 = (𝑥1, 𝑥2) ∈ 𝑈 ⊆ 𝑋1 ⊕𝑋2 = 𝑋

so that𝐺(0𝑋) = 0𝑋 . For any 𝑥 ∈ 𝑈 we have𝐷𝐺𝑥 = 𝜋1+𝐷𝑓𝑥. Thus in terms of the partial derivatives

𝐷𝐺𝑥 = ( 𝐼𝑋1 0
𝜕1𝑓(𝑥) 𝜕2𝑓(𝑥)

) so that 𝐷𝐺−1
𝑥 = ( 𝐼𝑋1 0

−𝜕2𝑓(𝑥)−1 ∘ 𝜕1𝑓(𝑥) 𝜕2𝑓(𝑥)−1
) (3.3)

whenever 𝜕2𝑓(𝑥) ∈ ℒ(𝑋2, 𝑋2) is invertible. Thus 𝐺 is differentiable, and 𝐷𝐺 is continuous if and
only if 𝐷𝑓 is, and invertible if and only if 𝜕2𝑓 is. But 𝐷𝑓 is continuous at 𝑎 = 0𝑋 and 𝜕2𝑓(0𝑋) = 𝐼𝑋2 ,
hence the Inverse Function Theorem implies that there is an open set Ω ⊆ 𝑈 with 0𝑋 ∈ Ω such
that 𝐺|Ω∶ Ω → 𝑋 gives a diffeomorphism between Ω and its image 𝑉 = 𝐺(Ω) so that 𝑉 is an open
neighbourhood of 𝐺(0𝑋) = 0𝑋 . xx;’Now we may find open neighbourhoods 𝑉1 ⊆ 𝑋1 and 𝑉2 ⊆ 𝑋2 of
0𝑋1 and 0𝑋2 respectively with 𝑉1 × 𝑉2 ⊆ 𝑉 , and so replacing Ω with 𝐺−1(𝑉1 × 𝑉2), we may assume
that 𝑉 = 𝑉1 × 𝑉2. Note that 𝑓|Ω is a submersion because 𝜕2𝑓 is invertible there.

By definitionwehave𝜋1∘𝐺 = 𝜋1 and𝜋2∘𝐺 = 𝑓, thus ifwe define 𝜃≔ (𝐺|Ω)−1∶ 𝑉1×𝑉2 → Ω, then
composing these identities with 𝜃 (on the right) gives claims 𝑖) and 𝑖𝑖). Moreover, by 𝑖𝑖), 𝑓(𝜃(𝑦)) =
𝑓(𝑎) = 0𝑋2 if and only if 𝜋2(𝑦) = 0𝑋2 , that is, 𝑦 = (𝑦1, 0𝑋2). Hence if, for any 𝑥1 ∈ 𝑉1 = 𝜋1(Ω), we let
𝑔(𝑥1) = 𝜃2(𝑥1, 0𝑋2)

Ω ∩ 𝑓−1(𝑓(𝑎)) = Ω ∩ 𝑓−1(0𝑋2) = 𝜃(𝑉1 × {0𝑋2}) = {(𝑥1, 𝑔(𝑥1)) ∶ 𝑥1 ∈ 𝜋1(Ω) = 𝑉1} = Γ(𝑔),

the graph of 𝑔, where for the third equality note that by 𝑖) if 𝜃(𝑦1, 0𝑋2) = (𝑥1, 𝑥2) then 𝑥1 = 𝑦1 and
𝑥2 = 𝜃2(𝑦1, 0) = 𝜃2(𝑥1, 0). Finally, since 𝑔 = 𝜋2 ∘ 𝜃|𝑉1×{0𝑋2 }, it follows from (3.3) that

𝐷𝑔𝑥1 = 𝜋2 ∘ (𝐷𝜃(𝑥1,0))|𝑋1 = 𝜋2 ∘ (𝐷𝐺−1
𝜃(𝑥1,0))|𝑋1 = −𝜕2𝑓(𝑥1, 𝑔(𝑥1))−1 ∘ 𝜕1𝑓(𝑥1, 𝑔(𝑥1))

as required. □

Remark 3.25. This result is called the “Implicit FunctionTheorem”because one can view it as say-
ing that, if we pick a basis for 𝑌 and consider the corresponding real-valued functions 𝑓𝑖 given by
the components of 𝑓with respect to this basis, then provided the linear map 𝜕2𝑓(𝑥0, 𝑦0) is invert-
ible, the system of non-linear equations 𝑓𝑖(𝑥, 𝑦) = 0 for 𝑖 = 1, 2,… , 𝑘, can be solved, in the sense
that the equations implicitly make the 𝑦-variables functions of the 𝑥-variables, at least locally
near (𝑥0, 𝑦0), as the existence of the function 𝑔 demonstrates.

In this sense, the theorem gives a rigorous justification for the calculus technique of “implicit
differentiation” – compare that technique to the calculation of 𝐷𝑔 at the end of the above proof.

16We say a diagram commutes if the functions obtained by composing the maps between any two paths with the
same endpoints are all equal. In this case, the only points with more than one path between them are 𝑉1 ×𝑉2 and 𝑌 .
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We can also formulate the Implicit Function theorem in terms of systems of local coordinates:
notice that the diagram (3.2) shows that 𝜃 gives a diffeomorphism between an open neighbour-
hood of 0𝑋 and 𝑎, while 𝑥2 ↦ 𝑓(𝑎)+𝛼(𝑥2) gives a diffeomorphismbetween𝑋2 and𝑌 viewed as open
neighbourhoods of 0𝑋2 and 𝑓(𝑎) respectively. Once we pick a basis for 𝑋 adapted to the decom-
position 𝑋1 ⊕ 𝑋2 these will give systems of local coordinates centred at 𝑎 and 𝑓(𝑎) respectively,
with respect to which the map 𝑓 is just projection to the last 𝑘 coordinates. and 0𝑋2

Corollary 3.26. (Local normal form for a submersion): Suppose that 𝑓∶ 𝑈 → 𝑌 is a differen-
tiable function on 𝑈 an open subset of a normed vector space 𝑋 taking values in 𝑌 , and that 𝐷𝑓
is continuous at 𝑎 ∈ 𝑈 and 𝐷𝑓𝑎 ∈ 𝑚𝐿(𝑋, 𝑌) is surjective. Then there is a system of local coor-
dinates 𝜓∶ 𝑈 → ℝ𝑛 centred at 𝑎 and a system of coordinates 𝜑∶ 𝑌 → ℝ𝑘 centred at 𝑓(𝑎) where
𝜑(𝑦) = 𝜙(𝑦 − 𝑓(𝑎)) for 𝜙∶ 𝑌 → ℝ𝑘 a linear isomorphism, such that, if 𝑥 ∈ 𝑈 has coordinates
(𝑡1,… , 𝑡𝑛)𝑡 with respect to 𝜓, i.e. 𝜓(𝑥) = (𝑡1,… , 𝑡𝑛)𝑡, then the coordinates of 𝑓(𝑥) with respect to 𝜑
are given by 𝜑(𝑓(𝑥)) = (𝑡𝑛−𝑘+1,… , 𝑡𝑛)𝑡, that is, in terms of these coordinate systems, 𝑓 is just the
projection to the last 𝑘 coordinates.

Proof. Since 𝐷𝑓𝑎 is surjective, we can certainly find a subspace 𝑋2 of 𝑋 on which 𝐷𝑓𝑎 restricts to
give an isomorphism, that is, 𝜕𝑋2𝑓(𝑎)∶ 𝑋2 → 𝑌 , is an isomorphism. Picking any complementary
subspace 𝑋1 to 𝑋 so that 𝑋 = 𝑋1 ⊕ 𝑋2, we may then apply the Implicit Function Theorem with
𝛼 = 𝜕𝑋2𝑓(𝑎), and obtain a diffeomorphism 𝜃∶ 𝑉1 × 𝑉2 → Ω, where 𝑉1 ⊂ 𝑋1 and 𝑉2 ⊆ 𝑋2 are open
neighbourhoods of 0𝑋1 and 0𝑋2 respectively, such that 𝑓∘𝜃 = 𝑓(𝑎)+𝛼(𝜋2(𝑦)), that is, the right-hand
square in the diagram below commutes (where 𝑇 ∶ 𝑋2 → 𝑌 denotes the map 𝑇(𝑦2) = 𝑓(𝑎) + 𝛼(𝑦2))

ℝ𝑛 𝑉1 × 𝑉2 Ω

ℝ𝑘 𝑋2 ⊇ 𝑉2 𝑉 ⊆ 𝑌

𝑝𝑘

𝛾 𝜃

𝜋2 𝑓

𝛾2
𝑇

But now pick a basis 𝐵1 = {𝑒1,… , 𝑒𝑛−𝑘} of 𝑋1 and a basis 𝐵2 = {𝑒𝑛−𝑘+1,… , 𝑒𝑛} of 𝑋2 so that 𝐵 =
{𝑒1,… , 𝑒𝑛} is a basis of 𝑋 . Let 𝐵∗ = {𝛿1,… , 𝛿𝑛} be the corresponding dual basis of 𝑋∗, and define
𝛾2∶ 𝑋2 → ℝ𝑘 and 𝛾∶ 𝑋 → ℝ𝑛 by

𝛾2(𝑥) = (𝛿𝑛−𝑘+𝑖(𝑥))𝑡1≤𝑖≤𝑘, 𝛾(𝑥) = (𝛿𝑗(𝑥))𝑡1≤𝑗≤𝑛, ∀𝑥 ∈ Ω,

and let 𝑝2∶ ℝ𝑛 → ℝ𝑘 be the projection to the last 𝑘 coordinates, so that 𝑝𝑘 ∘ 𝛾 = 𝛾2 ∘ 𝜋2, i.e. the
left-hand square in the diagram commutes.

Then 𝜓≔ 𝛾 ∘ 𝜃−1∶ Ω → 𝛾(𝑉1 × 𝑉2) is a system of local coordinates on Ω, and similarly 𝜑(𝑦) =
𝛾2 ∘ 𝑇−1(𝑦) defines an affine-linear system of coordinates on 𝑌 centred at 𝑓(𝑎). To calculate 𝑓 in
terms of these coordinates, wemust describe ̃𝑓 = 𝜑∘𝑓∘𝜓−1, but the commutativity of our diagram
guarantees that this is just 𝑝𝑘, as required. Indeed

𝜑 ∘ 𝑓 ∘ 𝜓−1 = (𝛾2 ∘ 𝑇−1) ∘ 𝑓 ∘ (𝜃 ∘ 𝛾−1) = 𝛾2 ∘ 𝑇−1(𝑇 ∘ 𝜋2) ∘ 𝛾−1 = 𝛾2 ∘ 𝜋 ∘ 𝛾−1 = 𝑝𝑘

□

Example 3.27. In this example, wewill write 𝑧 for a general vector inℝ4 andwrite 𝑧 = (𝑥, 𝑦)where
𝑥 ∈ ℝ2, 𝑦 ∈ ℝ2. Let 𝑓∶ ℝ4 → ℝ2 be given by

𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) = (𝑥21 − 𝑥22 + 𝑦21 + 2𝑦22, 𝑥21 + 𝑥22 − 𝑦21 − 𝑦22),

and consider the level set𝑀 = 𝑓−1{(1, 2)} of 𝑓, so that

𝑀 = {𝑧 = (𝑥1, 𝑥2, 𝑦1, 𝑦2) ∈ ℝ4 ∶ 𝑥21 − 𝑥22 + 𝑦21 + 2𝑦22 = 1
𝑥21 + 𝑥22 − 𝑦21 − 𝑦22 = 2 } .
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The total derivative 𝐷𝑓𝑧 has Jacobian matrix

𝐷𝑓𝑧 = (𝐷𝑓1,𝑥|𝐷𝑓2,𝑦) = ( 2𝑥1 −2𝑥2 2𝑦1 4𝑦2
2𝑥1 2𝑥2 −2𝑦1 −2𝑦2

) , (3.4)

Thus considering 2 × 2 submatrices, we see that 𝐷𝑓 has rank 0 only at 𝑧 = 04, and rank 1 if 𝑧 lies
on the coordinate axes (i.e. all but one of 𝑥1, 𝑥2, 𝑦1, 𝑦2 equal to zero), or if 𝑥1 = 𝑦2 = 0. Everywhere
else 𝐷𝑓𝑧 has maximal rank. Now if 𝑥 ∈ 𝑀 we have 2𝑥21 + 𝑦22 = 3, hence 𝑀 does not intersect the
plane {𝑧 ∈ ℝ4 ∶ 𝑥1 = 𝑦2 = 0}. Similarly it is easy to see that 𝑀 does not intersect the coordinate
axes, and hence 𝐷𝑓 has maximal rank on all of 𝑀. (In the terminology of the next section, this
means that𝑀 is a 2-dimensional submanifold of ℝ4.)

We now consider how to parametrize 𝑀. Using Theorem 3.24, and noting that the final two
columns form an invertible matrix provided 𝑦1𝑦2 ≠ 0, we see that in a neighbourhood of a point
𝑝 = (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑀 for which 𝑐.𝑑 ≠ 0, the condition that 𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) = (1, 2) implicitly defines a
function 𝑔 in a neighbourhood of (𝑎, 𝑏) such that

𝑓(𝑥1, 𝑥2, 𝑦1, 𝑦2) = (1, 2) ⟺ (𝑦1, 𝑦2) = 𝑔(𝑥1, 𝑥2),

that is, locally near 𝑝, the level set𝑀 is the graph of a function.
The theorem however does not produce the parameterizing function 𝑔 = (𝑔1, 𝑔2). However, it

does allow us to calculate the derivative 𝐷𝑔𝑥: If 𝑧 = (𝑥, 𝑔(𝑥)) we have 𝐷𝑔𝑥 = −𝐷𝑓−12,𝑔(𝑥)𝐷𝑓1,𝑥, where,
as in (3.4) we write 𝐷𝑓𝑧 = (𝐷𝑓1,𝑥|𝐷𝑓2,𝑦). Explicitly this becomes:

𝐷𝑔𝑥 = ( 𝜕1𝑔1 𝜕2𝑔1
𝜕1𝑔2 𝜕2𝑔2

) = −(4𝑔1𝑔2)−1 (
−2𝑔2 −4𝑔2
2𝑔1 2𝑔1

) . ( 2𝑥1 −2𝑥2
2𝑥1 2𝑥2

)

= (4𝑔1𝑔2)−1 (
12𝑥1𝑔2 4𝑥2𝑔2
−8𝑥1𝑔1 0 ) .

= ( 3𝑥1/𝑔1 𝑥2/𝑔1
−2𝑥1/𝑔2 0 ) .

