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Housekeeping

I • Reading: see Lecture Notes (LN) for a list.
I • Lectures: will follow LN closely but abridged and with

different examples.
I • Numbering: labels of theorems, examples etc follow LN.

Example 12a is related to, but different from, Example 12
in LN. Read LN as well as these slides!

I • Captioning: is rather inaccurate to put it kindly. You can
usually make it out looking at slides but ask if impossible...

I • See LN for a preamble about integration (READ THIS!).
I • There are two problem sheets. I suggest first tutorial

covers lectures 1–6 although there is some overlap.



Course outline

There are three main themes.

1. (a) Distributions: how to interpret a point
mass/charge/heat source/. . . as a mathematical object;
how to differentiate a step function.

2. (b) Integral transforms: representations of functions akin
to Fourier Series but valid on an infinite interval, so the
output is a function rather than a series.

3. (c) Applications of all the above, to differential equations,
probability and much more.



1: The delta function & other distributions

1.1: Motivation.

Example 4a: An example from probability. Let X ∼ N(0,σ2) be
a Normal random variable with density function

fσX (x) =
1

√
2πσ2

e−x2/2σ2

which satisfies∫ ∞
−∞

fσX (x)dx = 1 for all σ2 > 0.

What happens as σ ↓ 0?



As σ → 0,
for x , 0, fσX (x)→ 0,

BUT

lim
σ→0

∫ ∞
−∞

fσX (x)dx = 1.

This suggests that there is a “function”, which we call δ(x),
such that

δ(x) = 0 x , 0,∫ ∞
−∞
δ(x)dx = 1,

whatever this means rigorously.

Note that f 0
X (x) is the “PDF” of a random variable for which

P[X = 0] = 1.



Now look at the CDF

FσX (x) = P[X ≤ x] =
∫ x

−∞
fσX (s)ds

so, at least for σ > 0,

dFσX
dx

= fσX . (∗)

As σ → 0,

FσX (x)→ H(x) =

 0 x < 0,

1 x ≥ 0.

Given (*) above, and that f 0
X (x) = δ(x), we expect that

dH
dx

= δ(x)

and this holds everywhere. We can differentiate a step
function!



Example 4b: Impulses. A particle with position x(t) is at rest
with x(t) = 0 for t ≤ 0. For t > 0 we apply a force f(t) so

m
d2x
dt2

= mẍ = f(t) (Newton 2)

where f(t) = 0 for t ≤ 0.

Now suppose f(t) > 0 for 0 < t < τ , and then f(t) = 0 for t > τ .
Also let

∫ τ
0

f(t)dt = I , a constant. Integrating once,∫ τ

0
mẍ(t)dt = [mẋ(t)]τ0 = mẋ(τ) = I .



Let τ→ 0 with I fixed (eg f(t) = I /τ for 0 < t < τ). This called an
impulse and the velocity is

ẋ(t) =

 0 x ≤ 0,

I /m x > 0.

Using the idea of differentiating a step function as above,1 the
equation of motion should be

m
d2x
dt2

= Iδ(t)

Again, can we make this more rigorous?

1The sharp-eyed will have noticed that in the earlier example we had < 0
and ≥ 0 in the definition of the step function , while here we have ≤ 0 and > 0.
As we shall see, this is immaterial.



Example 4c: A point force on a string.

A thin wire is strung at tension T between x = −L and x = L . A
weight W is hung from it at x = a . Displacements are small.



(Prelims): the displacement of the wire, y(x) satisfies

d2y
dx2

= 0

for both −L < x < 0 and 0 < x < L , with y(−L) = 0 = y(L).
At x = a , the wire is continuous, so

[y]x=0+

x=0− = 0

(the [ · ] notation means‘the jump in’). A force balance shows
that [

T
dy
dx

]x=0+

x=0−
= W



It’s easy to solve for y(x) by joining two straight lines to give

(∗∗) y(x) =

−W(L + x)/2T −L < x < 0,

−W(L − x)/2T 0 < x < L .

Can you convince yourself that, for all −L < x < L ,

T
d2y
dx2

= Wδ(x)?

(Hint: what are the first and second derivatives of a piecewise
linear function such as (**)?) This is the representation of a
point force as a delta function.



1.2 Towards a definition of δ(x)

Suppose there is an object δ(x) with

δ(x) = 0 x , 0,
∫ ∞
−∞
δ(x)dx = 1

(even though we don’t really know what
∫

means here). Take a
continuous function φ(x). We expect that, for ∆ > 0,∫ ∞
−∞
δ(x)φ(x)dx =

∫ ∆

−∆
δ(x)φ(x)dx as δ(x) = 0 for x , 0

=

∫ ∆

−∆
δ(x)(φ(x)−φ(0)+φ(0)) dx

=

∫ ∆

−∆
δ(x)(φ(x)−φ(0)) dx +φ(0)

∫ ∆

−∆
δ(x)dx

=

∫ ∆

−∆
δ(x)(φ(x)−φ(0)) dx +φ(0)

→ φ(0) as ∆→ 0.



In the last step, we’ve used the continuity of φ(x): for any ε > 0,
for all ∆ small enough,∣∣∣φ(x)−φ(0)∣∣∣ < ε for all −∆ < x < ∆

so we hope that we can make∫ ∆

−∆
δ(x)(φ(x)−φ(0)) dx

as small as we wish.

We conclude that ∫ ∞
−∞
δ(x)φ(x)dx = φ(0).

HOW CAN WE MAKE THIS RIGOROUS???



1.3 Test functions and actions on them

Plan:

I • Define a class of test functions, generically called φ(x).
I • Then for any continuous2 function f(x), define the

action of f on φ by the map

φ 7→ 〈f ,φ〉=
∫ ∞
−∞

f(x)φ(x)dx .

Note it looks like an inner product; in fact it is a functional:
a map from the space of test functions to R. Think of it as
a weighted average of f , with weight φ.

I • Define distributions by their actions on test functions in
a way consistent with the above.

2Integrable is enough, in fact.



We have already seen one example: the delta function δ(x) is
defined by its action

φ 7→ 〈δ(x),φ(x)〉= φ(0).

Then we’ll define derivatives of distributions (yes!) by the
integration by parts formula:

〈f ′ ,φ〉=
∫ ∞
−∞

f ′(x)φ(x)dx

= [f(x)φ(x)]∞−∞ −
∫ ∞
−∞

f(x)φ′(x)dx

= −〈f ,φ′〉,

provided only that φ(x) vanishes at x = ±∞ and φ′(x) is also a
test function.



