6. Neuronal Signalling,
Hodgkin-Huxley, excitable kinetics

(J.D. Murray, Volume 1, Chapter 7, Section 7.5).



6.1 Neuronal Signalling

Neurons (nerve cells) send signals to each other using electrical currents.
Neurons have arons - long cylindrical tubes which extend from the neuron - and electrical
currents travel along the outer membrane of the axon, and move from one neuron to another

via synapses.

The current along the axon, [(t), is made up of the sum of the currents from the movement
of different chemical ions and the rate of change of charge, (). which is related to the voltage,
V by V= %_ where (' is the capacitance.

Hence, for the so-called “space-clamped” system (no spatial movement ), we have

%
I(t) = C(df L), (6.1)

where [;(t) is the contribution from the different chemical ions.



6.2 Hodgkin-Huxley (1952)

In 1952, Hodgkin and Huxley (HH) studied the squid giant axon to investigate how it “fired”
- that is, sent a spike, or pulse, signal - the so-called action potential. Their work won them

a Nobel Prize.
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Alan Hodgkin and Andrew Huxley 1952
(Nobel Prize 1963): Squid Giant Axon

Hodgkin-Huxley Expts, 1952
Squid Giant Axon

Silver-sitver

Few neurons, large diameter
Large enough to insert microelectrodes

Stimulating microelectrodes (inject current) to disturb cell with electrical
stimuli

Recording microelectrodes (see current changes in cell and record them)

http://www.science.smith.edu/departments/NeuroSci/courses/bio330/squid.html

1
+
&
o
—

S

L UKL VNS

~4
(=

L
V



+ I,(t), (6.1)

The key chemicals in the system are potassium (K) and sodium (Na), so [;(t) = Ina+ g+ 11,
where Iy, [k are currents due to Na and K, respectively, while I is the so-called “leakage”
current due to other chemicals.

Now these chemical signals arise due to differences in the potential, V', and the equilibrium

ra

potentials for the chemicals, Viy,, V. V.. They proposed that
[Na, = gNa'TTlgh-(Lf — V}\ra)
Ig = gxn'(V = Vi)
IL = gL(Vr*LrL)

where gno, gk and g, are constants (conductances) and m, n and h are related to the state

of various ion channels (open or closed) and so lie in the interval [0, 1].

So, now all we have to do is substitute these into Equation (6.1) and this gives us an ODE

for V.



I Na = g_,\.ra-:rngh(l"— — 1"}\%)
Ix = gk T?-J‘(V — Vi)

Ip = gu(V—Vp),

BUT

However, the m, n and h are, themselves variables! They depend on the voltage and satisty
the following set of ODEs:

(j;; = O.‘n( I'r) ( 1—7 2.) — ‘371 (1’ ) n (b 2)
dh o r

where the a’s and 's are given functions of V' (found by fitting data).

So, the full system is Equation (6.1) coupled with Equations (6.2) - a 4th order system.



HH solved these numerically and showed that they gave rise to the behaviour that was observed
experimentally - that is, action potential.



Summary

* Introduced the idea of electrical signalling and, in particular, the
action potential.



Now we do:

* Fitzhugh-Nagumo model
e Excitability



6.3 Fitzhugh-Nagumo Model

It turns out that there are many different timescales in the HH model so we can separate
the timescales and reduce it to a 2 variable system. However, this is quite complicated
algebraically.

Fitzhugh and Nagumo captured the essence of the problem with the following model (a sort
of “model of a model”):

v

;; - f(?.}) —w + Ia
dw . .
E = b'v— YW,

where f(v) =v(a—v)(v —1).

Here a € (0,1), and b* and +* are positive constants.

Here, v represents voltage (V'), w plays the role of the variables m,n and h, and I, is the
applied current.



dv

dt
Typically b* and ~* are small. dw Do — ~*w
dt b

= flv)—w+1,

w is the slow variable so we rescale to slow time

We rescale by setting 0* = eb, v* = ey, where 0 < € << 1 and b, v are order 1. Setting 7 = et

we obtain:

dv

e— = f(v)—w+1,
dr

dw

— = bv —~yw,

dr b

where v and w are now functions of 7 (slight abuse of notation).

On this timescale, v is the fast variable



f(;—l = flv)—w+1,
aT
6.3.1 Phase planes dw ,
— = bv—rqw
dr o

Case [, =0

fv)=v(a—v)(v—1)

Then there are two (or onc) other non-zero steady states (state)

There is always the trivial steady state (v,w) = (0,0) and it is linearly stable (Exercise -

check).



What if we perturb from the zero steady state?
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What we see here is that if we perturb the system from the zero steady state a little bit, then
it comes back.

However, if we perturb it beyond a threshold (that is;, v = a) and if there is no non-zero
steady state, then the system undergoes a large excursion before coming back to the zero
steady state.

We say that the system is excitable. We say that v is the fast variable and w is the slow variable.



duv

e— = fv)—w+1,
dr
Note that if two other non-zero steady states exist, then the system would evolve to the larger dw — by — ~w
4 ’I‘ ‘
steady state. dr

For a perturbation beyond the threshold




Another example of an excitable system?




Summary

* Presented the Fitzhugh-Nagumo model
* Showed how it can produce an action potential
* Talked about toilets



Now we do:

* Fitzhugh-Nagumo model
* Limit cycles



P flv)—w+1,
Case [, #0 dr
dw_ bv — yu
dr

The v nullcline is now w = f(v) + I, so it intersects the v axis at I,.

There are 3 subcases.
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w Iy <1, < Iy

(b)
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Limit cycle

Periodic firing



Summary

Showed that the Fitzhugh-Nagumo model can exhibit limit cycle
behaviour — periodic firing