Indeed one can view the Implicit Function Theorem (or indeed the Inverse Function Theorem) as
asserting the unique solution to a system of differential equations. Of course in general we may
not be able to readily solve these equations explicitly, but this example is simple enough that we
can:

To start, note that 𝜕2𝑔2 = 0, so 𝑔2 is independent of 𝑥2, while 𝑔2.𝜕1𝑔2 = −2𝑥1 so that the only
equation governing 𝑔2 is 𝜕1𝑔2 = 2𝑥1/𝑔2. Indeed we already noted that on 𝑀, 2𝑥21 + 𝑦22 = 3, that is,
2𝑥21 + 𝑔22 = 3, hence 𝑔2(𝑥1, 𝑥2) = ±√3 − 2𝑥21, where the sign will be determined by the sign of 𝑑,

the corresponding coefficient of𝑝. Note thatwehave 𝜕1(√3 − 2𝑥21) = −2𝑥1/√3 − 2𝑥21 as expected.
Havingdetermined 𝑔2, it is not so difficult to determine 𝑔1, using, for example, thefirst component
of 𝑓:

𝑔1(𝑥1, 𝑥2) = ±√1 − 𝑥21 + 𝑥22 − 2.(3 − 2𝑥21) = ±√3𝑥21 + 𝑥22 − 5,
where again, the sign is determined by that of the corresponding coefficient of 𝑝 (which is 𝑐 in
this case). Note again that 𝜕1𝑔1 = 3𝑥1/𝑔1 and 𝜕2𝑔1 = 𝑥2/𝑔1. Thus we have

(𝑔1(𝑥), 𝑔2(𝑥)) = (±√3𝑥21 + 𝑥22 − 5, ± √3 − 2𝑥21)

Example 3.28. Amore abstract applicationof the Implicit FunctionTheorem is a “smooth” version
of the problem of extracting the roots of a polynomial equation. It is a famous result of Abel
and Ruffini17 that for equations of degree 𝑛 = 5 and higher, one cannot express the roots of a
polynomial equation 𝑝(𝑡) = ∑𝑛

𝑘=0 𝑎𝑘𝑡𝑘 “in radicals” – that is, using only the ordinary algebraic
17This predates Galois, who developed a complete theory in which the Abel-Ruffini theorem sits as a special case.
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operations along with taking 𝑘-th roots for 𝑘 ≤ 𝑛. One can still however, consider how a root of
𝑝 varies as we continuously vary the coefficients a = (𝑎𝑘) ∈ ℂ𝑛+1. It seems intuitively clear that
a root will move continuously with the coefficients, and the Implicit Function Theorem allows us
to make this precise:

Suppose that 𝑐 ∈ ℂ is a simple root of 𝑝(𝑡) - so (𝑡−𝑐) divides 𝑝 but (𝑡−𝑐)2 does not. Equivalently
𝑝(𝑐) = 0 but 𝑝′(𝑐) ≠ 0. Let 𝑓∶ ℂ𝑛+2 → ℂ be the function 𝑓(𝑎0,… , 𝑎𝑛, 𝑡) = ∑𝑛

𝑘=0 𝑎𝑘𝑡𝑘, that is, 𝑓 is
the function obtained from 𝑝 by viewing it as a function of 𝑡 and of all of its coefficients. Then
𝜕𝑡𝑓(a, 𝑐) = 𝑝′(𝑐) ≠ 0, so that if we decompose ℂ𝑛+2 = ℂ𝑛+1 ⊕ ℂ, the implicit function theorem
shows that there is an open neighbourhood 𝑉 of (a, 𝑐) in which 𝑓(x, 𝑡) = 0 if and only if 𝑡 = 𝑔(x),
where 𝑔(a) = 𝑐.

Since a polynomial is smooth (i.e. infinitely differentiable) we can conclude that 𝑔(x) is also
smooth. Thus the roots of a polynomial (at least when they are simple) are smooth functions of
the coefficients, even if they cannot be written in the form of radicals as the mathematicians of
the 17th century had wished.

*Remark 3.29. In the setting of infinite dimensional complete normed vector spaces, the Inverse
Function Theorem can be used to prove a version of the Implicit Function Theorem. Such a result
can be used to prove a version of Picard’s Theorem on existence and uniqueness of solutions to
differential equations. See [R] for more details.

3.5 Lagrange multipliers

Suppose first that 𝑋 is a normed vector space and 𝑈 is an open set in 𝑋 with 𝑓∶ 𝑈 → ℝ a differ-
entiable function.

Lemma 3.30. If 𝑓∶ 𝑈 → ℝ has a local minimum at 𝑎 ∈ 𝑈, so that for some 𝑟 > 0we have 𝑔(𝑎) ≤ 𝑔(𝑥)
for all 𝑥 ∈ 𝐵(𝑎, 𝑟), then 𝐷𝑔𝑎 = 0.
Proof. Suppose for the sake of contradiction that 𝐷𝑔𝑎 ≠ 0. Then we may find 𝑣 ∈ 𝑋 such that
𝐷𝑔𝑎(𝑣) > 0 and ‖𝑣‖ = 1. For 𝑡 ∈ ℝ let 𝛾(𝑡) = 𝑎 + 𝑡.𝑣, then 𝛾−1(𝑈) is an open set in ℝ containing 0,
hence for some 𝛿 > 0, the function 𝑔 ∘ 𝛾 is defined on (−𝛿, 𝛿). Now by definition we have

0 ≤ 𝑔(𝑥) − 𝑔(𝑎) = 𝐷𝑔𝑎(𝑥 − 𝑎) + ‖𝑥 − 𝑎‖𝜂(𝑥),

where 𝜂(𝑥) → 0 = 𝜂(𝑎) as 𝑥 → 𝑎. Thus for all 𝑡 ∈ (−𝛿, 𝛿)we have

0 ≤ 𝑔(𝛾(𝑡)) − 𝑔(𝑎) = 𝑡.[𝐷𝑔𝑎(𝑣) ± 𝜂(𝑎 + 𝑡.𝑣)].
But since 𝜂(𝑎 + 𝑡.𝑣) → 0 as 𝑡 → 0, and 𝐷𝑔𝑎(𝑣) > 0, there is a 𝛿1 < 𝛿 such that if 𝑡 ∈ (−𝛿1, 𝛿1) then
𝐷𝑔𝑎(𝑣) ± 𝜂(𝑎 + 𝑡𝑣) > 𝐷𝑔𝑎(𝑣)/2. But then for all 𝑡 ∈ (−𝛿1, 0) the inequality above cannot hold, giving
a contradiction. □

Wenowwish to study the problemofminimizing 𝑔∶ 𝑈 → ℝ given constraints on 𝑥 ∈ 𝑈. Before
formulating the general result, consider the problem of trying to minimize a function 𝑔∶ ℝ3 → ℝ
on a surface 𝑆 = {𝑥 ∈ ℝ3 ∶ 𝑓(𝑥) = 0}. In the unconstrained setting, as we just saw, if a point 𝑎 ∈ ℝ3

is a local minimum for 𝑔 we must have ∇𝑔(𝑎) = 0: This need not be the case in the constrained
setting.

Example 3.31. Suppose that 𝑓∶ 𝑋 → ℝ𝑘 is a linear constraint function, which we may assume is
surjective (since if it is not, we may simply replace 𝑌 by im(𝑓)). Then 𝑍 = ker(𝑓) is an (𝑛 − 𝑘)-
dimensional subspace of 𝑋 (where dim(𝑋) = 𝑛), and if we wish to optimize 𝑔∶ 𝑈 → ℝ subject to
the constraint 𝑓(𝑥) = 0, then we may view the optimization problem simply as that of optimizing
the restriction 𝑔|𝑈∩𝑍 of 𝑔 to 𝑈 ∩ 𝑍, an open subset of the linear subspace 𝑍.

The criterion of Lemma 3.30 then shows that, if 𝑎 ∈ 𝑈 ∩ 𝑍 is a local optimum (i.e. maximum or
minimum) for 𝑔|𝑈∩𝑍, then 𝐷(𝑔|𝑈∩𝑍)(𝑎) = 0. But

𝐷(𝑔|𝑈∩𝑍)(𝑎) = 𝜕𝑍𝑔(𝑎) = 𝐷𝑔(𝑎)|𝑍,
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so that𝐷𝑔(𝑎)∶ 𝑋 → ℝ vanishes on ker(𝑓), hence it induces awell-defined linearmap𝐷𝑔(𝑎)∶ ℝ𝑘 →
ℝ satisfying 𝐷𝑔(𝑎) = 𝐷𝑔(𝑎) ∘ 𝑓, and if 𝑓(𝑥) = (𝑓1(𝑥),… , 𝑓𝑘(𝑥))𝑡 ∈ ℝ𝑘, if we set 𝐷𝑔(𝑎) = (𝜆1,… , 𝜆𝑘) ∈
Mat1,𝑛 = (Mat𝑛,1)∗, then 𝐷𝑔(𝑎) = ∑𝑘

𝑖=1 𝜆𝑖𝑓𝑖, or in other words 𝐷𝑔(𝑎) ∈ Spanℝ{𝑓𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘}.

It is natural to hope that if 𝑓∶ 𝑈 → ℝ𝑘 is continuously differentiable, instead of linear, con-
straint, then, at a local extremum 𝑎 ∈ 𝑈 the linearized constraint 𝐷𝑓(𝑎)(𝑥) = 0 approximates
the constraint function 𝑓 well enough that we still have 𝐷𝑔(𝑎) = ∑𝑛

𝑖=1 𝜆𝑖𝐷𝑓𝑖(𝑎) (where 𝑓(𝑥) =
(𝑓1(𝑥),… , 𝑓𝑘(𝑥))𝑡). Simple nonlinear examples also confirm this expectation:

Example 3.32. Let 𝑓(𝑥) = 𝑥21 + 𝑥22 + 𝑥23 − 1, and let 𝑆 = {𝑥 ∈ ℝ3 ∶ 𝑓(𝑥) = 0}. Suppose that we
wish to mimimize 𝑔(𝑥) = 𝑥3 on 𝑆. Clearly 𝐷𝑔𝑥 = (0, 0, 1) never vanishes, but it is easy to check
that 𝑝 = (0, 0, −1) minimizes 𝑔 on 𝑆. Notice that, since 𝐷𝑓𝑥 = 2(𝑥1, 𝑥2, 𝑥3), so that at 𝑝 we have
2𝐷𝑔𝑝 + 𝐷𝑓𝑝 = (0, 0, 2) + (0, 0, −2) = 0.

To make this observation into a theorem, we need to show that the linearised problem is a
good enough approximation to the original non-linear constrained optimization problem for the
linear condition we just obtained to remain necessary in the original problem. But this is exactly
what the Implicit Function Theorem does for us!

Theorem3.33. Suppose that𝑈 is an open subset of a finite-dimensional normed vector space𝑋 and
𝑔∶ 𝑈 → ℝ is continuously differentiable. Let 𝑓∶ 𝑈 → ℝ𝑘 be a continuously differentiable constraint
function, and consider the optimization problem given by seeking to minimize 𝑔(𝑥) subject to 𝑥 ∈
𝑆 = {𝑥 ∈ 𝑈 ∶ 𝑓(𝑥) = 0}.

If 𝑧 is a local minimum for 𝑔 on 𝑆 and 𝐷𝑓𝑧 has rank 𝑘, then there exist scalars 𝜆0, 𝜆1,… , 𝜆𝑘 ∈ ℝ
such that

𝜆0𝐷𝑔𝑧 +
𝑘
∑
𝑖=1

𝜆𝑖𝐷𝑓𝑖,𝑧 = 0,

where 𝑓(𝑥) = ∑𝑘
𝑖=1 𝑓𝑖(𝑥).𝑒𝑖, with {𝑒𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑘} the standard basis of ℝ𝑘.

Proof. The hypotheses of the theorem ensures that we can apply the Implicit Function Theorem:
𝐷𝑓𝑧 has rank 𝑘, hence there is a subspace 𝑋2 ≤ 𝑋 on which 𝐷𝑓𝑧 restricts to give an isomorphism
𝛽 = 𝜕𝑋2𝑓(𝑧)∶ 𝑋2 → ℝ𝑘. If we pick any complementary subspace 𝑋1, then the Implicit Function
Theorem shows that there is an open neighbourhoodΩ ⊆ 𝑈 of 𝑧 such that if𝐺(𝑥)∶ 𝑈 → 𝑋 is given
by𝐺(𝑥) = 𝜋1(𝑥−𝑧)+𝛽−1 ∘𝑓, then𝐺|Ω∶ Ω → 𝑈1×𝑈2 is a diffeomorphismwith𝐺(𝑧) = (0𝑋1 , 0𝑋2). We
write 𝜃∶ 𝑈1×𝑈2 → Ω for its inverse, so that 𝜃(𝑠1, 𝑠2) = 𝑧+(𝑠1, 𝜃2(𝑠1, 𝑠2)), where 𝜃2∶ 𝑈1×𝑈2 → Ω∩𝑋2.

𝑈1 × 𝑈2 Ω

ℝ 𝑋2 ℝ𝑘 ℝ
𝜃𝑔̃

𝜋2 𝑓 𝑔

𝐺

𝛽=𝜕2𝑓(𝑎)

Let ̃𝑔∶ 𝑈1 × 𝑈2 → ℝ be given by ̃𝑔(𝑠1, 𝑠2) = 𝑔(𝜃(𝑠1, 𝑠2)). Now if 𝑥 ∈ Ω satisfies 𝑓(𝑥) = 0, then
𝐺(𝑥) = (𝜋1(𝑥 − 𝑎), 0𝑋2), so that the condition that 𝑥 ∈ Ω satisfies 𝑓(𝑥) = 0 correspond, under the
diffeomorphism 𝐺 to the condition that (𝑠1, 𝑠2) ∈ 𝑈1 ×𝑈2 has 𝑠2 = 0, that is (𝑠1, 𝑠2) lies in 𝑈1 × {0𝑋2}.
Thus 𝑧 is a constrained local minimum for 𝑔 if and only if 0𝑋1 is a local minimum for ̃𝑔|𝑈1×{0𝑥2 }

.
Since 𝑈1 is just an open subset of the normed vector space 𝑋1, Lemma 3.30 shows that we must
have 𝐷 ̃𝑔|𝑋1(0𝑋1) = 0, or in other words 𝜕𝑋1 ̃𝑔(0𝑋) = 0.

Now 𝑔 = ̃𝑔 ∘ 𝐺, so that

𝐷𝑔𝑧 = ( 𝜕1 ̃𝑔(0𝑋1) 𝜕2 ̃𝑔(0𝑋2) ) (
𝜋1

𝛽−1 ∘ 𝐷𝑓 ) .

37



and hence 𝐷𝑔𝑧 = (𝜕2 ̃𝑔(0𝑋2) ∘ 𝛽−1) ∘ 𝐷𝑓𝑧. Setting (𝜆1,… , 𝜆𝑘) = 𝜕2 ̃𝑔(0𝑋2) ∘ 𝛽, it follows that 𝐷𝑔𝑧 =
∑𝑘

𝑖=1 𝜆𝑖𝐷𝑓𝑖(𝑧) as required.
□

Remark 3.34. Since the hypothesis of the Theorem assumes that 𝐷𝑓𝑧 has rank 𝑘, and the Jaco-
bian matrix of 𝐷𝑓𝑧 has rows given by the derivatives of the components 𝐷𝑓𝑖,𝑧, these are linearly
independent, so that the scalar 𝜆0 must be non-zero. It follows that one can rescale the 𝜆𝑖 to en-
sure 𝜆0 = 1, and some texts will state the result this way. (In practice, in some situations the
calculations are tidier setting 𝜆0 = 1 and in others it can be easier not to distinguish 𝜆0 in this
way.)

Example 3.35. Consider the problem of finding the extrema of the function 𝑔∶ ℝ3 → ℝ given by

𝑔(𝑥1, 𝑥2, 𝑥3) = 𝑥1 + 𝑥2 + 3𝑥3,

subject to the constraints that 𝑥 = (𝑥1, 𝑥2, 𝑥3)must satisfy (𝑓1(𝑥), 𝑓2(𝑥)) = (2, 1)where

𝑓1(𝑥) = 𝑥21 + 𝑥22, 𝑓2(𝑥) = 𝑥1 + 𝑥2 + 𝑥3.

That is, 𝑥 lies on the cylinder of radius √2 centred along the 𝑥3-axis and on the plane perpendic-
ular to (1, 1, 1) passing through 1

3
(1, 1, 1). Let 𝐶 = {𝑥 ∈ ℝ3 ∶ 𝑓1(𝑥) = 2, 𝑓2(𝑥) = 1} denote this locus, a

level-set of 𝑓∶ ℝ3 → ℝ2, where 𝑓 = (𝑓1, 𝑓2).
It is easy to check that 𝐶 is bounded, and hence as any level-set is closed, it is compact. It

follows 𝑔 attains a maximum and minimum on 𝐶. By the Lagrange multiplier theorem, at such an
extremum 𝑐 = (𝑐1, 𝑐2, 𝑐3) there must exist scalars 𝜆1, 𝜆2 ∈ ℝ such that

𝐷𝑔𝑐 = 𝜆1𝐷𝑓1,𝑐 + 𝜆2𝐷𝑓2,𝑐,

and hence
(1, 1, 3) = 𝜆1(2𝑐1, 2𝑐2, 0) + 𝜆2(1, 1, 1).