Test functions defined properly

Definition 6. φ : R→R is a test function if
I • φ(x) has derivatives φ(k) of all orders k (also called

being C∞ or ‘smooth’);
I • There is an X such that φ(x) = 0 for all |x | > X (this is

called having compact support3).

We then have φ(x)→ 0 at ±∞, and that φ′(x) is also a test
function. We call the space of test functions D.

We shall not need to know much about test functions beyond
these two properties. But we should at least show that they
exist.

3The support of a function φ(x) is the smallest closed set containing all
the points where φ , 0.



Start with the famous function

Φ(x) =

0 x ≤ 0,

e−1/x x > 0.

All its derivatives exist (and vanish) at x = 0 [because Φ(n)(x)
is a polynomial in 1/x times e−1/x ; put y = 1/x so y→∞ as
x→ 0, and you have terms like yM /ey which you can
L’Hopitalize M times].



We are not yet there: Φ(x) > 0 for x > 0 but it doesn’t vanish at
∞ so it’s not a test function. However,

φ(x) = Φ(x)Φ(1− x)

is indeed a test function.

As noted above, all we care about test functions is that they
exist, have compact support, are C∞, and there are lots of
them.



A function is specified uniquely by its action on all test
functions

Theorem 8. Let f :R→R be continuous and suppose that

〈f ,φ〉=
∫ ∞
−∞

f(x)φ(x)dx = 0

for all test functions φ. Then f(x) ≡ 0.

From this, we deduce that if 〈f1,φ〉= 〈f2,φ〉 for all φ ∈ D, then
〈f1 − f2,φ〉= 0 and so f1 = f2 . This the required uniqueness.

Note this is not a helpful way of specifying a function because
it doesn’t tell you how to recover f from its weighted averages
against test functions. Later we consider weighted averages
against other functions (exponentials) which do let us recover
the function. (The Fourier series is one example of this.)



Proof of Theorem 8. Suppose (WLOG) that f(a) > 0. Then, as f
is continuous, there is ∆ > 0 such that f(x) > 0 for all
x ∈ (a −∆,a +∆). By adapting the example above, we can
produce a test function φ(x) which vanishes outside
(a −∆,a +∆) and is positive inside this interval. But then

〈f ,φ〉=
∫ a+∆

a−∆
f(x)φ(x)dx > 0

as the integrand is strictly positive; this is a contradiction.



Convergence of sequences of test functions

We end with a definition of a very strong form of convergence
for sequences of test functions (much stronger than pointwise
or uniform convergence).

Definition 8a. The sequence {φn }n≥1 of test functions
converges to zero, φn → 0, if:
I • φn(x) = 0 for all n and x outside some interval I ⊂R (this

stops them running away to infinity);

I • for all k , φ(k)
n → 0 uniformly as n→∞.

Obviously we say φn → φ if φn −φ→ 0. (Note the definition
ensures that the limit φ is a test function.)



As noted, the action of a locally integrable function f on test
functions φ ∈ D is a map from D to R:

φ 7→ 〈f ,φ〉=
∫ ∞
−∞

f(x)φ(x)dx .

This map is
I Linear:

〈f ,aφ+ bψ〉= a〈f ,φ〉+ b〈f ,ψ〉

for a ,b ∈R and φ,ψ ∈ D;
I Continuous, in that, if {φn } is a sequence and φn → 0 then
〈f ,φn〉 → 〈f ,0〉= 0. This follows easily from uniform
convergence of φn on I as above, and it says that a small
input generates a small output.

We can now define a distribution: next lecture.



1.4: Distributions

We now define a distribution by its action on test functions.

Definition 9. A distribution (also called a generalised
function) F is a continuous linear functional (map) from D to R,

φ 7→ 〈F ,φ〉 ∈R.

Here, as in the previous lecture:
I • Continuous: if φn → 0 in D then 〈F ,φn〉 → 0 in R;
I • Linear: 〈F ,aφ+ bψ〉= a〈F ,φ〉+ b〈F ,ψ〉.

Sometimes, for notational clarity, we give our distributions an
argument x , for example δ(x), the delta function.



Regular districutions and the Heaviside function

Proposition 13. A locally integrable function f defines a
distribution Ff with action

〈Ff ,φ〉= 〈f ,φ〉=
∫ ∞
−∞

f(x)φ(x)dx .

We call this a regular distribution.

Proof. This is what we noted at the end of Lecture 2.
Example 14. The two locally integrable functions

H1(x) =

0 x < 0,

1 x ≥ 0,
and H2(x) =

0 x ≤ 0,

1 x > 0,

define the same regular distributionH, orH(x), with action

〈H,φ〉=
∫ ∞

0
φ(x)dx ,

called the Heaviside function. Note that the action does not
care about the value at x = 0.



The delta function

Proposition 15. The delta function δ, or δ(x), with action

〈δ,φ〉= φ(0)

is a distribution.

Proof. Linearity is obvious. And if φn → 0 in D, then φn(0)→ 0
by uniform convergence. Hence 〈δ,φn〉 → 0.

Example 16. Show that the locally
integrable functions

δn(x) =

n/2 |x | < 1/n ,

0 |x | ≥ 1/n

converge to δ as n→∞. By this, we mean
that 〈δn ,φ〉 → 〈δ,φ〉 as n→∞, for all φ.



Solution. For any test function φ(x),

〈δn ,φ〉=
n
2

∫ 1/n

−1/n
φ(x)dx

(∗) =
n
2
φ(ξn)

∫ 1/n

−1/n
dx (MVT for integrals, −1/n < ξn < 1/n)

= φ(ξn)

→ φ(0) (continuity of φ).

The key step is (∗): the MVT for integrals is very useful.

Proposition 17. If f(x) is continuous at x = 0, then

〈δn , f〉 → f(0) as n→∞.

Proof. Same as for Example 16 with f instead of φ.

What this says is that the delta function can be used on
continuous functions, not just the much more restricted class
of test functions:

〈δ, f〉= f(0).



1.5: Operations on distributions

We now define a series of operations on distributions. In every
case, the definition is consistent with the same operation on a
function (equivalent to a regular distribution).

Definition 19. If F(x) is a distribution, we define F(x −a) and
F(ax) by the actions

〈F(x−a),φ(x)〉= 〈F(x),φ(x+a)〉, 〈F(ax),φ(x)〉= 1
|a |
〈F(x),φ(x/a)〉.

This is true for regular distributions:

〈f(x −a),φ(x)〉=
∫ ∞
−∞

f(x −a)φ(x)dx

=

∫ ∞
−∞

f(x)φ(x +a)dx

= 〈f(x),φ(x +a)〉.