Thus 𝜆2 = 3, and hence 2𝜆1𝑐1 = 2𝜆1𝑐2 = −2. It follows that 𝑐 = (−𝜆−11 , −(𝜆1)−1, 𝑐3). The constraint
𝑓1(𝑐) = 2 then implies 𝜆1 = ±1 so that since 𝑓2(𝑐) = 1 we see that if we set 𝑐± = (±1,±1, 1 ∓ 2), the
points 𝑐± are the only possibilities for extrema of 𝑔 on 𝐶, and since we know 𝑔 attains a maximum
and minimum value, we see that −1 = 𝑔(𝑐+) ≤ 𝑔(𝑥) ≤ 𝑔(𝑐−) = 7 for all 𝑥 ∈ 𝐶.

Example 3.36. Let us prove the Cauchy-Schwarz inequality using Lagrange multipliers. Thus we
wish to show that, for any two vectors 𝑎, 𝑏 ∈ ℝ𝑛 we have |𝑎 ⋅ 𝑏| ≤ ‖𝑎‖.‖𝑏‖. This is trivially true if
either 𝑎 or 𝑏 is zero, so wemay assume both are non-zero. But then wemay rewrite the inequality
as (𝑎/‖𝑎‖) ⋅ (𝑏/‖𝑏‖) ≤ 1. Since 𝑎/‖𝑎‖ and 𝑏/‖𝑏‖ are unit vectors, we are thus reduced to the following:
Problem: Maximize 𝑥 ⋅ 𝑦 for 𝑥, 𝑦 ∈ ℝ𝑛 subject to the contraints that ‖𝑥‖ = ‖𝑦‖ = 1.

Let us formulate this in the language of Theorem3.33. Let 𝑔∶ ℝ2𝑛 = 𝑋1⊕𝑋2 (the spanof thefirst
𝑛 and last 𝑛 standard basis vectors respectively) be given by 𝑔(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 (thus we use the same
notational conventions as in Theorem 3.24) and let 𝑓∶ ℝ2𝑛 → ℝ2 be given by 𝑓(𝑥.𝑦) = (𝑥 ⋅ 𝑥, 𝑦 ⋅ 𝑦).
We wish to maximize 𝑔 subject to the condition that (𝑥, 𝑦) ∈ 𝑆 = {(𝑥, 𝑦) ∈ ℝ2𝑛 ∶ 𝑓(𝑥.𝑦) = (1, 1)}.

Now 𝑆 is clearly compact (as it is closed and bounded) hence 𝑔 attains a maximum value on 𝑆.
Now for any (𝑥, 𝑦) ∈ 𝑆 we have 𝐷𝑓1,(𝑥,𝑦) = 2(𝑥, 0) and 𝐷𝑓2,(𝑥,𝑦) = 2(0, 𝑦), and hence rank(𝐷𝑓(𝑥0,𝑦0)) =
2, so that 𝑆 is a 2𝑛 − 2-dimensional submanifold of ℝ2𝑛. Hence, by Theorem 3.33, if 𝑝 = (𝑥0, 𝑦0) is
a local maximum for 𝑔 on 𝑆, there must exist scalars 𝜆1, 𝜆2 ∈ ℝ, not all zero, such that

𝐷𝑔(𝑥0,𝑦0) = 𝜆1𝐷𝑓1,(𝑥0,𝑦0) + 𝜆2𝐷𝑓2,(𝑥0,𝑦0).

Now it is easy to see that 𝐷𝑔(𝑥0,𝑦0) = (𝑦0, 𝑥0), hence the previous equation becomes

(𝑦0, 𝑥0) = (2𝜆1.𝑥0, 2𝜆2.𝑦0),
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so that, taking components in 𝑋1 and 𝑋2 we must have

𝑦0 = 2𝜆1.𝑥0, 𝑥0 = 2𝜆2.𝑦0.

But thenwemust have 𝑦0 = 2𝜆1.𝑥0 = 2𝜆1.2𝜆2𝑦0 = 4𝜆1𝜆2𝑦0, so that 4𝜆1𝜆2 = 1. But 𝑥0 ⋅ 𝑥0 = 𝑦0 ⋅ 𝑦0 = 1,
so that 4𝜆21 = 4𝜆22 = 1 and hence 𝜆1 = 𝜆2 = ±1/2 and 𝑥0 = 𝑦0 or 𝑥0 = −𝑦0. Since 𝑔(𝑥0, 𝑥0) = ‖𝑥0‖ = 1
and 𝑔(𝑥0, −𝑥0) = −‖𝑥0‖ = −1, it follows immediately that −1 ≤ 𝑔(𝑥, 𝑦) ≤ 1 on 𝑆 and we obtain the
equalities 𝑔(𝑥, 𝑦) = ±1 if and only if 𝑥 = ±𝑦.
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4 Submanifolds of a normed vector space

4.1 Definition and basic properties

The goal of this section is to apply the inverse and implicit function theorems to geometry. The
theorems allow us to show the equivalence of two natural definitions of a smooth surface in ℝ3,
and, more generally, define the notion of a submanifold of a normed vector space 𝑋 .

Example 4.1. Let 𝑆 = {𝑥 ∈ ℝ3 ∶ 𝑥21 + 𝑥22 + 𝑥23 = 1} is the standard unit sphere. It is smooth (in a
sense that we have yet tomake precise) andwe can describe the points which lie on it in (at least)
two ways. The first is implicit in the definition – a point 𝑝 = (𝑥1.𝑥2.𝑥3) lies in 𝑆 if the function
𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥21 + 𝑥22 + 𝑥23 evaluates to 1 on 𝑝, that is, 𝑆 is a level set of the function 𝑓.

The second way to describe points on 𝑆 is via a parametrization: for example, if we define the
map 𝜙∶ [−1, 1] × [−𝜋, 𝜋) → ℝ3 by setting (𝑡, 𝜃) ↦ (cos(𝜃). √1 − 𝑡2, sin(𝜃). √1 − 𝑡2, 𝑡) the 𝜙 has 𝑆 as
its image, and hence we can use the parameters (𝑡, 𝜃) to study 𝑆. Note that our parametrizing map
𝜙 is not injective, though it is on much of its domain. In general we will usually only be able to
obtain parametrizations of a surface locally, that is, given a point 𝑝 on our surface 𝑆, we will show
that there is a diffeomorphism from an open subset 𝑈 of ℝ2 to an open subset 𝑉 of our surface
containing 𝑝.

On the other hand, if we only wish to obtain parametrizations for open subsets of a surface,
we can often use the Implicit Function Theorem to turn the condition 𝑓(𝑥1, 𝑥2, 𝑥3) = 0 into an
equation for one of the variables in terms of the others. For example, if 𝐻3 = {𝑥 ∈ ℝ3 ∶ 𝑥3 > 0},
then on𝐻3∩𝑆wemaywrite 𝑆 as the graphofℎ(𝑥1, 𝑥2) = √1 − 𝑥21 − 𝑥22, that is, in𝐻3wehave 𝑥 ∈ 𝑆 if
and only if 𝑥 ∈ graph(ℎ) = {(𝑥1, 𝑥2, ℎ(𝑥1, 𝑥2)) ∶ (𝑥1, 𝑥2) ∈ 𝑉}, where 𝑉 = {(𝑥1, 𝑥2) ∈ ℝ2 ∶ 𝑥21 + 𝑥22 < 1}.

Definition 4.2. Let𝑀 ⊆ 𝑋 be a closed subset of an 𝑛-dimensional normed vector space 𝑋 . We say
that 𝑀 is a 𝑘-dimensional submanifold of 𝑋 if, for every point 𝑝 ∈ 𝑀, there is an open subset 𝑈
of 𝑋 containing 𝑝 and a smooth18 function 𝑓∶ 𝑈 → 𝑌 , where 𝑌 is an (𝑛 − 𝑘)-dimensional normed
vector space, such that 𝑀 ∩ 𝑈 = 𝑓−1(0), and at each 𝑝 ∈ 𝑀 ∩ 𝑈 the derivative 𝐷𝑓𝑝 has maximal
rank, that is rank(𝐷𝑓𝑝) = 𝑛 − 𝑘.

We say that 𝑀 is 𝒞𝑘 if we can choose 𝑓 ∈ 𝒞𝑘(𝑈, 𝑌) where 𝑘 ∈ ℕ ∪ {∞}. If 𝑘 = ∞ we say𝑀 is a
smooth submanifold of ℝ𝑛.

Informally, this definition says that, locally (i.e. near any given point of𝑀) the submanifold is
given as the level-set of 𝑛 − 𝑘 smooth functions (the components of 𝑓) which are not “tangent to
each other” – this last requirement being captured by the rank condition.

The Implicit Function Theorem allows us to relate this definition to the second method of
understanding surfaces discussed above, namely, via parametrizations. In the next theorem, for
𝑘 ≤ 𝑛we view ℝ𝑘 as a subspace of ℝ𝑛 spanned by {𝑒1,… , 𝑒𝑘}.

Theorem 4.3. Let 𝑀 be a 𝑘-dimensional submanifold of an 𝑛-dimensional normed vector space
𝑋, and let 𝑝 ∈ 𝑀. Then there is a direct sum decomposition 𝑋 = 𝑋1 ⊕ 𝑋2 where dim(𝑋1) = 𝑘,
dim(𝑋2) = 𝑛−𝑘, and open neighbourhoods 𝑉 and𝑈1×𝑈2 of 𝑝 and 0𝑋 respectively, where for 𝑖 = 1, 2,
𝑈 𝑖 is an open subset of 𝑋𝑖, and a diffeomorphism 𝜓∶ 𝑈1 × 𝑈2 → 𝑉 such that𝑀 ∩ 𝑉 = 𝜓(𝑈1 × {0𝑋2}).
In particular, 𝜓|𝑈1×0𝑋2

∶ 𝑈1 → 𝑀 ∩ 𝑉 gives a parametrization of𝑀 ∩ 𝑉 .

Proof. By definition, there is an open set 𝑉1 containing 𝑝 and a function 𝑓∶ 𝑉 → ℝ𝑛−𝑘 such that
𝑉1 ∩ 𝑀 = {𝑥 ∈ 𝑉 ∶ 𝑓(𝑥) = 0𝑛−𝑘}, and rank(𝐷𝑓𝑥) = 𝑛 − 𝑘 for all 𝑥 ∈ 𝑉1. But then Theorem 3.24
shows that there is a diffeomorphism 𝜓∶ 𝑈 → 𝑉 ⊆ 𝑉1, where 𝑈 an open neighbourhood of 0𝑛 and
𝑉 ⊆ 𝑉1 is an open neighbourhood of 𝑝, such that in the coordinate system (𝑡1,… , 𝑡𝑛) given by 𝑡𝑖 =
𝑥𝑖 ∘𝜓−1, the function 𝑓 is given by (𝑡𝑘+1,… , 𝑡𝑛) (that is, for 𝑣 ∈ 𝑉1, we have 𝑓(𝑣) = (𝑡𝑘+1(𝑣),… , 𝑡𝑛(𝑣))).
Moreover, the functions (𝑡1,… , 𝑡𝑘)parameterise the submanifold𝑀 on the open subset𝑀∩𝑉 of𝑀:

18At least continuously differentiable, but many texts automatically assume infinitely differentiable.
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if (𝑡1,… , 𝑡𝑘, 0,… , 0) ∈ ℝ𝑘 ∩ 𝑈, and we set 𝜙(𝑡1,… , 𝑡𝑘) = 𝜓(𝑡1,… , 𝑡𝑘, 0,… , 0) then 𝜙(𝑡1,… , 𝑡𝑘) ∈ 𝑀 ∩ 𝑉
and if 𝑢 ∈ 𝑀 ∩ 𝑉 then 𝑢 = 𝜙(𝑡1,… , 𝑡𝑘) for 𝑡𝑖 = 𝑥𝑖 ∘ 𝜓−1.

□

Remark 4.4. The Implicit Function Theorem shows that, at least locally, a submanifold 𝑀 can
be viewed as the graph of a 𝒞1 function. To put it another way, let us define a 𝑘-dimensional
subgraphold19 of a normed vector space 𝑋 to be a subset 𝑀 ⊆ 𝑋 such that, for any point 𝑎 ∈ 𝑀,
there is an open neighbourhood𝑈 of 𝑎 together with a decomposition 𝑋 = 𝑋1⊕𝑋2 with dim(𝑋1) =
𝑘, and a function 𝜓 ∈ 𝒞1(𝑈 ∩ (𝑎 + 𝑋1), 𝑉2) such that 𝑀 ∩ 𝑈 = Γ(𝜓), where Γ(𝜓) = {(𝑣, 𝜓(𝑣)) ∶ 𝑣 ∈
𝑈 ∩ (𝑎 + 𝑉1)} is the graph of 𝜓. In this terminology, the previous discussion shows that that any
𝑘-submanifold of 𝑋 is a 𝑘-subgraphold. In fact the converse is also true: indeed, as we show in
Lemma 4.7 below, if 𝑉 = 𝑉1 ⊕ 𝑉2 and 𝜙 ∈ 𝒞1(Ω1, 𝑉2) for some open subset Ω1 ⊆ 𝑉1 of 𝑉1, then Γ(𝜙),
the graph of 𝜙, is always a submanifold of 𝑉 .

Thus the two notions – that of submanifold and subgraphold are equivalent, and we can use
either local description to study submanifolds. One advantage of the definition in terms of level-
sets is that it does not require introducing an auxiliary decomposition of ℝ𝑛 into a direct sum.

*Remark 4.5. Our definition of a 𝑘-dimensional sub-manifold 𝑀 is a subset of a normed vec-
tor space 𝑋 which is locally given as a level-set for a 𝒞1-function 𝑓 taking values in an (𝑛 − 𝑘)-
dimensional vector space𝑌 forwhich𝐷𝑓𝑥 has rank𝑛−𝑘. Theorem4.3 shows that, if𝑀 is a subman-
ifold, then𝑀 is locally given as the image of a 𝒞1-map 𝜓 from an open subset 𝑉 of a 𝑘-dimensional
normed vector space 𝑍, where 𝐷𝜓 has rank 𝑘. This is, a priori strictly weaker, since the domain 𝑉
is not identified with an open subset of a subspace 𝑋1 of 𝑋 in such a way that the image of 𝜓 takes
values in a complementary subspace.

Nevertheless, it turnsout tobe true that if𝑀 ⊆ 𝑋 is locally givenas the imageof an injective𝒞1-
map froma suitable open subset𝑉 of a 𝑘-dimensional normedvector space𝑍whosederivativehas
rank 𝑘 at each point of 𝑉 , then𝑀 is a sub-manifold in the sense of Definition 4.3: More precisely,
if 𝑉 ⊆ ℝ𝑘 is an open subset of ℝ𝑘 and 𝜓 ∈ 𝒞1(𝑉, ℝ𝑛)we say that 𝜓 is an immersion if rank(𝐷𝜓𝑝) = 𝑘
for all 𝑝 ∈ 𝑉 . The immersion criterion states that a subset 𝑀 ⊆ ℝ𝑛 is a 𝑘-submanifold in the
sense of Definition 4.2 if, for every 𝑎 ∈ 𝑀 there is a neighbourhood 𝑈𝑎 of 𝑎, and an immersion
𝜓 ∈ 𝒞1(𝐵(0𝑘, 𝑟), ℝ𝑛) from an open ball of radius 𝑟 > 0 centred at 0𝑘 ∈ ℝ𝑘 such that 𝜓(0𝑘) = 𝑎 and
𝑀 ∩𝑈𝑎 = im(𝜓). For more details on this see Appendix 5.5.
Example 4.6. Suppose that 𝑔∶ ℝ2 → ℝ is given by 𝑔(𝑥1, 𝑥2) = 𝑥1𝑥2. Then 𝐷𝑔(𝑥1,𝑥2) = (𝑥2, 𝑥1) and
hence rank(𝐷𝑔(𝑥1,𝑥2)) = 1 unless (𝑥1, 𝑥2) = (0, 0). Then for all 𝑐 ≠ 0, the level-sets 𝐿𝑐 = 𝑔−1(𝑐) are
smooth 1-submanifolds of ℝ2, but 𝐿0 = 𝑔−1(0) = {(𝑥, 0) ∶ 𝑥 ∈ ℝ} ∪ {(0, 𝑦) ∶ 𝑦 ∈ ℝ}, which is not
smooth at the origin (0, 0), exactly the point where 𝐷𝑔 fails to have maximal rank.