(The other calculation is an exercise.)



This leads to the sifting property of the delta function:

〈δ(x −a),φ(x)〉= 〈δ(x),φ(x +a〉= φ(a).

That is, δ(x −a) picks out the value of φ at x = a (which is
where x −a = 0).4

Definition 22. If F is a distribution and f(x) is C∞ then the
distribution fF has action

〈fF ,φ〉= 〈F , fφ〉,

noting that fφ is a test function (as is φ(x +a) above).

4Compare with the discrete formula
∑

i δij fi = fj : to what well known
object does the discrete version of δ correspond?



Derivative of a distribution

Definition 23. If F is a distribution, its derivative F ′ has action

〈F ′ ,φ〉= −〈F ,φ′〉.

We saw that this works for (differentiable) functions earlier,
using integration by parts.

Proposition 24. If F is a distribution, so is F ′ .

Proof. The action of F ′ is clearly linear. Also (see LN), if φn → 0
then φ′n → 0 too, so

〈F ′ ,φn〉= −〈F ,φ′n〉 → 0,

which shows continuity.

We conclude that (like test functions) distributions can be
differentiated infinitely often.



The usual calculus rules work for distributions, for example:

Proposition 23a. If F is a distribution and f is a smooth (C∞)
function, then (fF)′ = fF ′ + f ′F (Leibniz).

Proof. For any test function φ,

〈(fF)′ ,φ〉= −〈fF ,φ′〉 (Def 23)

= −〈F , fφ′〉 (Def 22)

= −〈F ,(fφ)′ − f ′φ〉 (key step)

= 〈F ′ , fφ〉+ 〈F , f ′φ〉 (Def 23)

= 〈fF ′ ,φ〉+ 〈f ′F ,φ〉 (Def 22)

= 〈fF ′ + f ′F ,φ〉.



Examples 26, 27a.

I • H′ = δ, because:

〈H′ ,φ〉= −〈H,φ′〉

= −
∫ ∞

0
φ′(x)dx

= − [φ(x)]∞0
= φ(0)

= 〈δ,φ〉

I • This shows that differentiating a function with a jump
discontinuity gives a delta (scaled by the magnitude of the
jump).

I • 〈δ′ ,φ〉= −〈δ,φ′〉= −φ′(0), and similarly for higher
derivatives of δ.



• If f(x) = max(x ,0), then

f ′(x) =

0 x < 0,

1 x > 0,

and so, as a distribution,
f ′(x) =H(x) and f ′′(x) = δ(x).

• xδ(x) = 0, as
〈xδ,φ〉= 〈δ,xφ〉= 0 ·φ(0) = 0.

• If f(x) = (x +2)H(x −1) then

f ′(x) = (x +2)δ(x −1)+H(x −1)

= 3δ(x −1)+H(x −1),

as you only need to evaluate the
coefficient of δ(x −1) at x = 1 (where
the argument of δ(x −1) vanishes).



We end with a reassuring calculation.

Example 28a. Let F be a distribution. Then

F ′(x) = lim
h→0

F(x +h)− F(x)
h

.

Proof. 〈
F(x +h)− F(x)

h
,φ

〉
=

〈
F(x),

φ(x −h)−φ(x)
h

〉
→ 〈F ,−φ′〉 as h → 0

= 〈F ′ ,φ〉

as required.



2.1 Laplace Transform: definition and properties

We have seen how a continuous function is uniquely specified
by its weighted average against (action on) all test functions.
This is not really helpful because it gives us no obvious way to
recover the function from this knowledge.

We now use a smaller class of functions as the weight in our
weighted average, specifically exponential functions. Because
of their special form, knowledge of the weighted average for a
family of exponential weights lets us recover the function, a
process called inversion. It also lets us transform differential
equation problems into simpler ones.

This is the celebrated Laplace Transform.



The Laplace transform defined

Definition 33. Let f(x) be a real or complex-valued function
defined on [0,∞). The Laplace Transform of f(x), denoted by
Lf or f(p), is

Lf = f(p) =
∫ ∞

0
f(x)e−pxdx

for those p ∈C for which the integral exists.

As noted above, this is a weighted average with weight e−px , a
family of exponentials.

Note also that f(x) is only defined on [0,∞). In probability, the
moment generating fundtion of a non-negative random
variable X with density fX (x) is f X (−p).



Exponentials

Example 35. If f(x) = eax for a ∈C, then

f(p) =
∫ ∞

0
eaxe−pxdx

=

∫ ∞
0

e−(p−a)xdx

= −
[
e−(p−a)x

p −a

]∞
0

=
1

p −a

provided that Re(p) > Re(a).

Note: although the integral does not exist
for Re(p) < Re(a), the function 1/(p −a)
can be holomorphically continued into all
of C except for p = a , where it has a pole.



Powers of x

Example 36. Let fn(x) = xn for n = 0,1,2, . . .. Then

f0(p) =
∫ ∞

0
1 · e−pxdx =

1
p
,

and for n ≥ 1,

fn(p) =
∫ ∞

0
xne−pxdx

=
[
−1

p
xne−px

]∞
0
+

1
p

∫ ∞
0

nxn−1e−pxdx

=
n
p

fn−1(p)

=
n!

pn+1
by iteration and f0 = 1/p .

You will notice this is the Gamma function Γ (·) in mild disguise.
See Sheet 1 exercise 6 for the result that, for all n > −1,

Lxn =
Γ (n +1)

pn+1
.



Trigonometric functions

Example 37. For all real a , eiax = cos(ax)+ isin(ax). So, for
Re(p) > 0,

Leiax =
1

p − ia
=

p + ia
p2 +a2

= Lcos(ax)+ iLsin(ax).

However, by holomorphic continuation (ie using the Identity
Theorem) we can extend this to all a ∈C, so that

Lcos(ax) =
p

p2 +a2
, Lsin(ax) =

a
p2 +a2

for Re(p) > |Im(a)|. Note cos(ax) is even in x but its transform
is odd in p , vice versa for sin(ax) (memory tip).



Heaviside and δ

Examples 38 and 40. For real a > 0,

Lδ(x −a) = e−pa and LH(x −a) =
e−pa

p
.

The first of these is sifting:
∫∞

0
δ(x −a)e−pxdx = e−px |x=a = e−pa ,

and the second is by integration:∫ ∞
0
H(x −a)e−pxdx =

∫ ∞
a

e−pxdx =
[e−px

−p

]∞
a
=

e−pa

p
.



2.2 Domain of existence

We now show that the Laplace Transform exists (if at all)5 then
it does so for all large Re(p). Formally:

Proposition 41/42. If f(p) exists for Re(p) = p0, then

1. f(p) exists for all Re(p) > p0;

2. f(p)→ 0 as Re(p)→∞.

Proof. We exploit the exponential decay of the Laplace kernel
e−px . For (1), if p > p0, then

| f(x)e−px | < |f(x)e−p0x |

so the integral exists by comparison.

5Exercise: think of a function that is continuous on [0,∞) for which the
Laplace Transform integral does not exist.



For (2), write p = p0 + t . For Re(t) > 0, take any real a > 0. Then

| f(p0 + t)|=
∣∣∣∣∣∫ a

0
+

∫ ∞
a

f(x)e−(p0+t)xdx
∣∣∣∣∣ (∗)

≤
∣∣∣∣∣∫ a

0
f(x)e−(p0+t)xdx

∣∣∣∣∣+ ∣∣∣∣∣∫ ∞
a

f(x)e−p0xe−txdx
∣∣∣∣∣

(∗) ≤
∫ a

0

∣∣∣f(x)e−(p0+t)x
∣∣∣dx + e−aRe(t)

∫ ∞
a
|f(x)e−p0x |dx

(∗) ≤M(a)
∫ a

0

∣∣∣e−(p0+t)x
∣∣∣dx + e−aRe(t)I

(here M(a) is a bound for f(x) on [0,a] and I exists because f does)

= M(a)
∫ a

0
e−Re(p0+t)xdx + e−aRe(t)I

= M(a)
1− e−aRe(p0+t)

Re(p0 + t)
+ e−aRe(t)I .

As Re(t)→∞, the first term decays algebraically and the
second exponentially. Key steps are (∗).



Digression. The proof above is interesting and typical of
results that estimate integrals as a parameter (here, p) varies.
Although e−px → 0 as p→∞ it only does so for x ∈ (0,∞): ie,
nonuniformly. Because f(x)e−px = f(0) when x = 0 for all p , the
small region round x = 0 contributes O(f(0)/p) to the integral,
while the rest of the range of integration makes an
exponentially small contribution. Letting a→ 0 above gives
f(p) ∼ f(0)/p as Re(p)→∞, known as Watson’s Lemma.



2.3 More properties of the Laplace Transform

Propositions 43 & 49. Suppose that a > 0 and that the
Laplace Transform of f(x) converges for Re(p) > p0. Then:

1. L
(
f(x)e−ax

)
= f(p +a);

2. L
(
f(x −a)H(x −a)

)
= e−ap f(p).

(The latter is the transform of the translation of f(x) by a .)

Proof. For (1),∫ ∞
0

f(x)e−axe−pxdx =

∫ ∞
0

f(x)e−(p+a)xdx

= f(p +a).



For (2),∫ ∞
0

f(x −a)H(x −a)e−pxdx =

∫ ∞
a

f(x −a)e−pxdx

=

∫ ∞
0

f(t)e−p(a+t)dx (by x −a = t)

= e−ap f(p).

Note thst these results appear related. We shall see this more
clearly when we get to the Fourier transform.

These results are useful in identifying functions from their
transforms (inversion), provided that the transform determines
the function uniquely. We shall see later that it does (compare
the way the MGF determines the PDF in probability).



Examples 47a & 48a. Find the inverses of:
I • f(p) = 1/[p(p −1)]. By partial fractions,

f(p) =
−1
p

+
1

(p −1)
, so f(x) = −1+ ex .

Note that f(p) converges for Re(p) > 1.
I • f(p) = e−p /p2. Here we know that 1/p2 is the LT of x , so

e−p /p2 is the LT of (x −1)H(x −1).
I • f(p) = p/(p2 −2p +5). You can do this by partial

fractions but the roots are complex. It’s easier to see that

f(p) =
p

(p −1)2 +4
=

p −1
(p −1)2 +4

+
1

(p −1)2 +4

so, as

Lcos(ax) =
p

p2 +a2
, Lsin(ax) =

a
p2 +a2

,

we set a = 2 and combine the results above to get
f(x) = ex cos2x + 1

2e
x sin2x . [Exercise: what if a = −2?]



2.4 The Laplace Transform of a derivative

The way the LT acts on a derivative makes it a powerful tool for
solving differential equations.

Proposition 44 (the LT of a derivative). Provided that the LTs of
f(x) and f ′(x) converge, and that f(x)e−px → 0 as x→∞,6 all
holding for Re(p) > p0,

Lf ′ = f ′(p) = pf(p)− f(0).

Proof. We integrate by parts:

Lf ′ =
∫ ∞

0
f ′(x)e−pxdx

=
[
f(x)e−px

]∞
0
+

∫ ∞
0

f(x) · pe−pxdx

= pf(p)− f(0).
6Exercise: think of an integrable function which does not satisfy this

condition for any p . The point? It is not true that if a function is integrable
then it must vanish at infinity. [Hint: think of narrow top-hats near integer
values of x .]



Higher-order derivatives

Corollary 45. Provided all the LTs exist, and obvious technical
conditions at x =∞ are satisfied,

Lf ′′ = f ′′(p) = p2f(p)− pf(0)− f ′(0),

with similar formulae for higher derivatives (see LN).

Proof. Put f ′ = g ; then f ′′ = g ′ . Now g(p) = pf(p)− f(0) and
g ′(p) = pg(p)−g(0) = p(pf(p)− f(0))− f ′(0), which gives the
result.

You can also do this by integrating by parts twice. For higher
derivatives, apply the idea above recursively.



Example 46a. Solve the differential equation (DE)

f ′′ −2f ′ −3f = ex for x > 0, with f(0) = 1, f ′(0) = −1.

Solution. You can do this by standard methods. They are a
pain. Take the LT of the DE to get

p2f − pf(0)− f ′(0)︸                 ︷︷                 ︸
LT of f ′′

−2(pf − f(0)︸    ︷︷    ︸
LT of f ′

)−3f = p2f − p +1−2(pf −1)−3f

= 1/(p −1) (LT of RHS).

Tidying up,

(p2 −2p −3)f = (p −3)(p +1)f = (p −3)+1/(p −1)

so

f(p) =
1

p +1
+

1
(p −3)(p +1)(p −1)

=
1

p +1
+

1
8(p −3)

+
1

8(p +1)
− 1

4(p −1)
,



Copying f over,

f(p) =
1

p +1
+

1
8(p −3)

+
1

8(p +1)
− 1

4(p −1)
,

and inversion gives

f(x) =
9
8
e−x +

1
8
e3x − 1

4
ex .