On the other hand, if 𝑉1 and 𝑉2 are normed vector spaces and 𝜓 ∈ 𝒞1(𝑈, 𝑉2) is a continuously
differentiable function on an open subset 𝑈 of 𝑉1 taking values in 𝑉2, then if we set

Γ(𝜓) = {(𝑣, 𝜓(𝑣)) ∶ 𝑣 ∈ 𝑈} ⊂ 𝑉 = 𝑉1 ⊕𝑉2,

then the following Lemma shows that Γ(𝜓) is always a submanifold of 𝑉 .
Lemma 4.7. Let𝑋1, 𝑋2 be finite-dimensional normed vector spaces, and suppose that𝜓 ∈ 𝒞1(Ω1, 𝑋2)
is a continuously differentiable function on an open subset Ω1 of 𝑋1 taking values in 𝑋2. Then the
graph Γ(𝜓) = {(𝑣, 𝜓(𝑣)) ∶ 𝑣 ∈ Ω1} is a submanifold of 𝑋 = 𝑋1 ⊕𝑋2.
Proof. Let 𝑔∶ Ω1 × 𝑋2 → 𝑋2 be given by 𝑔(𝑣) = 𝜋2 − 𝜓 ∘ 𝜋1, where 𝜋1, 𝜋2 are the projection maps
from 𝑋 to 𝑋1 and 𝑋2 respectively. That is, 𝑔(𝑣1, 𝑣2) = 𝑣2 − 𝜓(𝑣1) for all 𝑣1 ∈ Ω1, 𝑣2 ∈ 𝑋2. Clearly
𝑔 ∈ 𝒞1(Ω1×𝑋2, 𝑋2) and (𝑣1, 𝑣2) ∈ Γ(𝜓) if and only if 𝑔(𝑣1, 𝑣2) = 0. Moreover, if 𝑎 = (𝑎1, 𝑎2) ∈ Ω1×𝑋2,
then 𝐷𝑔(𝑎1,𝑎2)(𝑣1, 𝑣2) = −𝐷𝜓𝑎1(𝑣1) + 𝑣2. Hence for any 𝑣2 ∈ 𝑋2 we have 𝐷𝑔𝑎(0, 𝑣2) = 𝑣2, so that the
derivative 𝐷𝑔(𝑎1,𝑎2) is surjective for all 𝑎 ∈ Ω1 × 𝑋2. Thus Γ(𝜓) is a 𝑘-submanifold of ℝ𝑛, where
𝑘 = dim(𝑋1). □

19The term is completely non-standard, and therefore, to honest, deliberately chosen to be clunky.
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Example 4.8. The simplest case of the previous Lemma is when 𝑉1 = ℝ𝑛 and 𝑉2 = ℝ, so that
𝒞1(𝑈, 𝑉2) = 𝒞1(𝑈,ℝ) is just the space of real-valued continuously differntiable functions on an
open subset𝑈 ofℝ𝑛. If 𝑓 is such a function, we can then view Γ(𝑓) = {(𝑥, 𝑓(𝑥) ∶ 𝑥 ∈ 𝑈} as a subset
ofℝ𝑛+1 = ℝ𝑛⊕ℝ. Writing a point inℝ𝑛+1 as (𝑥, 𝑦)where 𝑥 ∈ ℝ𝑛 and 𝑦 ∈ ℝ, we see immediately that
Γ(𝑓) = {(𝑥, 𝑦) ∈ 𝑈 × ℝ ∶ 𝑔(𝑥, 𝑦) = 0} where 𝑔(𝑥, 𝑦) = 𝑦 − 𝑓(𝑥). Since 𝐷𝑔(𝑥,𝑓(𝑥)) has Jacobian matrix
(−𝜕1𝑓(𝑥),… ,−𝜕𝑛𝑓(𝑥), 1), clearly 𝐷𝑔(𝑥,𝑓(𝑥)) always has rank 1, and so Γ(𝑓) is an 𝑛-submanifold of
ℝ𝑛+1

Example 4.9. Suppose that 𝑛 ∈ ℝ3 is a unit vector and

𝐶 = {𝑥 ∈ ℝ3 ∶ 𝑥21 + 𝑥22 − 𝑥23 = 0, ⟨𝑛, 𝑥⟩ = 𝑑}.

Then 𝐶 is a level set of the function 𝑓∶ ℝ3 → ℝ2, where 𝑓 has components 𝑓1(𝑥) = 𝑥21 +𝑥22 −𝑥23 and
𝑓2(𝑥) = ⟨𝑛, 𝑥⟩ = 𝑛1𝑥1 + 𝑛2𝑥2 + 𝑛3𝑥3: indeed 𝐶 = 𝑓−1({(0, 𝑑)}). Now

𝐷𝑓𝑥 = ( 2𝑥1 2𝑥2 −2𝑥3
𝑛1 𝑛2 𝑛3

)

hence 𝐷𝑓 has rank 2 on the complement of the line ℝ.(𝑛1, 𝑛2, −𝑛3). If 𝑑 = 0 then clearly 0 ∈ 𝐶 and
𝐷𝑓0 has rank 1, so we will suppose that 𝑑 ≠ 0. But then it is easy to check the line ℝ.(𝑛1, 𝑛2, −𝑛3)
does not intersect the level set 𝐶, and hence 𝐷𝑓 has rank 2 at every point of 𝐶, and so 𝐶 is a 1-
dimensional submanifold of ℝ3.

Suppose we wish to parameterize the curve 𝐶. The Implicit Function Theorem in the form of
Theorem 3.24 shows that, at least locallywe canwrite it as the graph of any one of our coordinates
𝑥1, 𝑥2, 𝑥3. In fact, by rotating around the 𝑥3-axis, we may assume that 𝑛 = (𝑛1, 0, 𝑛3), and hence we
may write 𝑛 = (cos(𝜙), 0, sin(𝜙)) for some 𝜙 ∈ ℝ. Then 𝐶 is given by the system of equations:

𝑥22 = 𝑥23 − 𝑥21 = (𝑥3 − 𝑥1)(𝑥3 + 𝑥1),
cos(𝜙)𝑥1 + sin(𝜙)𝑥3 = 𝑑.

If cos(𝜙) = 0, it is easy to see that 𝐶 is just one of the circles 𝐶±𝑑 = {(𝑥1, 𝑥2, ±𝑑) ∶ 𝑥21 + 𝑥22 = 𝑑2}, so
assume cos(𝜙) ≠ 0. Moreover, if cos(𝜙) = sin(𝜙) then 𝐶 is clearly a parabola with parametrization
𝑠 ↦ (𝑑1−(𝑠/2𝑑1)2, 𝑠, 𝑑1+(𝑠/2𝑑1)2), where 𝑑1 = 𝑑/√2. Otherwise, writing ℓ = 𝑑/ cos(𝜙) and 𝑡 = tan(𝜙),
we have 𝑥1 = ℓ − 𝑡.𝑥3, and hence our equations become

𝑥22 = ((1 + 𝑡)𝑥3 − ℓ)((1 − 𝑡)𝑥3 + ℓ) = (1 − 𝑡2)𝑥23 + 2ℓ.𝑡.𝑥3 − ℓ2

Since ℓ = 𝑑/ cos(𝜙) ≠ 0, then the quadratic on the right is non-negative on 𝐼𝜙 = ℝ\(−2, 2) when
𝑡 = tan(𝜙) < 1 and non-negative on 𝐼𝜙 = [−2, 2] when 𝑡 = tan(𝜙) > 1. and hence we obtain a
parameterization:

𝐶 = {(ℓ − 𝑡.𝑠, ±√(1 − 𝑡2).𝑠2 + 2𝑡ℓ.𝑠 − ℓ2, 𝑠) ∶ 𝑠 ∈ 𝐼𝜙}

= {ℓ(1 − 𝑡.𝑠1, ±√(1 − 𝑡2)𝑠21 + 2𝑡.𝑠1 − 1, 𝑠1) ∶ 𝑠1 = ℓ−1.𝑠 ∈ ℓ−1.𝐼𝜙}.

Thus we obtain ellipses or hyperbolas for tan(𝜙) > 1 and tan(𝜙) < 1 respectively. The signs which
occur, as before, are determined, for example, by choosing a point 𝑝 ∈ 𝐶 around which we wish
to obtain a local parameterization.

Of course the Implicit FunctionTheoremcan also be applied startingwith different local coor-
dinates at a point 𝑝 ∈ 𝐶: Indeed it might, given the nature of 𝑓, be more sensible to start with the
cylindrical polar coordinates 𝜌(𝑟, 𝜃, 𝑧) = (𝑟 cos(𝜃), 𝑟 sin(𝜃), 𝑧): In these coordinates the level-set 𝐶
becomes {𝑝 ∈ ℝ3 ∶ 𝑟2 −𝑧2 = 0, 𝑟 cos(𝜃) cos(𝜙) + 𝑧 sin(𝜙) = 𝑑}, where 𝑝 = 𝜌(𝑟, 𝜃, 𝑧) = (𝑟(𝑝), 𝜃(𝑝), 𝑧(𝑝)).

Note that the derivative of 𝑓 = (𝑓1, 𝑓2)with respect to these coordinates is

𝐷𝑓(𝑟,𝜃,𝑧) = ( 2𝑟 0 −2𝑧
cos(𝜃) cos(𝜙) −𝑟 sin(𝜃) cos(𝜙) sin(𝜙) ) .
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and so has rank 2 provided 𝑟 ≠ 0 and 𝜃 ≠ 𝑛𝜋 (when cos(𝜙) ≠ 0),
The level set 𝑓1(𝑝) = 0 is thus parameterized by (𝑠1, 𝑠2) ↦ (𝑠1 cos(𝑠2), 𝑠1 sin(𝑠2), 𝑠1) ∈ ℝ3, or

equivalently20 (𝑠1, 𝑠2) ↦ 𝜌(𝑠1, 𝑠2, 𝑠1), for (𝑠1, 𝑠2) ∈ ℝ2. Since the case cos(𝜙) = 0 is equally easy to
handle in this setting, we assume cos(𝜙) ≠ 0, and again set ℓ = 𝑑/ cos(𝜃). We then find that 𝐶 can
be parameterized by 𝑠 ∈ ℝ via

𝑠 ↦ 𝜌(𝑟(𝑠), 𝜃(𝑠), 𝑧(𝑠)) = 𝜌( ℓ
tan(𝜙) + cos(𝑠) , 𝑠,

ℓ
(tan(𝜙) + cos(𝑠)) ).

Thus recovering the polar form for the equations of a parabola, ellipse or hyperbola. One can
also determine the differential equation the function 𝑔(𝑠) = (𝑟(𝑠), 𝑧(𝑠)) must satisfy, as we did in
Example 3.4, which can be solved in this case by separation of variables.

4.2 Tangent spaces and normal vectors

We now wish to define the notion of tangent vectors and normal vectors at a point in a submani-
fold of a finite-dimensional inner product space 𝐸.

Definition 4.10. Let 𝑆 be a subset of a normed vector space 𝑋 and let 𝑝 ∈ 𝑆. A path on 𝑆 centred
at 𝑝 is a function 𝛾 ∈ 𝒞1((−𝑟, 𝑟), 𝑋), where 𝑟 > 0, such that the image of 𝛾 lies in 𝑆 and 𝛾(0) = 𝑝.
We write 𝒫(𝑆, 𝑝) for the set of all paths on 𝑆 centred at 𝑝. Let 𝑇 ∶ 𝒫(𝑆, 𝑝) → 𝑋 be the map given by
𝑇(𝛾) = 𝛾′(0). The image of 𝑇 is called the tangent space to 𝑆 at 𝑝 and is denoted 𝑇𝑝𝑆.

If 𝑉 is an inner product space, we can also define 𝑇𝑝𝑆⟂ = {𝑛 ∈ 𝑋 ∶ ⟨𝑛, 𝑣⟩ = 0, ∀𝑣 ∈ 𝑇𝑝𝑆}, the
normal space to 𝑆 at 𝑝. This space is also sometimes denoted 𝑁𝑝𝑆.

Remark 4.11. Note that while the normal space 𝑁𝑝𝑋 is by definition a linear subspace of 𝑋, the
tangent space need not in general be a linear subspace (see Example 4.16). Indeed since 𝑇𝑝𝑆 ⊆
(𝑇𝑝𝑆⟂)⟂ = 𝑁𝑝𝑆⟂ with equality if and only if 𝑇𝑝𝑆 is itself a linear subspace of 𝑋 . Thus 𝑁𝑝𝑆⟂ is the
smallest subspace of 𝑋 containing 𝑇𝑝𝑆, that is, 𝑁𝑝𝑆⟂ is the linear span of 𝑇𝑝𝑆. We will shortly see
that 𝑇𝑝𝑆 = 𝑁𝑝𝑆⟂ when 𝑆 is a submanifold.

Remark 4.12. Let 𝑋 be a normed vector space and 𝑅 ⊆ 𝑆 ⊆ 𝑋 be subsets. For any 𝑝 ∈ 𝑅 clearly
𝒫(𝑅, 𝑝) ⊆ 𝒫(𝑆, 𝑝) and hence 𝑇𝑝𝑅 ⊆ 𝑇𝑝𝑆.

Slightly less trivially, if 𝑝 ∈ 𝑆 and 𝑈 is an open subset containing 𝑝, then 𝑇𝑝(𝑈 ∩ 𝑆) = 𝑇𝑝𝑆.
Since 𝑆 ∩ 𝑈 ⊆ 𝑆, by the above we see that 𝑇𝑝(𝑈 ∩ 𝑆) ⊆ 𝑇𝑝𝑆. For the reverse inclusion, note that if
𝑣 ∈ 𝑇𝑝𝑆 then we may pick a path 𝛾 ∈ 𝒫(𝑆, 𝑝) with 𝑇(𝛾) = 𝑣. Then 𝛾 is continuous, so 𝛾−1(𝑈) is an
open neighbourhood of 0 (since 𝛾(0) = 𝑝) and so contains an open interval of the form (−𝑠, 𝑠). Let
𝛾𝑠 = 𝛾|(−𝑠,𝑠). Then 𝛾𝑠 ∈ 𝒫(𝑆 ∩ 𝑈, 𝑝), and, since it is the restriction of 𝛾 to an open set containing 0.
𝑇(𝛾𝑠) = (𝛾𝑠)′(0) = 𝛾′(0) = 𝑣, and hence 𝑣 ∈ 𝑇𝑝(𝑈 ∩ 𝑆).

Thus the tangent space 𝑇𝑝𝑆 of 𝑆 at 𝑝 is only sensitive to the nature of 𝑆 near 𝑝. This simple
observation, along with the Chain Rule, gives us the following Lemma, which although easy to
prove, will be the key tool in calculating with tangent spaces.

Lemma 4.13. Let 𝑋 and 𝑌 be a normed vector spaces and let 𝑈 be an open subset of 𝑋 and let 𝑆 be
an arbitrary subset of 𝑋 . If 𝜓 ∈ 𝒞1(𝑈, 𝑌), and 𝑝 ∈ 𝑈 ∩𝑆, then if 𝑅 ⊆ 𝑌 is such that 𝜓(𝑈 ∩ 𝑆) ⊆ 𝑅, and
𝑞 = 𝜓(𝑝), the derivative of 𝜓 at 𝑝 induces a map

𝐷𝜓𝑝∶ 𝑇𝑝𝑆 → 𝑇𝑞𝑅

Proof. Let 𝑣 ∈ 𝑇𝑝𝑆. By Remark 4.12, we may assume that 𝑣 = 𝑇(𝛾) for 𝛾 ∈ 𝒫(𝑋 ∩ 𝑈, 𝑝). But then
𝜓 ∘ 𝛾 ∈ 𝒫(𝜓(𝑈 ∩ 𝑆), 𝑏) ⊆ 𝒫(𝑅, 𝑞), so that 𝑇(𝜓 ∘ 𝛾) ∈ 𝑇𝑞𝑅. But by the Chain Rule,

𝑇(𝜓 ∘ 𝛾) = (𝜓 ∘ 𝛾)′(0) = 𝐷𝜓𝑎(𝛾′(0)) = 𝐷𝜓𝑎(𝑣),

so that 𝐷𝜓𝑝(𝑣) ∈ 𝑇𝑞𝑅 as required. □
20If 𝑧 < 0 then this shifts 𝑠2 by 𝜋 from the normal convention of 𝑟 > 0.
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Corollary 4.14. Let 𝑋 and 𝑌 be normed vector spaces,𝑈 an open subset of 𝑋, and 𝑆 any subset of 𝑋 .
Suppose that 𝜓 ∈ 𝒞1(𝑈, 𝑌) and 𝑝 ∈ 𝑈 ∩ 𝑆. Then we have the following:

1. If 𝐷𝜓𝑝 is an invertible linear map, then 𝐷𝜓𝑝 gives a bijection between 𝑇𝑝𝑆 and 𝑇𝑞𝑅, where 𝑞 =
𝜓(𝑝) and 𝑅 = 𝜓(𝑈 ∩ 𝑆).

2. If 𝜓(𝑋) = {𝑞} then 𝑇𝑝𝑋 ⊆ ker(𝐷𝜓𝑝).

Proof. Since 𝐷𝜓𝑝 is invertible, the Inverse Function Theorem shows that 𝜓 induces a diffeomor-
phism from a neighbourhood 𝑈1 of 𝑝 to Ω, and open subset of𝑊 containing 𝑞 = 𝜓(𝑝). But then if
𝜃∶ Ω → 𝑈1 is the inverse of 𝜓, by Lemma 4.13 applied to 𝜓 and 𝜃, we have 𝐷𝜓𝑝∶ 𝑇𝑝𝑋 → 𝑇𝑞𝑌 and
𝐷𝜃𝑞∶ 𝑇𝑞𝑌 → 𝑇𝑝𝑋, and 𝐷𝜓𝑝 and 𝐷𝜃𝑞 are inverse, the result follows.

For the second part, Lemma 4.13 shows that 𝐷𝜓𝑝(𝑇𝑝𝑋) ⊆ 𝑇𝑞{𝑞}. But clearly 𝒫({𝑞}, 𝑞) consists of
the constant maps 𝛾which take the value 𝑞, and hence have derivative 0. It follows that 𝑇𝑞({𝑞}) =
{0}, and hence that 𝑇𝑝𝑋 ⊆ ker(𝐷𝜓𝑝). □

Example 4.15. If𝑀 is a 𝑘-submanifold of 𝑋, so that for any 𝑎 ∈ 𝑀 we can find an open neighbour-
hood𝑈 of 𝑎 such that𝑈 ∩𝑀 = 𝑓−1(0) for some 𝑓 ∈ 𝒞1(𝑈,ℝ𝑛−𝑘) for which 𝐷𝑓𝑥 has rank 𝑛− 𝑘 for all
𝑥 ∈ 𝑈. Using Example 4.12 and Corollary 4.14 part (2), we see that

𝑇𝑝𝑀 = 𝑇𝑝(𝑈 ∩ 𝑀) = 𝑇𝑝(𝑓−1(0)) ⊆ ker(𝐷𝑓𝑝).

If 𝑋 is a subset of 𝑉 and 𝑈 is a neighbourhood of 𝑎 ∈ 𝑋 such that 𝑋 ∩ 𝑈 = 𝑓−1(0) for some
𝑓 ∈ 𝒞1(𝑈,ℝ𝑚), the containment 𝑇𝑝𝑋 ⊆ ker(𝐷𝑓𝑝) can, in general, be strict. However, when 𝑀 is
a submanifold of ℝ𝑛 locally defined by the vanishing of 𝑓, then we will shortly see that 𝑇𝑝𝑀 =
ker(𝐷𝑓𝑝).

Example 4.16. Consider Example 4.6 again, that is, let 𝑔∶ ℝ2 → ℝ the continuously differentiable
function given by 𝑔(𝑥1, 𝑥2) = 𝑥1.𝑥2, and, for 𝑐 ∈ ℝ let 𝐿𝑐 = {(𝑥1, 𝑥2) ∈ ℝ2 ∶ 𝑥1.𝑥2 = 𝑐}. Then
𝐷𝑔(𝑎1,𝑎2) = (𝑎2, 𝑎1), which has maximal rank (i.e. rank 1) provided 𝑎 = (𝑎1, 𝑎2) ≠ 0. Thus for any
𝑎 ≠ 0, if 𝑔(𝑎) = 𝑐 Corollary 4.14 shows that 𝑇𝑎(𝐿𝑐) ⊆ ker(𝐷𝑔𝑎) = {(𝑥1, 𝑥2) ∶ 𝑎2𝑥1 + 𝑎1𝑥2 = 0}, while at
𝑎 = 0weonly get the trivial bound𝑇0𝐿0 ⊆ ker(𝐷𝑔0) = ℝ2. In fact you can check that𝑇𝑎𝐿𝑐 = ker𝐷𝑔𝑎
for all 𝑎 ≠ 0, while at 𝑎 = 0, 𝑇0𝐿0 = 𝐿0, giving an example where the tangent space of a level-set is
not a linear subspace.

Example 4.17. Now case where𝑀 = {𝑥 ∈ ℝ𝑛 ∶ 𝑥𝑙 = 0, ∀𝑙 > 𝑘} and 𝑝 = 0𝑛. Then𝑀 is defined by the
vanishing of 𝑓(𝑥) = (𝑥𝑘+1,… , 𝑥𝑛}. Then it is clear that 𝐷𝑓0 has kernel given by spanℝ{𝑒1,… , 𝑒𝑘}. On
the other hand, if 𝑣 = (𝑣1,… , 𝑣𝑘, 0,… , 0), then 𝛾(𝑡) = 𝑡.𝑣 lies in𝑀, and 𝛾′(0) = 𝑣, hence we see that
𝑣 ∈ 𝑇0𝑀 if and only if 𝐷𝑓0(𝑣) = 0.

The above example along with the Implicit Function Theorem shows the following:

Proposition 4.18. Let𝑀 be a 𝑘-dimensional submanifold of ℝ𝑛 and let 𝑝 ∈ 𝑀. Then if 𝑈 is an open
subset of ℝ𝑛 such that𝑀 ∩ 𝑈 = 𝑓−1(0), where 𝑓∶ 𝑈 → ℝ𝑛−𝑘 is continuously differentiable with 𝐷𝑓𝑥
of maximal rank for all 𝑥 ∈ 𝑈. Then we have

𝑇𝑝𝑀 = ker(𝐷𝑓𝑝).

In particular, 𝑇𝑝𝑀 is a 𝑘-dimensional vector subspace.

Proof. We have already shown the containment 𝑇𝑝𝑀 ⊆ ker(𝐷𝑓𝑝) in Corollary 4.14, so it remains to
establish the reverse inclusion. In the casewhere 𝑓 = (𝑥𝑘+1,… , 𝑥𝑛) this was shown in the previous
Example, but the Implicit Function Theorem shows us that, for any point 𝑝 ∈ 𝑀, we can find a
diffeomorphism 𝜓∶ 𝑉 → 𝑈 from an open neighhourhood 𝑉 of 0𝑛 to an open neighbourhood 𝑈 of
𝑝 taking 𝑁 ∩ 𝑉 to 𝑀 ∩ 𝑈 where 𝑁 = {𝑥 ∈ 𝑈 ∶ (𝑥𝑘+1,… , 𝑥𝑛) = 0𝑛−𝑘}. The result then follows from
Lemma 4.13. □
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Using the notion of gradient vector fields, we can also describe the normal space 𝑇𝑝𝑀⟂ of a
𝑘-dimensional submanifold:

Proposition 4.19. Suppose that𝑀 is a 𝑘-dimensional submanifold and𝑝 ∈ 𝑀. If𝑈 is an openneigh-
bourhood of 𝑝 such that𝑀∩𝑈 is given by 𝑓−1(0)where 𝑓∶ 𝑈 → ℝ𝑛−𝑘 is a continuously differentiable
function, then if 𝑓 = (𝑓1,… , 𝑓𝑛−𝑘) we have

𝑇𝑝𝑀⟂ = spanℝ{∇𝑓1(𝑝),… ,∇𝑓𝑛−𝑘(𝑝)}.

In particular 𝑇𝑝𝑀⟂ is a vector space of dimension 𝑛 − 𝑘.

Proof. By Proposition 4.18, the tangent space 𝑇𝑝𝑀 = ker(𝐷𝑓𝑝) is a 𝑘-dimensional subspace of ℝ𝑛.
Let 𝑓 = (𝑓1,… , 𝑓𝑛−𝑘) and let𝑁 = spanℝ{∇𝑓1(𝑝),… ,∇𝑓𝑛−𝑘(𝑝)}, an (𝑛−𝑘)-dimensional subspace. Now
the rows of the Jacobian matrix of 𝐷𝑓𝑝 are given by ∇𝑓𝑖(𝑝)𝑇 , so that

𝐷𝑓𝑝(𝑣) =
𝑛−𝑘
∑
𝑖=1

(∇𝑓𝑖(𝑝) ⋅ 𝑣)𝑒𝑖

It follows that 𝑣 ∈ 𝑇𝑝𝑀 if and only if 𝑣 ∈ 𝑁⟂. Thus 𝑇𝑝𝑀 = 𝑁⟂ and hence 𝑁 = 𝑇𝑝𝑀⟂ as required
(since, for any subspace𝑊 of an inner product space 𝑉 we have (𝑊 ⟂)⟂ = 𝑊). □

Example 4.20. Let 𝑆 = {(𝑥1, 𝑥2, 𝑥3) ∈ ℝ3 ∶ 𝑥21 + 2𝑥22 − 7𝑥23 = 1}. Then if 𝑓(𝑥) = 𝑥21 + 2𝑥22 − 7𝑥23, the
surface 𝑆 is a level-set of 𝑓. Since ∇𝑓(𝑥) = (2𝑥1, 4𝑥2, −14𝑥3), the function 𝑓 has maximal rank (i.e.
rank 1) everywhere except 0, and since 0 ∉ 𝑆, it follows that 𝑆 is a 2-dimensional submanifold of
ℝ3. The tangent and normal spaces to 𝑆 at a point 𝑎 = (𝑎1, 𝑎2, 𝑎3) is then

𝑇𝑎𝑆 = {𝑣 = (𝑣1, 𝑣2, 𝑣3) ∈ ℝ3 ∶ 2𝑎1.𝑣1 + 4𝑎2.𝑣2 − 14𝑎3.𝑣3 = 0},
𝑇𝑝𝑆⟂ = {𝜆.(2𝑎1, 4𝑎2, −14𝑎3) ∶ 𝜆 ∈ ℝ}

Example 4.21. Let O𝑛(ℝ) = {𝑋 ∈ Mat𝑛(ℝ) ∶ 𝑋.𝑋𝑇 = 𝐼𝑛} be the orthogonal group, the group of
linear isometries of ℝ𝑛 (equipped with the ‖.‖2-norm). We claim this is a smooth submanifold of
Mat𝑛(ℝ) of dimension 𝑛(𝑛 − 1)/2.

Now the definition of O𝑛(ℝ) shows that it is a level-set of the function 𝑞(𝑋) = 𝑋.𝑋𝑇 , which has
entries which are degree two polynomials in the entries of 𝑋 . Thus 𝑞(𝑋) is clearly continuously
differentiable, and moreover 𝐷𝑞𝑋(𝐻) = 𝑋.𝐻𝑇 + 𝐻.𝑋𝑇 , since

𝑞(𝑋 + 𝐻) = (𝑋 + 𝐻).(𝑋 + 𝐻)𝑇 = 𝑞(𝑋) + 𝐻.𝑋𝑇 + 𝑋.𝐻𝑇 + 𝐻.𝐻𝑇 ,

and ‖𝐻.𝐻𝑇‖∞ ≤ ‖𝐻‖∞.‖𝐻𝑇‖∞ so that ‖𝐻‖−1∞𝐻.𝐻𝑇 → 0 as 𝐻 → 0 (since clearly 𝐻𝑇 → 0 as 𝐻 → 0).
Now (𝑋.𝑋𝑇)𝑇 = 𝑋.𝑋𝑇 , so the image of 𝑞 lies in the linear subspace 𝑆(ℝ𝑛) of symmetric matrices

in Mat𝑛(ℝ), which is a subspace of dimension 𝑛(𝑛 + 1)/2. Thus it will follows that O𝑛(ℝ) is a sub-
manifold of dimension 𝑛(𝑛 − 1)/2 if we can show that 𝐷𝑞𝑋 is a surjective linear map fromMat𝑛(ℝ)
to 𝑆(ℝ𝑛). But if 𝐶 ∈ 𝑆 then (𝐶𝑋)𝑇 = 𝑋𝑇 .𝐶 = 𝑋−1.𝐶, so that

𝐷𝑞𝑋(
1
2(𝐶.𝑋)) =

1
2(𝐶.𝑋.𝑋

𝑇 + 𝑋.(𝐶.𝑋)𝑇) = 1
2(𝐶.𝐼𝑛 + 𝐼𝑛.𝐶) = 𝐶,

so that 𝐷𝑞 is surjective as required.
The group O𝑛(ℝ) is thus what is known as a Lie group. Its tangent space at the identity 𝐼𝑛 is

denoted by 𝔬𝑛(ℝ). Explicitly this is ker(𝐷𝑞𝐼𝑛) = {𝐻 ∈ Mat𝑛(ℝ) ∶ 𝐻 + 𝐻𝑇 = 0}. It carries a kind of
non-associative product, called a Lie bracket: If𝐻1, 𝐻2 ∈ 𝔬𝑛(ℝ) then you can check that [𝐻1, 𝐻2] =
𝐻1𝐻2−𝐻2𝐻1 ∈ 𝔬𝑛(ℝ). The Lie algebra structure gives a kind of “infinitesimal” or deriviative of the
group structure on O𝑛(ℝ). This is studied in detail in courses in Part C.
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Remark 4.22. Now that we have the language of tangent spaces and submanifolds, we can rein-
terpret the theory of Lagrange multipliers in more geometric terms: if 𝑈 is an open subset of a
normed vector space 𝑋 and 𝑓 ∈ 𝒞1(𝑈, 𝑌) is a constraint function and we seek to minimize 𝑔(𝑥) on
the locus 𝐶 = {𝑥 ∈ 𝑈 ∶ 𝑓(𝑥) = 0}.