Worth doing a check: at x = 0,

9
8
+

1
8
− 1

4
= 1, −9

8
+3 · 1

8
− 1

4
= −1.

[Note: p2 −2p −3 = 0 is the auxiliary equation.]



Example 50a. Solve f ′ + f = x , 0 < x <∞, with f(0) = 1.
Solution. The LT in x gives

pf −1+ f = 1/p2

so f =
(
1+1/p2

)
/(p +1)

=
1

p2
− 1

p
+

2
p +1

,

from which f(x) = x −1+2e−x .

Example 51a. Solve f ′′ = δ(x −1) with f(0) = 0, f ′(0) = 0.
Solution. Taking the LT in x gives p2f = e−p so

f(p) =
e−p

p2
, giving f(x) = (x −1)H(x −1)

(we saw this transform above). This is an ’impulse’ at x = 1.



Example 51b. Solve f ′′ − f = δ(x −1) with f(0) = 0 and f(x)→ 0
as x→∞. Here the positive feedback in the equation
(f ′′ = f + · · · ) creates an exponentially growing solution which
we have to eliminate.
Solution. The key point is that f(x)→ 0 at infinity means that
f(p) is holomorphic for Re(p) > 0. Take the LT of the DE to get

p2f − p(zero)− f ′(0)− f = e−p , so f(p) =
f ′(0)+ e−p

p2 −1
.

This function has a pole at p = 1 unless we choose
f ′(0) = −e−1. This gives

f(p) =
e−p − e−1

p2 −1
= (e−p − e−1) · 1

2

(
− 1

p +1
+

1
p −1

)
︸                   ︷︷                   ︸

LT of −sinhx

.



From

f(p) = (e−p − e−1) · 1
2

(
− 1

p +1
+

1
p −1

)
︸                   ︷︷                   ︸

LT of sinhx

we see that

f(x) = sinh(x −1)H(x −1)− e−1 sinhx .

This can also be written as

f(x) =

−e−1 sinhx 0 < x < 1,

−e−x sinh1 1 < x <∞.

It’s not hard to check that f is continuous at x = 1, and that f ′

has a jump of 1 there, both consistent with δ(x −1) in the DE
(f ′′ = δ(x −1)+ · · · ). Those doing DEs 2 will recognise f as the
Green’s function for f ′′ − f with zero boundary conditions at 0
and∞.



A PDE example

Example. This example is a little harder and more interesting.
You are to solve for waves in a semi-infinite string x > 0, which
is initially (time t = 0) straight and at rest, while the end x = 0
is moved up and down with amplitude f(t). The problem for the
displacement u(x , t) is:

∂2u
∂t2

= c2∂
2u
∂x2

x > 0, t > 0,

with

u(x ,0) = 0,
∂u
∂t

(x ,0) = 0 and u(0, t) = f(t).

We expect a signal to propagate away from x = 0 at the
wavespeed c .



Take the LT in t so that u(x , t) 7→ u(x ,p) =
∫∞

0
u(x , t)e−ptdt .

This gives

p2u [+ zero from the IC] = c2∂
2u
∂x2

with u(0,p) = f(p).

Solutions of this equation are e±px/c , but only the minus sign
gives decay for Re(p)→∞. Using u(0,p) = f(p),

u(x ,p) = f(p)e−px/c , so u(x , t) = f(t − x/c)H(t − x/c)

which is indeed
the boundary
amplitude
moving
to the right
at speed c .7

7You can, of course, get this from the general solution of the wave
equation in the form F(t − x/c)+G(t + x/c); here
F(t − x/c) = f(t − x/c)H(t − x/c) and the fact that G = 0 corresponds to
there being no incoming waves (no exponential growth in the LT).



LT of xf(x)

We end with a counterpart to the formula for the transform of
a derivative.8

Proposition 52. If the LT of f(x) exists, then

L(xf) = xf(x) = − df
dp
.

Proof. Start from the right-hand side:

− df
dp

= − d
dp

∫ ∞
0

f(x)e−pxdx

=

∫ ∞
0
− ∂
∂p

(f(x)e−px)dx

=

∫ ∞
0

f(x) · xe−pxdx

= L(xf).

8The relationship is clearer for the Fourier Transform, as we shall see.



[Aside: why did we not need to state that the LT of xf(x) exists
as well as that of f(x)? The key is in the exponential decay of
e−px . Suppose that the LT of f exists for Re(p) > p0. Take ε > 0
and look at∫ ∞

0
xf(x)e−(p+ε)xdx =

∫ ∞
0

xe−εx · f(x)e−pxdx .

The function xe−εx is continuous and bounded on [0,∞), so this
integral exists because the LT of f does; then let ε→ 0.]

Example 53a. Invert f(p) = 1/(p +1)2. (We already know how
to do this.)
Solution. We have

f(p) =
1

(p +1)2
= − d

dp
1

p +1
,

and as 1/(p +1) is the LT of e−x , we have f(x) = xe−x .

Example 53b. The LT of 1 is 1/p , so the LT of x is
−d /dp(1/p) = 1/p2; of x2 is −d /dp(1/p2) = 2/p3; and so on.



Example 53c. Solve f ′+ xf = 0 with f(0) = 1 and deduce the LT
of e−x2/2. (This gives the MGF of Y = |X | when X ∼ N(0,1).)

Solution. The DE has solution f(x) = e−x2/2 (use the integrating
factor ex2/2). Taking LT of the DE,

pf −1− df
dp

= 0.

We have amost the same integrating factor:

d
dp

(
fe−p2/2

)
= −e−p2/2.

The solution that decays as Re(p)→∞ is9

f(p) = ep2/2
∫ ∞

p
e−s2/2ds .

9Note how we incorporate decay at infinity via the upper limit and the
minus by the lower one. Use L’Hopital to show that f(p) indeed decays at
infinity.



A final PDE example

Example 53d. Suppose that u(x , t) satisfies

∂u
∂t

=
∂2u
∂x2

, x > 0, t > 0

with u(x ,0) = 0 and u(0, t) = 1 for t > 0. Find
g(t) = −∂u/∂x |x=0. This models heat flow in a semi-infinite bar,
initially at temperature zero, when the temperature at the end
x = 0 is raised to 1 and held at that value. The question asks
for the heat flux into the bar at x = 0 as a function of time.

Solution. Take the LT in t :

u(x ,p) =
∫ ∞

0
u(x , t)e−ptdt .