If 𝑎 ∈ 𝐶 and ∇𝑔𝑎 has a non-trivial component in 𝑇𝑎𝐶, then the same argument as the one used
in Lemma 3.30 shows that 𝑎 cannot be a local minimum (one must use a path 𝛾 centred at 𝑎 lying
on 𝑆 which has 𝑇(𝛾) equal to the projection of ∇𝑔𝑎 onto 𝑇𝑎𝐶, but with this extra detail the same
strategy works). It follows that a necessary condition for 𝑎 ∈ 𝐶 to be a local minimum is that∇𝑔𝑎
is normal to 𝐶 at 𝑎. Provided that𝐷𝑓 hasmaximal rank on 𝐶, if 𝑓 = ∑𝑘

𝑖=1 𝑓𝑖.𝑤𝑖 for {𝑤1,… ,𝑤𝑘} some
basis of 𝑌 , then Proposition 4.19 shows that this is equivalent to ∇𝑔𝑎 ∈ Span{∇𝑓𝑖(𝑎) ∶ 1 ≤ 𝑖 ≤ 𝑘},
and so we recover the theorem on Lagrange multipliers.

4.3 *Abstract Manifolds

Suppose that𝑀 is a 𝑘-dimensional submanifold of ℝ𝑛. If 𝑉 is an open neighbourhood of a point
𝑝 ∈ 𝑀, then there is an open subset of ℝ𝑛 with 𝑉 = 𝑀 ∩ 𝑈. Shrinking 𝑉 and 𝑈 is necessary, we
can find a diffeomorphism 𝜓∶ 𝐵(0, 𝑟) → 𝑈 such that 𝜓(𝑉 ∩ (ℝ𝑘 ⊕ 0𝑛−𝑘)) = 𝑀 ∩ 𝑈. If we write
𝜓−1(𝑥) = (𝑡1,… , 𝑡𝑛), then if 𝑓∶ 𝑀 ∩ 𝑈 → ℝ is any function, we may define ̃𝑓 ∶ 𝑈 → ℝ by

̃𝑓(𝑥) = 𝑓 ∘ (𝜓(𝑡1,… , 𝑡𝑘, 0,… , 0)).

If 𝑥 ∈ 𝑀 ∩ 𝑈 then ̃𝑓(𝑥) = 𝑓(𝑥), so that ̃𝑓 extends 𝑓 to a function on 𝑈 an open subset of ℝ𝑛. We
then say that 𝑓 is 𝒞1 at 𝑥 ∈ 𝑀 ∩𝑈 if ̃𝑓 is. Using the chain rule, one can check that this definition is
independent of the choice of diffeomorphism 𝜓. In effect, 𝑓 is differentiable at 𝑥 ∈ 𝑀 ∩ 𝑈 if it is
differentiable as a function of the parameters (𝑡1,… , 𝑡𝑘). Thus the crucial fact is that we can equip
𝑀, at least locally, with “𝒞1-coordinates”.

There is a notion of an abstract differentiable 𝑘-dimensional manifold: This is a topological
space 𝑀, equipped with a collection of “charts” {𝜙𝑖 ∶ 𝑈 𝑖 → 𝑉 𝑖 ∶ 𝑖 ∈ 𝐼}, where the collection
{𝑉 𝑖 ∶ 𝑖 ∈ 𝐼} forms an open cover of 𝑀 (that is, 𝑀 = ⋃𝑖∈𝐼 𝑉 𝑖 and each 𝑉 𝑖 is an open subset of 𝑀)
the 𝑈 𝑖 are open subsets of ℝ𝑘, and the 𝜙𝑖 are homeomorphisms. The charts allow us to say when
a function 𝑓∶ 𝑀 → ℝ is continuously differentiable: if 𝑥 ∈ 𝑀, we say 𝑓 is differentiable at 𝑥 ∈ 𝑀
if 𝑓 ∘ 𝜓𝑖 is differentiable at 𝜓−1𝑖 (𝑥), where 𝑖 ∈ 𝐼 is such that 𝑥 ∈ 𝑉 𝑖. In order for this definition to
be consistent, the charts must satisfy a compatibility condition: if 𝑥 ∈ 𝑉 𝑖 ∩ 𝑉 𝑗 lies in the image
of two charts 𝜓𝑖 and 𝜓𝑗 we need 𝑓 ∘ 𝜓𝑖 to be differentiable at 𝜓−1𝑖 (𝑥) if and only if 𝑓 ∘ 𝜓𝑗 is 𝒞1 at
𝜓−1𝑗 (𝑥). But by the chain rule, this follows if 𝜓−1𝑗 ∘ 𝜓𝑖 ∶ 𝑈 𝑖 ∩ 𝑈𝑗 → 𝑈 𝑖 ∩ 𝑈𝑗 is diffeomorphism, and
this is exactly the compatibility condition which is imposed. Abstract differentiable manifolds
are studied in the Part C course ”Differentiable Manifolds”.
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5 Appendix

5.1 Notation: 𝑜 and 𝑂
Definition 5.1. Let𝑋 and 𝑌 be normed vector spaces. Let𝒩(𝑋, 𝑌) be the vector space of functions
𝑓∶ 𝐷 → 𝑌 whose domain of definition 𝐷 ⊆ 𝑋 is a neighbourhood of 0𝑋 and let 𝒩0(𝑋, 𝑌) be the
subspace of 𝒩(𝑋, 𝑌) consisting of those functions 𝑓 ∈ 𝒩(𝑋, 𝑌) which are continuous at 0𝑋 and
satisfy 𝑓(0𝑋) = 0𝑌 . Note that if 𝑓∶ 𝐷1 → 𝑌 and 𝑓2∶ 𝐷2 → 𝑌 , then their sum 𝑓1 + 𝑓2 is only defined
on 𝐷1 ∩ 𝐷2, but this is still a neighbourhood of 0𝑋 , so that 𝒩(𝑋, 𝑌) is indeed a vector space. In
fact, the same observation shows that if 𝑐 ∈ 𝒩(𝑋,ℝ) and 𝑓 ∈ 𝒩(𝑋, 𝑌) then 𝑐.𝑓 ∈ 𝒩(𝑋, 𝑌), and if
𝑓 ∈ 𝒩0(𝑋, 𝑌) so is 𝑐.𝑓.

If 𝑔 is a non-negative function in𝒩(𝑋,ℝ) then we will write 𝑂𝑌 (𝑔) for the subspace of𝒩(𝑋, 𝑌)
consisting of those functions 𝑓∶ 𝐷 → 𝑌 for which there exists a constant 𝐶 > 0 and an open ball
𝐵(0𝑋 , 𝑟) ⊆ 𝐷 such that

‖𝑓(𝑥)‖ ≤ 𝐶.𝑔(𝑥), ∀𝑥 ∈ 𝐵(0𝑋 , 𝑟).
Note that if 𝑔 ∈ 𝒩0(𝑋, ℝ) it follows that 𝑓 ∈ 𝒩0(𝑋, 𝑌) also, that is if 𝑔 ∈ 𝒩0(𝑋, ℝ) then 𝑂𝑊 (𝑔) ⊆
𝒩0(𝑋, 𝑌).

Similarly we write 𝑜𝑌 (𝑔) for the subspace of𝒩(𝑋, 𝑌) consisting of those functions 𝑓∶ 𝐷 → 𝑌
for which, given any 𝜖 > 0, there is some 𝛿 > 0 such that for all 𝑥 ∈ 𝐵(0𝑋 , 𝛿)wehave ‖𝑓(𝑥)‖ ≤ 𝜖.𝑔(𝑥).
If 𝑔 is non-vanishing in a neighbourhood of 0𝑋 (except perhaps at 0𝑋 itself) then this is equivalent
to the condition that

lim
𝑥→0𝑋

‖𝑓(𝑥)‖
𝑔(𝑥) = 0.

Notice that, again assuming 𝑔 is non-vanishing on 𝐵(0𝑋 , 𝑟)\{0𝑋 } for some 𝑟 > 0, if we set 𝑓1(𝑥) =
𝑔(𝑥)−1.𝑓(𝑥) for 𝑥 ≠ 0 and 𝑓1(0𝑋) = 0𝑌 , then by assumption 𝑓1 defines an element of 𝒩0(𝑉,𝑊), so
that we may equivalently view 𝑜𝑌 (𝑔) as the subspace of all functions in𝒩0(𝑋, 𝑌) “divisible by 𝑔”,
that is functions of the form 𝑔.𝑓 where 𝑓 ∈ 𝒩0(𝑋, 𝑌).

By a standard abuse of notation, wewill write 𝑓1(𝑥) = 𝑓2(𝑥)+𝑜𝑌 (𝑔) tomean 𝑓1(𝑥)−𝑓2(𝑥) ∈ 𝑜𝑌 (𝑔),
and similarly for 𝑓1(𝑥) = 𝑓2(𝑥) + 𝑂(𝑔). Note that if the target space 𝑌 is clear from the context, we
will omit the subscript 𝑌 and simply write 𝑜(𝑔) or 𝑂(𝑔).

Remark 5.2. Note that the functions in 𝑂𝑌 (𝑔) can, informally, be considered as those functions
𝑓(𝑥) for which 𝑓(𝑥) → 0𝑌 as 𝑥 → 0𝑋 “at the same (or faster) rate” as 𝑔(𝑥) → 0, while the functions
in 𝑜𝑌 (𝑔) tend to 0𝑌 “faster” than 𝑔 tends to 0.

Exercise 5.3. An easy case to consider is when 𝑔 is continuous and 𝑔(0) > 0. Show that in this case
𝑓 ∈ 𝑂𝑌 (𝑔) precisely if it is bounded near 0𝑋 , while 𝑓 ∈ 𝑜𝑌 (𝑔) precisely when 𝑓(𝑥) → 0𝑌 as 𝑥 → 0𝑋 .
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5.2 Strong differentiability and continuity of partial derivatives

Definition 5.4. If 𝑋 and 𝑌 are normed vector spaces and 𝑓∶ 𝑈 → 𝑌 is a function defined on an
open subset 𝑈 of 𝑋, then we say that the linear map 𝑇 ∈ ℒ(𝑋, 𝑌) is the strong partial derivative of
𝑓 at 𝑎 (or, in the case 𝑍 = 𝑋, simply the strong derivative) if, for ℎ ∈ 𝑍,

‖𝑓(𝑥 + ℎ) − 𝑓(𝑥) − 𝑇(ℎ)‖
‖ℎ‖ → 0 as ‖𝑥 − 𝑎‖ + ‖ℎ‖ → 0.

That is, given 𝜖 > 0 there is a 𝛿 > 0 such that if 𝑥, 𝑥+ℎ ∈ 𝐵(𝑎, 𝛿) then ‖𝑓(𝑥+ℎ)−𝑓(𝑥)−𝑇(ℎ)‖ < 𝜖‖ℎ‖.
Note that the existence of a strong derivative at a point 𝑎 ∈ 𝑈, unlike in the case of the Fréchet

derivative, implies that 𝑓 is Lipschitz continuous in a neighbourhood of 𝑎 ∈ 𝑈.

Lemma 5.5. If 𝑋 and 𝑌 are normed vector spaces, 𝑍 a subspace of 𝑋 and 𝑓∶ 𝑈 → 𝑌 is a function
for which 𝜕𝑍𝑓 is defined on 𝑈 and is continuous at 𝑎 ∈ 𝑈, then 𝜕𝑍𝑓𝑎 is the strong partial derivative
of 𝑓 at 𝑎.

Proof. Pick 𝑟 > 0 such that 𝐵(𝑎, 𝑟) ⊆ 𝑈. Then if 𝑥, 𝑦 ∈ 𝐵(𝑎, 𝑟) the line segment [𝑥, 𝑦] ⊆ 𝐵(𝑎, 𝑟) also,
and we may apply the Mean Value Inequality to the function ℎ ↦ 𝑓(𝑥 + ℎ) − 𝜕𝑍𝑓(𝑎)(ℎ)we see that

‖𝑓(𝑥 + ℎ) − 𝑓(𝑥) − 𝐷𝑓𝑎(ℎ)‖ ≤ sup
𝑧∈[𝑥,𝑥+ℎ]

‖𝐷𝑓𝑧 − 𝐷𝑓𝑎‖∞‖ℎ‖.

Now since 𝐷𝑓 is continuous at 𝑎, we may make ‖𝐷𝑓𝑧 − 𝐷𝑓𝑎‖ arbitrarily small, and the result is
proved. □

Lemma 5.6. Let 𝑋 and 𝑌 be normed vector spaces such that 𝑋 = 𝑋1 ⊕ 𝑋2 and let 𝑓∶ 𝑈 → 𝑌 be a
function defined on an open subset of 𝑋 . If 𝑓 is such that its partial derivatives 𝜕𝑋1𝑓(𝑎) and 𝜕𝑋2𝑓(𝑎)
at a point 𝑎 exist, then if either is a strong partial derivative then 𝐷𝑓𝑎 exists. Moreover, if both are
strong partial derivatives the 𝐷𝑓𝑎 is the strong derivative of 𝑓 at 𝑎.

Proof. Suppose that 𝜕𝑋1𝑓(𝑎) and 𝜕𝑋2𝑓(𝑎) are strong partial derivatives of 𝑓 at 𝑎 and let 𝑥 = (𝑥1, 𝑥2)
and ℎ = (ℎ1, ℎ2). For ℎ1 ∈ 𝑋1 let 𝜂1(𝑥, ℎ1) = 𝑓(𝑥 + ℎ1) − 𝑓(𝑥) − 𝜕𝑋1𝑓(𝑎)(ℎ1) and similarly for ℎ2 ∈ 𝑋2
let 𝜂2(𝑥, ℎ2) = 𝑓(𝑥 + ℎ2) − 𝑓(𝑥) − 𝜕𝑋2𝑓(𝑎)(ℎ2). Then if

𝜂(𝑥, ℎ) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥) − 𝜕𝑋1𝑓(𝑎)(ℎ1) − 𝜕𝑋2𝑓(𝑎)(ℎ2)

we have 𝜂(𝑥, ℎ) = 𝜂2(𝑥 + ℎ1, ℎ2) + 𝜂1(𝑥, ℎ1). It follows that

‖𝜂(𝑥, ℎ)‖
‖ℎ1‖ + ‖ℎ2‖

≤ ‖𝜂2(𝑥 + ℎ1, ℎ2)‖
‖ℎ2‖

. ‖ℎ2‖
‖ℎ1‖ + ‖ℎ2‖

+ ‖𝜂1(𝑥, ℎ1)‖
‖ℎ1‖

. ‖ℎ1‖
‖ℎ1‖ + ‖ℎ2‖

Thus it follows immediately from the definition of the strong partial derivatives and the fact that
0 ≤ ‖ℎ1‖

‖ℎ1‖+‖ℎ2‖
, ‖ℎ2‖
‖ℎ1‖+‖ℎ2‖

≤ 1 that𝐷𝑓 is the strong derivative of 𝑓 at 𝑎. If we are only given that 𝜕𝑋2𝑓(𝑎)
is a strong partial derivative, the preceeding argument is still valid provided we take 𝑥 = 𝑎, so
that the definition of ordinary partial derivative 𝜕1𝑓(𝑎) suffices to show ‖𝜂1(𝑎, ℎ1)‖/‖ℎ1‖ → 0 as
ℎ1 → 0. □

Corollary 5.7. Let 𝐵𝑋 = {𝑏1,… , 𝑏𝑛} be a basis of a normed vector space 𝑋 and let 𝐵∗𝑋 = {𝑥1,… , 𝑥𝑛}
be the corresponding dual basis of 𝑋∗. If 𝑓∶ 𝑈 → 𝑌 is a function defined on an open subset 𝑈 of
𝑋 is such that the directional derivatives 𝜕𝑖𝑓 ≔ 𝜕𝑏𝑖𝑓 exist near 𝑎 ∈ 𝑈 and all but at most one are
continuous at 𝑎 then 𝑓 is differentiable at 𝑎.

Proof. By Lemma 5.5, the continuity of the partial derivatives of 𝑓 along the lines ℝ.𝑏𝑖 ensures
that 𝜕𝑖𝑓(𝑎) is a strong partial derivative. Lemma 5.6 and induction then completes the proof. □
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5.3 *Multilinear maps and higher derivatives

In this section we describe how one can understand the higher derivatives of a function 𝑓∶ 𝑈 →
𝑊 without partial derivatives. The main point is to obtain a better understanding of the space in
which𝐷𝑘𝑓 takes valueswhen 𝑘 > 1. Example 2.40 shows how the spaceℒ(𝑉,ℒ(𝑉,ℝ)) is equivalent
to the space Bil(𝑉, ℝ) of bilinear forms on 𝑉 , that is functions 𝐵∶ 𝑉 × 𝑉 → ℝ which are linear in
each factor.