Note that we require u(x ,p) to decay to zero as x→∞.



Take the LT of the PDE and the BC at x = 0:

∂u
∂t

= pu − (zero) =
∂2u
∂x2

, u(0, t) = u(0,p) =
1
p

(as the transform of 1 is 1/p).

The solution of ∂2u/∂x2 = pu that is bounded10 at x =∞ is
u(x ,p) = A(p)e−x

√
p and using the transformed BC we get

u(x ,p) =
e−x
√

p

p
so

∂u
∂x

= −
√

pe−x
√

p /p .

Setting x = 0 we get g(p) = 1/
√

p . Now we know
Ltα = Γ (α+1)/pα+1 so

g(t) =
1

Γ (1
2)t

1
2

=
1
√
πt

as Γ (1
2) =

√
π.

10What assumption does this imply about the branch for
√

p?



3.1 The Laplace convolution

The LT of a product of functions has no simple relation to those
of the functions themselves (it may not even exist — can you
think of an example?). However, there is a close relative of the
product: the convolution.

Definition 56. If f and g are defined on [0,∞), their (Laplace)
convolution h = f ∗g is

h(x) = (f ∗g)(x) =
∫ x

0
f(t)g(x − t)dt .

Remark 57. We have f ∗g = g ∗ f (exercise: put t − x = u above).

Remark 57a. You will have seen this result before: if fX and fY
are the PDFs of independent non-negative random variables,
then fX+Y = fX ∗ fY .



Example 58a. If f(x) = 1 and g(x) = x , then

(f ∗g)(x) =
∫ x

0
1 · (x − t)dx =

[
xt − 1

2
t2

]x

0
=

1
2

x2

Note: f = 1/p , g = 1/p2, and f ∗g = 1
2 ·2/p

3 = 1/p3 = f g . This
is not a coincidence.

Example 59a. Let f(x) = λe−λx = g(x) for x > 0. Then

(f ∗g)(x) = λ2
∫ x

0
e−λte−λ(x−t)dx = λ2e−λx

∫ x

0
1dx = λ2xe−λx .

(The sum of two IID Exponential RVs is Gamma.) And now

f(p) =
λ

λ+ p
= g(p),

while

f ∗g(p) = λ2L
(
xe−λx

)
= λ2

(
− d
dp

(f /λ)

)
=

λ2

(λ+ p)2
= f g .

Both examples illustrate the following famous theorem.



The Laplace Convolution Theorem

Theorem 60. Let f and g have LTs f and g for Re(p) > p0. Then

f ∗g = f g .

Proof. Start with the RHS:

f(p)g(p) =
∫ ∞

0
f(t)e−ptdt

∫ ∞
0

g(s)e−psds

=

∫ ∞
0

∫ ∞
0

f(t)g(s)e−p(s+t)dsdt

(∗) =

∫ ∞
0

∫ ∞
t

f(t)g(u − t)e−pududt (s + t = u)

(∗) =

∫ ∞
0

∫ t

0
f(t)g(u − t)e−pudtdu (swap order)

=

∫ ∞
0

∫ t

0
f(t)g(t −u)dt e−pudu

=

∫ ∞
0

(f ∗g)(u)e−pudu = f ∗g(p).



Technical note: we need a theorem to justify changing the
order of integration en route; this is Fubini’s theorem (if we are
using Lebesgue integration).

Example 62a. Find f(x) satisfying

f ′′ + f = g(x), 0 < x <∞, with f(0) = 0, f ′(0) = 0.

Solution. Take the LT:

p2f − (zero)+ f = g , so f(p) =
g(p)

p2 +1
.

Now 1/(p2 +1) is the LT of sinx , so

f(x) =
∫ x

0
g(t)sin(x − t)dt .

(Talking point: why is the case g(x) = sinx special?)



Example 62b. We continue the heat equation example 53d of
lecture 5. This is the first example we have seen that you
cannot do by ’elementary’ methods (you can write down the
solution to the PDE problem 53d by trying the particular form
u(x , t) = v(x/

√
t), kown as a similarity solution).

In the problem

∂u
∂t

=
∂2u
∂x2

, x > 0, t > 0 with u(x ,0) = 0, u(0, t) = f(t).

for u(x , t), find the relationship between the boundary heat flux
g(t) = −∂u/∂x |x=0 and the boundary temperature f(t).

(In example 53d we took f = 1. Here we apply a general
temperature f(t) at x = 0.)



Solution. As in Example 53d, taking the LT in t gives

pu(x ,p) =
∂2u
∂x2

with u(0,p) = f(p),

so u(x ,p) = f(p)e−x
√

p . (Earlier, we had f(p) = 1/p .)

Differentiating in x ,

−∂u
∂x

= −∂u
∂x

=
√

p f(p)e−x
√

p .

Putting x = 0 gives

g(p) =
√

p f(p), so f(p) = g(p)/
√

p .

But we saw earlier that 1/
√

p = L(1/
√
πt). Using the

convolution theorem, we have

f(t) = g(t) ∗ 1
√
πt

=
1
√
π

∫ t

0

g(s)
√

t − s
ds .



You may ask how to find g from f : this amounts to solving the
integral equation, known as Abel’s equation,

f(t) =
1
√
π

∫ t

0

g(s)
√

t − s
ds

for g , given f . There is a neat trick. Go back to

g(p) =
√

p f(p) and write it as g(p) =
p
√

p
f(p).

We recognise pf(p): it is f(0)+ f ′(p). So

g(p) =
f(0)
√

p
+

f ′(p)
√

p
.

By inverting the first term, and convolution as above on the
second,

g(t) =
f(0)
√
πt

+
1
√
π

∫ t

0

f ′(s)
√

t − s
ds .

(Talking point: what is the physical interpretation of the first
term on the RHS (see Ex. 53d)? The second term?)



3.2 Uniqueness and inversion

We now state two key theorems; for proofs see LN.11

Theorem 63. Let f be continuous on [0,∞) with |f | <Mecx for
some M > 0 and c ∈R. If f(p) ≡ 0 then f(x) ≡ 0.

That is, provided a function is continuous and grows no more
than exponentially at infinity, it is uniquely determined by its
Laplace Transform.

Theorem 64. (Laplace Inversion Theorem.) Suppose f is
continuous on [0,∞) and has LT f(p) for Re(p) > p0. Then, for
x > 0, f(x) is given by the contour integral representation

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
f(p)epxdp ,

for any real σ > p0 (the precise value of σ is unimportant).

11We’ll see a slick proof of the Inversion Theorem later.



The proof of the inversion theorem in LN is for a special case in
which f(p) is a rational function with just one pole, at (WLOG)
p = 0 (so p0 = 0), meaning that f has the form g(p)/pn where g
is a polynomial. The key steps are:
I • Close the contour with a semicircle to the left and use

Jordan’s lemma to show the contribution from the arc
vanishes in the limit.

I • Use the Residue Theorem to show that the integral is
equal to Resp=0g(p)epx /pn (the 2πi’s cancel).

I • Combine the formula for the residue of a pole of this
form, and the Leibniz rule, to show that the LT of the
integral is f(p) and so the integral is equal to f(x).



Example 66a. Invert f(p) = 1/(p2 +1). (We can do this by
partial fractions and we know the answer is f(x) = sinx .)

Solution. The function f(p)epx has poles at p = ±i. We have

Res
(

epx

p2 +1
;p = ±i

)
=

e±ix

±2i

and adding these gives

f(x) =
1

2πi
·2πi

(
eix

2i
+

e−ix

−2i

)
= sinx .

(I worked out the residues
— for simple poles — by differentiating
p2 +1 and then putting p = ±i.)



Example 67a. Invert p−
1
2 (defined as r−

1
2 e−iθ/2, r = |p |,

−π < θ < π, so that the branch cut lies along the negative real
p-axis).

Solution. The branch-cut
means we need to use a keyhole
contour Γ . By Cauchy’s theorem,

1
2πi

∫
Γ

p−
1
2 epxdp = 0.

So
1

2πi

∫ B

A
· · · dp = − 1

2πi

∫ O

C
· · · dp − 1

2πi

∫ D

O
· · · dp

as the semicircle (of radius R ) gives no contribution as R →∞.
• On CO , put p = reiπ so p−

1
2 = r−

1
2 e−iπ/2 = −ir− 1

2 .
• On OD, p = re−iπ and p−

1
2 = r−

1
2 eiπ/2 = ir−

1
2 .



Therefore, as R →∞,

1
2πi

∫ O

C
p−

1
2 epxdp→ 1

2πi

∫ 0

∞
(−i)r−

1
2 e−rx(−dr)

= − i
2πi

∫ ∞
0

r−
1
2 e−rxdr

= − 1
2π

x−
1
2 Γ (1

2).

Similarly
1

2πi

∫ D

O
· · · dp→− 1

2π
x−

1
2 Γ (1

2)

so adding gives that

1
2πi

∫ σ+i∞

σ−i∞
p−

1
2 epxdp =

2
2π

x−
1
2 Γ (1

2) =
√
π
π x−

1
2 = 1√

π
x−

1
2 .



3.3 Laplace Transforms and power series

Theorem 68. Suppose the LT of f(x) is the convergent sum

f(p) =
∞∑

n=0

an /p
n+1, Re(p) > p0.

(Recognise this as a Laurent series.) Then

f(x) =
∞∑

n=0

anxn /n!.

Proof. See LN. The key point is that 1/pn+1 is the LT of xn /n!.
The technical issue is to justify taking the summation outside
the contour integral.

Note: As this is a Laurent series for f(p), its domain of
convergence is in fact the annulus |p | > p0. That means that
the singularities of f(p) all lie within |p | ≤ p0, so, for example,
the transform p−

1
2 is not covered because of its branch cut.

(Talking point: think about f(p) = e−p .)



Example 69a. Let

f(p) =
1

p −1
=

1
p(1−1/p)

=
1
p

∞∑
0

1
pn =

∞∑
0

1
pn+1

,

so f(x) =
∑∞

0 xn /n! = ex (of course).

Final LT example: 55 & 70a. Our final example illustrates the
range of LT ideas. The Bessel function of order zero, J0(x),
satisfies

xJ ′′0 + J ′0 + xJ0 = 0, 0 < x <∞, J0(0) = 1, J ′0(0) = 0.

See LN for a plot. This function crops up widely, eg when you
separate variables in the radially symmetric 2-D wave equation

∂2u
∂t2

= c2
(
∂2u
∂r2

+
1
r
∂u
∂r

)
;

its solution tells you modes of radially symmetric oscillations
of a drum (like trig functions for 1-D waves).



Take the LT of the DE

xJ ′′0 + J ′0 + xJ0 = 0, J0(0) = 1, J ′0(0) = 0,

to give

− d
dp

(
p2J0 − p

)
+ pJ0 −1− dJ0

dp
= 0,

which tidies up to

(p2 +1)
dJ0

dp
+ pJ0 = 0.

Separating this equation gives

J0(p) =
A√

p2 +1
;

but what is te integration constant A? There is a trick: we know
that J ′0(p)→ 0 as Re(p)→∞, and as

J ′0(p) = pJ0(p)−1 = A
p√

p2 +1
−1,

we see that A = 1 and so J0(p) = 1/
√

p2 +1.



Now by the Binomial theorem (exponent −1
2 ),

J0(p) = (p2 +1)−
1
2

=
1
p
(1+1/p2)−

1
2 (we need to expand for large p)

=
1
p

∞∑
k=0

(−1
2)(−

3
2) · · ·(−

1−2k
2 )

k !

(
1

p2

)k

=
∞∑

k=0

(−1)k (2k)!
22k (k !)2

1
p2k+1

so, as (2k)!/p2k+1↔ x2k , the power series for J0(x) is

J0(x) =
∞∑

k=0

(−1)k

22k (k !)2
x2k .



We end with a very pretty result. Note that

(
J0(p)

)2
=

 1√
p2 +1

2

=
1

p2 +1
= Lsinx .

But by the convolution theorem,
(
J0

)2
is the LT of J0 ∗ J0. Thus,∫ x

0
J0(t)J0(x − t)dt = sinx ,

a beautiful and unexpected result with which to end our
coverage of the LT.



4.1 The Fourier Transform: definition

We now turn to functions defined on all of R and use trig
functions to take weighted averages (cf Fourier series on a
finite interval).

Definition 71. If f(x) : R→C is integrable, its Fourier
Transform f̂(s), also written F f(s), is

f̂(s) =
∫ ∞
−∞

f(x)e−isxdx .

Notes. (a) The class of functions that have a FT is smaller than
thise with a LT because the function must be integrable (eg, ex

is not allowed).

(b) In probability, the characteristic function of a RV X is

φX (t) = E[eitX ] =
∫ ∞
−∞

fX (x)e
itxdx = f̂X (−t).



Some examples

Examples 73, 74a, 75, 76. In all these examples, a > 0 is real.