There is a similarway to describe the vector space of functions inwhich the higher derivatives
𝐷𝑘𝑓 for 𝑘 ≥ 2 take values. The key point here is quite general:

Lemma 5.8. Let 𝑋, 𝑌 and 𝑍 be sets, and write 𝐹(𝑋, 𝑌) for the set of all functions from 𝑋 to 𝑌 . Then
there is a bijection 𝜃∶ 𝐹(𝑋, 𝐹(𝑌, 𝑍)) → 𝐹(𝑋 × 𝑌, 𝑍) given by 𝜃(𝑓)(𝑥, 𝑦) = 𝑓(𝑥)(𝑦), for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

Proof. This is trivial to check – the inverse map 𝜉∶ 𝐹(𝑋 ×𝑌, 𝑍) → 𝐹(𝑋, 𝐹(𝑌, 𝑍) is given by 𝜉(𝑔)(𝑥) =
[𝑦 ↦ 𝑔(𝑥, 𝑦)], for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 . □

Write 𝑉𝑘 = 𝑉 × … × 𝑉 for the Cartesian product of 𝑉 with itself 𝑘 times, and letℳ𝑘(𝑉,𝑊) be
the space of 𝑘-multilinear functions on 𝑉 taking values in𝑊 :

ℳ𝑘(𝑉,𝑊) = {𝑓∶ 𝑉𝑘 →𝑊 ∶ 𝑓(𝑣1,… , 𝑣𝑘) is linear in each 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑘}

Example 5.9. If 𝑘 = 1 thenℳ1(𝑉,𝑊) is just the space of linear maps ℒ(𝑉,𝑊). The spaceℳ2(𝑉, ℝ)
is just the space Bil(𝑉, ℝ) of bilinear forms on 𝑉 . The determinant function, viewed as a function
on the column vectors of an 𝑛 × 𝑛matrix, is an element ofℳ𝑛(ℝ𝑛, ℝ).

Lemma 5.10. Let 𝑉 and 𝑊 be finite dimensional normed vector spaces. For each 𝑘 ≥ 1 there is a
natural isomorphism 𝜃𝑘∶ ℒ(𝑉,ℳ𝑘−1(𝑉,𝑊)) → ℳ𝑘(𝑉,𝑊), and hence if 𝑓∶ 𝑈 → 𝑊 is a function
on an open subset 𝑈 of 𝑉 which is 𝑘-times differentiable, we may view 𝐷𝑘𝑓 as a function from 𝑈 to
ℳ𝑘(𝑉,𝑊).

Proof. Taking 𝑋 = 𝑉 , 𝑌 = 𝑉𝑘−1 and 𝑍 = 𝑊 in Lemma 5.8, you can check that the map 𝜃 in the
proof of the Lemma restricts to give the required isomorphism 𝜃𝑘. The final part of the Lemma
then follows by induction on 𝑘. □

Thus we see that the higher derivatives 𝐷𝑘𝑓 can be viewed as functions on 𝑈 taking values
inℳ𝑘(𝑉,𝑊), the space of 𝑘-multilinear functions on 𝑉 taking values in 𝑊 . Arguing essentially
as we do in Example 2.40, it is possible to check that, if {𝑤1,… ,𝑤𝑚} is a basis of𝑊 , and we write
𝑓 = ∑𝑚

𝑖=1 𝑓𝑖𝑤𝑖, so that the 𝑓𝑖 are the components of 𝑓, and {𝑒1,… , 𝑒𝑛} is as before the basis of 𝑉 ,
then

𝐷𝑘𝑓𝑖(𝑒𝑗1 ,… , 𝑒𝑗𝑘) = 𝜕𝛼𝑓𝑖,
where 𝛼 = (𝑗𝑘, 𝑗𝑘−1,… , 𝑗1).

Proposition 5.11. Let 𝑉,𝑊 be normed vector spaces, let 𝑈 be an open subset of 𝑉 , and let 𝑓∶ 𝑈 →
𝑊 . Then 𝑓 ∈ 𝒞𝑘(𝑉,𝑊) if and only if the higher total derivative

𝐷𝑓𝑘∶ 𝑈 → ℳ𝑘(𝑉,𝑊)

exists and is continuous. Moreover 𝑓 is smooth if and only if all of the higher total derivatives 𝐷𝑓𝑘
exist.

49



5.4 *Symmetries of higher derivatives

The multivariable calculus result on the symmetry of the mixed partial derivatives is just the
statement that the Hessian matrix of 𝐷2𝑓 is symmetric which implies that 𝐷2𝑓𝑎 is a symmetric bi-
linear form, thus the symmetry of mixed partial derivatives can be reinterpreted in a coordinate-
free way, namely that𝐷2𝑓𝑎(𝑣1, 𝑣2) = 𝐷2𝑓𝑎(𝑣2, 𝑣1) for all 𝑣1, 𝑣2 ∈ 𝑉 . An advantage of this formulation
is that the famous “symmetry of mixed partial derivatives” obtains a natural invariant formula-
tion, and moreover the symmetry holds as soon as the “total” second derivative exists, which is
a weaker hypothesis than the classical one (which requires all second partial derivatives to exist
and be continuous21).

We first need the following a simple Lemma. It is the analogue of the fact that, if 𝛼∶ 𝑉 → ℝ
is a linear functional, and 𝛼 = 𝑜(‖𝑥‖) then 𝛼 = 0, as one readily sees by considering the operator
norm of 𝛼.

Lemma5.12. Suppose that𝛽∶ 𝑉×𝑉 → ℝ is a bilinearmapand suppose that𝛽(𝑣, 𝑤) = 𝑜((‖𝑣‖+‖𝑤‖)2).
Then 𝛽 = 0.

Proof. Since 𝛽 is bilinear, it suffices to show that 𝛽(𝑣1, 𝑣2) = 0 for any 𝑣1, 𝑣2 ∈ 𝑉 with ‖𝑣1‖ = ‖𝑣2‖ =
1. Thus we fix unit vectors 𝑣1, 𝑣2 ∈ 𝑉 . But now, for 𝑠 ∈ ℝ>0,

𝛽(𝑠𝑣1, 𝑠𝑣2)
(‖𝑠𝑣1‖ + ‖𝑠𝑣2‖)2

= 𝑠2𝛽(𝑣1, 𝑣2)
(2𝑠)2 = 1

4𝛽(𝑣1, 𝑣2).

while (‖𝑠𝑣1‖+‖𝑠𝑣2‖)2 = 4𝑠2 → 0 as 𝑠 → 0. Thus if 𝛽(𝑣1, 𝑣2) is 𝑜(‖𝑣1‖2+‖𝑣2‖2)wemust have 𝛽(𝑣1, 𝑣2) = 0
as required. □

ThepreviousLemma is thekey toproving that𝐷2𝑓𝑎 is a symmetric bilinear form. (In examining
theproof of thenext result, itmaybeworthnoting that the linear analogueof theprevious Lemma
is one way to see that the derivative 𝐷𝑓𝑎 is unique).

Proposition 5.13. Let𝑈 be an open subset of a normed vector space 𝑉 . If 𝑓∶ 𝑈 → ℝ is twice differ-
entiable at 𝑎 ∈ 𝑈, then viewing 𝐷2𝑓 as a bilinear form on 𝑉 we have 𝐷2𝑓𝑎(𝑣1, 𝑣2) = 𝐷2𝑓𝑎(𝑣2, 𝑣1).

Proof. Note that, in order for𝐷2𝑓 to be defined, wemust have 𝑓 differentiable in a neighbourhood
of 𝑎, and 𝐷𝑓 is continuous at 𝑎 since it is differentiable at 𝑎.

Fix 𝑟 > 0 such that 𝐵 = 𝐵(𝑎, 𝑟) ⊆ 𝑈 such that 𝐷𝑓 is defined for all 𝑥 ∈ 𝐵(𝑎, 𝑟). Consider the
function 𝐴∶ 𝐵 × 𝐵 → ℝ given by

𝐴(ℎ, 𝑘) = 𝑓(𝑎 + ℎ + 𝑘) − 𝑓(𝑎 + ℎ) − 𝑓(𝑎 + 𝑘) + 𝑓(𝑎).

Note that 𝐴 has the virtue of being symmetric, that is 𝐴(ℎ, 𝑘) = 𝐴(𝑘, ℎ), but, unlike 𝐷2𝑓(ℎ, 𝑘) it is
not bilinear in ℎ and 𝑘. The idea of the proof is to compare the two when (ℎ, 𝑘) ∈ 𝑉 ⊕ 𝑉 is very
small. Thus, fixing ℎ for the moment, consider

𝐽1(𝑘) = 𝐴(ℎ, 𝑘) − 𝐷2𝑓𝑎(ℎ, 𝑘)

Now, noting 𝐽1(0) = 0, and writing 𝑖ℎ(𝐷2𝑓𝑎) for the linear functional 𝑘 ↦ 𝐷2𝑓𝑎(ℎ, 𝑘), we can apply
the Mean Value Inequality 2.25 to 𝐽 to obtain

‖𝐽1(𝑘)‖ ≤ ‖𝑘‖. sup
0≤𝑡≤1

‖𝐷𝑓𝑎+ℎ+𝑡𝑘 − 𝐷𝑓𝑎+𝑡𝑘 − 𝑖ℎ(𝐷2𝑓𝑎)‖∞ (5.1)

Now as 𝐷𝑓 is differentiable at 𝑎, we may write

𝐷𝑓𝑎+𝑡𝑘 = 𝐷𝑓𝑎 + 𝑖𝑡𝑘(𝐷2𝑓𝑎) + ‖𝑡𝑘‖𝜖1(𝑡𝑘),
𝐷𝑓𝑎+ℎ+𝑡𝑘 = 𝐷𝑓𝑎 + 𝑖ℎ+𝑡𝑘(𝐷2𝑓𝑎) + ‖ℎ + 𝑡𝑘‖𝜖1(ℎ + 𝑡𝑘).

21This is, unsurprisingly, reminiscent of the relationship between the total derivative and continuity of the partial
derivatives.
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where 𝜖1(𝑥) → 0 as 𝑥 → 0. Hence we see that

𝐷𝑓𝑎+ℎ+𝑡𝑘 − 𝐷𝑓𝑎+𝑡𝑘 − 𝑖ℎ(𝐷2𝑓𝑎) = ‖ℎ + 𝑡𝑘‖𝜖1(ℎ + 𝑡𝑘) − ‖𝑡𝑘‖𝜖1(𝑡𝑘).

so that, in particular, if we let 𝜖2(ℎ, 𝑘) = sup{‖𝜖1(𝑠.ℎ + 𝑡.𝑘)‖ ∶ 0 ≤ 𝑠, 𝑡 ≤ 1}, then 𝜖2(ℎ, 𝑘) = 𝜖2(𝑘, ℎ) and
𝜖2(ℎ, 𝑘) → 0 as (ℎ, 𝑘) → 0 and

‖𝐷𝑓𝑎+ℎ+𝑡𝑘 − 𝐷𝑓𝑎+𝑡𝑘 − 𝑖ℎ(𝐷2𝑓1)‖ ≤ (‖ℎ‖ + ‖𝑘‖).𝜖2(ℎ, 𝑘)).

Thus returning to the inequality (5.1), we see that

‖𝐽1(𝑘)‖ = ‖𝐴(ℎ, 𝑘) − 𝐷2𝑓(ℎ, 𝑘)‖ ≤ ‖𝑘‖.(‖ℎ‖ + ‖𝑘‖).𝜖2(ℎ, 𝑘).

But carrying out the same analysis for 𝐽2(𝑘) = 𝐴(𝑘, ℎ)−𝐷2𝑓(𝑘, ℎ)we see that ‖𝐴(𝑘, ℎ)−𝐷2𝑓(𝑘, ℎ)‖ ≤
‖ℎ‖(‖ℎ‖ + ‖𝑘‖).𝜖2(𝑘, ℎ), and hence if we let

𝛽(ℎ, 𝑘) = 𝐷2𝑓𝑎(ℎ, 𝑘) − 𝐷2𝑓𝑎(𝑘, ℎ),

we see that 𝛽 is a bilinear form which, by the symmetry of 𝐴(ℎ, 𝑘), satisfies:

‖𝛽(ℎ, 𝑘)‖ ≤ ‖𝐷2𝑓𝑎(ℎ, 𝑘) − 𝐴(ℎ, 𝑘)‖ + ‖𝐴(𝑘, ℎ) − 𝐷2𝑓𝑎(𝑘, ℎ)‖ ≤ (‖ℎ‖ + ‖𝑘‖)2𝜖2(ℎ, 𝑘). (5.2)

But now Lemma 5.2 shows that 𝛽 = 0 and hence 𝐷2𝑓𝑎 is symmetric as required. □

Remark 5.14. Using induction, it is straight-forward to use the previous Theorem to see that,
whenever they exist, the higher derivatives 𝐷𝑘𝑓𝑎 as symmetric 𝑘-multilinear forms.
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5.5 *The immersion criterion for a submanifold

For completeness, we include here a proof of the equivalence of the definition of a submanifold
given in Remark 4.5with that given inDefinition 4.2. In factwe prove something slightly stronger,
giving a condition for the image of an injective immersion to yield a submanifold.

Proposition 5.15. Let 𝑉 be a 𝑛-dimensional normed vector space, and let 0𝑘 denote the origin inℝ𝑘.
Suppose that𝑀 ⊆ 𝑉 is such that, for some 𝑎 ∈ 𝑀, there exists

• an open neighbourhood 𝑈𝑎 of 𝑎;

• an injective function𝜓 ∈ 𝒞1(𝐵(0𝑘, 𝑅), 𝑉)whose derivative𝐷𝜓𝑥 is injective for every 𝑥 ∈ 𝐵(0𝑘, 𝑅);

• an 𝑟 ∈ (0, 𝑅) such that 𝜓(𝐵(0𝑘, 𝑟), 0𝑘) = (𝑈 ∩ 𝑀, 𝑎).

Then 𝑀 ∩ 𝑈𝑎 is a 𝑘-dimensional submanifold of 𝑉 , and hence if the above conditions hold for all
𝑎 ∈ 𝑀 then𝑀 is a submanifold of 𝑉 .

Proof. If suffices to show that 𝜓(𝐵(0, 𝑟)) is a 𝑘-submanifold of 𝑉 . Suppose 𝑝 ∈ 𝜓(𝐵(0𝑘, 𝑟)). Then
since 𝜓 is injective, there is a unique 𝑞 ∈ 𝐵(0𝑘, 𝑟) such that 𝜓(𝑞) = 𝑝. Let 𝑉1 = im(𝐷𝜓𝑞), and
pick a complementary subspace 𝑉2 of 𝑉1 in 𝑉 , so that 𝑉 = 𝑉1 ⊕ 𝑉2. Let 𝑖2∶ 𝑉2 → 𝑉 denote the
inclusion map. Let 𝜑 ∈ 𝒞1(𝐵(0𝑘, 𝑟) × 𝑉2, 𝑉) be given by 𝜑(𝑥, 𝑣) = 𝜓(𝑥) + 𝑖2(𝑣). Since 𝑖2 is a linear
map, 𝐷𝜑(𝑞,0) = 𝐷𝜙𝑞 + 𝑖2, and hence 𝐷𝜑(𝑞,0) is an isomorphism. The inverse function theorem then
shows that there is an open neighbourhood𝑈𝑝 of𝜑(𝑞, 0) = 𝑝 and an open neighbourhoodΩ1×Ω2 ⊆
𝐵(0, 𝑟)×𝑉2 of (𝑞, 0) such that 𝜑 restricts to a diffeomorphism from (Ω1×Ω2, (𝑞, 0)) to (𝑈𝑝, 𝑝). But now
if 𝜃 ∈ 𝒞1(𝑈𝑝, ℝ𝑘×𝑉2) is the inverse of𝜑|Ω1×Ω2 , andwewrite 𝜃 = 𝜃1⊕𝜃2 as the sumof its components
in ℝ𝑘 and 𝑉2 respectively, so that 𝜃2 ∈ 𝒞1(𝑈𝑝, 𝑉2), it is easy to see 𝑀 ∩ 𝑈𝑝 = 𝜃−12 (0), and that that
𝐷𝜃2,𝑝 = 𝜋2, where 𝜋2∶ 𝑉 → 𝑉2 is the projection map with kernel 𝑉1. It follows immediately that
𝐷𝜃2,𝑝 has rank dim(𝑉2) = 𝑛−𝑘, and hence, since 𝑝was arbitrary, that 𝜓(𝐵(0𝑘, 𝑟)) is a 𝑘-submanifold
as required. □
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5.6 *Normed vector spaces: duals and quotients

5.6.1 Bounded linear functionals

In Theorem 2.25, we assumed the differentiable function 𝑓∶ 𝑈 → 𝑌 was a map between inner
product spaces. In fact the proof only requires that 𝑌 is an inner products space: the goal of the
theorem is to bound the length of a vector 𝑦 ∈ 𝑌 (where in the theorem 𝑦 = 𝑓(𝑧2) − 𝑓(𝑧1)). The
functional 𝛿𝑦 ∶ 𝑌 → ℝ given by 𝛿𝑦(𝑥) = ⟨𝑦, 𝑥⟩, i.e. taking the inner product with 𝑦, allows us tomap
our problem in 𝑌 to the real line in such a way that 𝛿𝑦 never increases the length of a vector (that
is |𝛿𝑦(𝑧)| ≤ ‖𝑧‖ is length preserving for vectors parallel to 𝑦, thus any boundwe can calculate such
as 𝛿(𝑣) ≤ 𝛿(𝑧) immediately implies that ‖𝑣‖ ≤ ‖𝑧‖.

Thus to use the same strategy of proof for an arbitrary normed vector space 𝑌 , one would
need, for any vector 𝑧 ∈ 𝑌 , a linear functional 𝜂∶ 𝑌 → ℝ with the property that ‖𝜂‖∞ = 1 and
𝜂(𝑧) = ‖𝑧‖. In fact, as we now show, one can prove that such functionals always exist for any
normed vector space. Indeed if you have a functional 𝜂∶ 𝑍 → ℝ defined on a subspace 𝑍 of 𝑌 ,
then we say that a functional 𝛿∶ 𝑌 → ℝ is a norm-preserving extension of 𝜂 if 𝛿(𝑧) = 𝜂(𝑧) for all
𝑧 ∈ 𝑍 and ‖𝛿‖∞ = ‖𝜂‖∞. If we take 𝑍 = ℝ.𝑧 and 𝜂 the linear functional defined by 𝜂(𝑧) = ‖𝑧‖, then
if 𝛿 is a norm preserving extension of 𝜂 it has the properties we required above. The next Lemma
shows that norm-preserving extensions always exist when 𝑌 is finite-dimensional22

Lemma 5.16. Suppose that 𝑋 is a finite-dimensional normed vector space and 𝑍 is a subspace of
𝑋 . If 𝜂𝑍 ∶ 𝑍 → ℝ is a linear functional on 𝑍, then there is a functional 𝛿∶ 𝑋 → ℝ which satisfies
𝛿(𝑧) = 𝜂(𝑧) for all 𝑧 ∈ 𝑍. In other words 𝜂 can be extended to a linear functional on 𝑋 without
increasing the operator norm.

Proof. We use induction on 𝑛 = dim(𝑋). If dim(𝑉) = 1, then its only subspaces are {0} and itself,
and in each case the result is trivial. If dim(𝑉) = 𝑛 > 1 and 𝑍 ≤ 𝑋 is a subspace, then if 𝑍 = 𝑋
there is nothing to prove, while if 𝑍 < 𝑋, we may find a hyperplane 𝐻 with 𝑍 ≤ 𝐻 < 𝑉 , and by
induction, there is a norm-preserving extension of 𝛿 to𝐻, hence replacing 𝑍 with𝐻 if necessary,
we may assume 𝑍 is codimension 1 in 𝑋 .

Rescaling 𝜂 if necessary, we may assume that ‖𝜂‖∞ = 1. Pick 𝑢 ∈ 𝑋\𝑍, so that 𝑋 = Span{𝑍, 𝑢} =
𝑍⊕ℝ.𝑢. Any 𝛿∶ 𝑋 → ℝwhich restricts to 𝜂 on 𝑍 is then determined by its value on 𝑢, say 𝛿(𝑢) = 𝜆,
and the condition that ‖𝛿‖∞ = 1 is

|𝛿(𝑧 + 𝑡.𝑢)| = |𝜂(𝑧) + 𝑡.𝜆| ≤ ‖𝑧 + 𝑡.𝑢‖, ∀𝑡 ∈ ℝ, 𝑧 ∈ 𝑍.
This is automatic if 𝑡 = 0, while if 𝑡 ≠ 0, we may divide through by it to see that our condition is
equivalent to |𝜂(𝑧) + 𝜆| ≤ ‖𝑧 + 𝑢‖ for all 𝑧 ∈ 𝑍.

Rearranging, this becomes 𝜆 ∈ 𝐼𝑧 for every 𝑧 ∈ 𝑍, where 𝐼𝑧 = [−‖𝑧 + 𝑢‖ − 𝜂(𝑧), ‖𝑧 + 𝑢‖ − 𝜂(𝑧)].
Thus we need the intersection of the closed intervals 𝐼𝑧 over all 𝑧 ∈ 𝑍 to be non-empty. But this
follows precisely when, for any 𝑧1, 𝑧2 ∈ 𝑍, the lower end-point of 𝐼𝑧1 is always at most the upper
limit of 𝐼𝑧2 , that is, if and only if for all 𝑧1, 𝑧2 ∈ 𝑍 we have

−‖𝑧1 + 𝑢‖ − 𝜂(𝑧1) ≤ ‖𝑧2 + 𝑢‖ − 𝜂(𝑧2)

But this is just 𝛿(𝑧2−𝑧1) ≤ ‖𝑧1+𝑢‖+‖𝑧2+𝑢‖, and since 𝜂 has norm 1wehave |𝜂(𝑧2−𝑧1)| ≤ ‖𝑧2−𝑧1‖ ≤
‖𝑧2 + 𝑢‖ + ‖𝑧1 + 𝑢‖ as required. □

5.6.2 Quotients and normed vector spaces

If (𝑉, ‖.‖) is a normed vector space, then any linear subspace 𝐹 clearly inherits the structure of a
normed vector space: the norm ‖.‖ restricts to a norm on 𝐹. A somewhat more delicate question

22The result (if you believe in the axiom of choice) holds for arbitrary normed vector spaces, and is called theHahn-
Banach theorem. It is important because it is a basic tool allowing one to build bounded linear functional having
desirable properties.
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is whether the quotient vector space 𝑉/𝐹 inherits a norm. The first question is to decide what
the notion of a norm on 𝑉/𝐹 should be? A natural suggestion is to consider how close the affine
subspace 𝑥 + 𝑈 comes to the origin in 𝑉 . This leads to the definition of the function

𝑥 + 𝐹 ↦ inf {‖𝑥 + 𝑣‖ ∶ 𝑣 ∈ 𝐹}.

Notice that while we might expect there to be a ”closest point” on 𝑥 + 𝐹 to the origin23, it is not
necessary to determine whether or not that is indeed the case in order to check this gives a norm
on 𝑉/𝐹, provided the subspace 𝐹 is a closed subset of 𝑉 .

Lemma 5.17. Let 𝑋 be a normed vector space and let 𝐹 be a closed subspace, that is, a linear sub-
space which is also a closed subset of 𝑋 . The the quotient vector space 𝑋/𝐹 inherits a norm:

‖𝑥 + 𝐹‖ ∶= inf{‖𝑥 + 𝑢‖ ∶ 𝑢 ∈ 𝐹}.

Moreover, the quotient map 𝑞∶ 𝑋 → 𝑋/𝐹 is bounded, with ‖𝑞‖∞ ≤ 1.

Proof. For any 𝑥 ∈ 𝑋 we have ‖𝑥 + 𝐹‖ = inf𝑢∈𝐹 ‖𝑥 − 𝑢‖ = 0 if and only if 𝑥 is a limit point of 𝐹, thus
since 𝐹 is closed ‖𝑥 + 𝐹‖ ≥ 0 for all 𝑥 with equality if and only if 𝑥 + 𝐹 = 0 + 𝐹. Now suppose that
𝜆 ∈ ℝ. If 𝜆 = 0 then ‖𝜆.𝑥 + 𝐹‖ = |𝜆|.‖𝑥 + 𝐹‖ = 0, while if 𝜆 ≠ 0,

‖𝜆.𝑥 + 𝐹‖ = inf
𝑢∈𝐹

‖𝜆.𝑥 + 𝑢‖ = inf
𝑢∈𝐹

|𝜆|.‖𝑥 + 𝜆−1𝑢‖ = |𝜆| inf
𝑢1∈𝐹

‖𝑥 + 𝑢1‖ = |𝜆|.‖𝑥 + 𝐹‖

For the triangle inequality, suppose 𝑥 + 𝐹, 𝑦 + 𝐹 ∈ 𝑉/𝐹. By the approximation property, for any
𝜖 > 0, we may find 𝑢1, 𝑢2 ∈ 𝐹 such that ‖𝑥 + 𝐹‖ ≤ ‖𝑥 + 𝑢1‖ < ‖𝑥 + 𝐹‖ + 𝜖, and ‖𝑦 + 𝐹‖ ≤ ‖𝑦 + 𝑢2‖ <
‖𝑦 + 𝐹‖ + 𝜖. But then since 𝑢1 + 𝑢2 ∈ 𝐹, by definition we have

‖(𝑥 + 𝑦) + 𝐹‖ ≤ ‖(𝑥 + 𝑦) + (𝑢1 + 𝑢2)‖ = ‖(𝑥 + 𝑢1) + (𝑦 + 𝑢2)‖
≤ ‖𝑥 + 𝑢1‖ + ‖𝑦 + 𝑢2‖ < (‖𝑥 + 𝐹‖ + 𝜖) + (‖𝑦 + 𝐹‖ + 𝜖)
= ‖𝑥 + 𝐹‖ + ‖𝑦 + 𝐹‖ + 2𝜖,

and since this holds for any 𝜖 > 0, it follows that ‖(𝑥 + 𝑦) + 𝐹‖ ≤ ‖𝑥 + 𝐹‖ + ‖𝑦 + 𝐹‖, as required.
Since ‖𝑞(𝑥)‖ = inf𝑢∈𝐹 ‖𝑥 + 𝑢‖ ≤ ‖𝑥 + 0‖ = ‖𝑥‖we have ‖𝑞‖∞ ≤ 1, which completes the proof. □

The quotient construction for normed vector spaces in fact gives another approach to The-
orem 1.17, as we now show: The key point is that, proving the statement by induction on di-
mension, it follows by the same argument used to prove Corollary 1.18 that subspaces of a finite-
dimensional vector space are necessarily closed, hence any quotient is again a normed vector
space.

Proposition 5.18. Let 𝑉 and𝑊 be normed vector spaces and suppose that dim(𝑉) < ∞. Then any
linear map 𝛼∶ 𝑉 → 𝑊 is automatically bounded, that is ℬ(𝑉,𝑊) = ℒ(𝑉,𝑊).

Proof. We use induction dim(𝑉). In the case dim(𝑉) = 1, pick a vector 𝑒 ∈ 𝑉 of norm 1. Then
for any 𝑣 ∈ 𝑉 , we have 𝑣 = ±‖𝑣‖.𝑒 and hence ‖𝛼(𝑣)‖ = ‖𝛼(𝑒)‖.‖𝑣‖, so that ‖𝛼‖∞ = ‖𝛼(𝑒)‖, and 𝛼 is
bounded as required.

Next note that, for any given finite-dimensional vector space 𝑉 , the statement of the propo-
sition follows from the case𝑊 = ℝ, i.e. where 𝛼 ∈ 𝑉∗ is a linear functional. Indeed if dim(𝑉) = 𝑛
then dim(𝛼(𝑉)) = 𝑚 ≤ 𝑛, hence we can pick a basis {𝑤1, 𝑤2,… ,𝑤𝑚} of 𝛼(𝑉), and if, for 𝑣 ∈ 𝑉 we
define 𝛼𝑖 ∶ 𝑉 → ℝ by 𝛼(𝑣) = ∑𝑚

𝑖=1 𝛼𝑖(𝑣).𝑤𝑖, then the functions 𝛼𝑖 are linear and 𝛼 is continuous if
each 𝛼𝑖 is. Indeed

‖𝛼(𝑣)‖ ≤
𝑚
∑
𝑖=1

|𝛼𝑖(𝑣)|.‖𝑤𝑖‖ ≤ (
𝑚
∑
𝑖=1

‖𝛼𝑖‖∞.‖𝑤𝑖‖) ‖𝑣‖.

23This is always true if 𝐹 is finite-dimensional, but is in fact not necessarily the case when 𝐹 is infinite-dimensional.
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where the second inequality follows from the definition of the operator norm.
Now suppose that 𝑛 = dim(𝑉) > 1, and that, by induction, we know any linear map whose

domain is a normed vector space of dimension less than 𝑛 must be bounded. Let 𝑈 < 𝑉 be a
subspace of 𝑉 of dimension 𝑘 < 𝑛. Picking a basis {𝑢1,… , 𝑢𝑘} of 𝑈 defines a linear isomorphism
𝜙∶ ℝ𝑘 → 𝑈 where if 𝑥 = (𝑥1,… , 𝑥𝑘) ∈ ℝ𝑘 then 𝜙(𝑥) = ∑𝑘

𝑖=1 𝑥𝑖𝑢𝑖. By our inductive hypothesis, 𝜙 is
a topological isomorphism, and hence since ℝ𝑘 (viewed as a normed vector space using the ‖.‖2
norm) is complete, so is24 𝑈. It follows that 𝑈 must therefore be closed in 𝑉 .

But now it is easy to see that any linear functional 𝛼 ∈ 𝑉∗ is continuous: if 𝛼 = 0 it is clearly
continuous, so we may assume 𝛼 ≠ 0. But then 𝐻 = ker(𝛼) is an (𝑛 − 1)-dimensional subspace
of 𝑉 , and hence as noted above 𝐻 is closed. Now by Lemma 5.17, the norm on 𝑉 induces one on
𝑉/𝐻 and it is then immediate that the quotient map 𝑞∶ 𝑉 → 𝑉/𝐻 has operator norm ‖𝑞‖∞ ≤ 1. But
the functional 𝛼 can be written as the composition 𝛼 = 𝛼̄ ∘ 𝑞, where 𝛼̄∶ 𝑉/𝐻 → ℝ is the injective
linear map induced by 𝛼 on 𝑉/𝐻. Now as dim(𝑉/𝐻) = 1 we know 𝛼̄ is bounded, and hence by the
submultiplicativity of the operator norm, 𝛼 is bounded as required. □

Remark 5.19. This proposition shows that the topology 𝒯 induced by any norm on a finite di-
mensional vector space is independent of the choice of norm. In fact, with a bit more thought it
follows that this topology is determined by the linear functionals on 𝑉 : it is the topology gener-
ated by the condition that every linear functional on 𝑉 is continuous.

24Note that while completeness is not invariant under homeomorphism, continuous linear maps are Lipschitz con-
tinuous, and Lipschitz continuous functions preserve Cauchy sequences.
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