• Suppose that f(x) is the indicator function

f(x) = 1[−a ,a] =

0 |x | > a ,

1 |x | ≤ a .

Then

f̂(s) =
∫ a

−a
e−isxdx =

[
e−isx

−is

]a

−a
=

2sinas
s

.

• If f(x) = δ(x −a), then by sifting f̂(s) = e−ias (for all real a).

• If f(x) = e−a |x |, then

f̂(s) =
∫ 0

−∞
eax−isxdx+

∫ ∞
0

e−ax−isxdx =
1

a − is
+

1
a + is

=
2a

s2 +a2
.



• If f(x) = a/(x2 +a2), then

f̂(s) =
∫ ∞
−∞

a
x2 +a2

e−isxdx .

This is a routine contour integral (like the Laplace inversion of
1/(p2 +1) earlier). The function

f(z) =
ae−isz

z2 +a2

has poles at z = ±ia at which
the residues are ±e±ax /(2i).
Close with a semicircular contour in the
UHP if s < 0 and in the LHP if s > 0 to get
exponential decay of e−isz . The result is

f̂(s) =

πeas s < 0,

πe−as s > 0,
which is f̂(s) = πe−a |s |.



• If f(x) = e−a2x2
, then

f̂(s) =
∫ ∞
−∞

e−isx−a2x2
dx

=

∫ ∞
−∞

e−s2/4a2
e−a2(x+is/2a2)2

dx (completing the square)

= e−s2/4a2
∫ ∞
−∞

e−a2u2
du (by x + is/2a2 = u)

=

√
π

a
e−s2/4a2

.

The change of variable x + is/2a2 = u is equivalent to moving
the integration contour up by using Cauchy’s theorem on a
rectangular contour; see LN.

We shall return to these examples in the next lecture.



4.2 Properties of the Fourier Transform

There is a clear similarity between properties of the FT and
those of the LT (after all, both use an exponential weight). The
FT ones are simpler, because it is defined on all of R.

Proposition 79 (Riemann–Lebesgue Lemma). If f(x) is
integrable, then

lim
s→±∞

∫ ∞
−∞

f(x)cossx [or f(x)sinsx]dx = 0.

Proof. Covered in Part A Integration. It works by cancellation of
positive and negative areas of a rapidly oscillating signal.



Theorem 80a. Let f(x) be integrable, vanish at infinity, and
assume that all FTs below exist. Then:

(a) f̂(s)→ 0 as s→±∞.

(b) f̂(0) =
∫∞
−∞ f(x)dx (and if f is a PDF then f̂(0) = 1).

(c) f̂ ′(s) = iŝf(s).

(d) x̂f(s) = id̂f /ds .

(e) (eiax f(x))̂ (s) = f̂(s −a).

(f) (f(x −a))̂ (s) = e−ias f̂(s).

Note that (c) and (d), and (e) and (f), go together. Compare
these with the corresponding LT results: the FT is ‘cleaner’.
Note also that (c) and (d) remind us of position and momentum
operators in QM.



Proof.

(a) is the Riemann–Lebesgue Lemma.

(b) Put s = 0 in the definition of f̂(s).

(c) Integrate by parts:

f̂ ′(s) =
∫ ∞
−∞

f ′(s)e−isxdx

=
[
f(x)e−isx

]∞
−∞
−
∫ ∞
−∞

f(x)(−is)e−isxdx

= iŝf(s).

(d) Differentiate under the integral:

i
d̂f
ds

= i
∫ ∞
−∞

f(x)(−ix)e−isxdx = x̂f(s).

(e) and (f), left as exercises.



The Fourier convolution theorem

Definition 81. The convolution on R of two functions f and g is

(f ∗g)(x) =
∫ ∞
−∞

f(t)g(x − t)dt .

Notes. (a) In probablility, the PDF of the sum of two
independent random variables X and Y is fX+Y (x) = (fX ∗ fY )(x).
(b) When we looked at the LT, we defined functions on [0,∞)
only. You can get to the Laplace form of the convolution by
using the definition above on functions of the form f(x)H(x)
(exercise).

No surprise: there is a convolution theorem for the FT.



Theorem 81. If f ,g : R→C, and the relevant FTs exist, then

f̂ ∗g(s) = f̂(s)ĝ(s).

Proof. As for the LT:

f̂(s)ĝ(s) =
∫ ∞
−∞

f(x)e−isxdx
∫ ∞
−∞

g(y)e−isydy

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)e−is(x+y)dxdy

(∗) =

∫ ∞
−∞

∫ ∞
−∞

f(x)g(u − x)e−isudxdu (x + y = u)

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(u − x)dx︸                   ︷︷                   ︸
(f∗g)(u)

e−isudu

= f̂ ∗g(s).



Example 83a. The convolution of δ(x −a) and f(x) is∫ ∞
−∞
δ(t −a)f(x − t)dt = f(x −a);

the FT of δ(x −a) is e−ias (sifting), and the FT of the convolution
f(x −a) is (see earlier) e−ias f̂(s).

Example 88a. Suppose that, with a ,b > 0,

f(x) =
a

π(x2 +a2)
, g(x) =

b
π(x2 + b 2)

.

Then f̂(s) = e−a |s |, ĝ(s) = e−b |s |, so f̂(s)ĝ(s) = e−(a+b)|s |. Thus,∫ ∞
−∞

a
π(t2 +a2)

· b
π((x − t)2 + b 2)

dt =
a + b

π(x2 +(a + b)2)
,

easier than by contour integration! It says the sum of two
Cauchy RVs is also Cauchy. Similarly for Normal RVs; see LN.



Example. We end with a harder but very informative example
(non-examinable). It stretches the boundary of what we have
shown to be true because we don’t have a proper definition of
the convolution of two distributions but let’s not allow that to
hold us back . . .

What is δ(x) ∗ δ(x)?

and
What is δ(x −a) ∗ δ(x − b)?

We give five answers. You may not like any of them (none of
them is rigorous) but I promise they are all correct in the right
sense.



Answer 1. This is the ’intuitive’ version.; basically Ex. 83a with
a = 0 and f(x) = δ(x). We should have that

δ(x) ∗ δ(x) =
∫ ∞
−∞
δ(t)δ(x − t)dt

which you evaluate like any ’integral’ (or ’action’)
∫
δ(t)g(t)dt

by setting t = 0 in g . Take g(t) = δ(x − t) (!) so we get δ(x).

And similarly

δ(x −a) ∗ δ(x − b) =
∫ ∞
−∞
δ(t −a)δ(x − t − b)dt

= δ(x − t − b)|t=a

= δ(x − (a + b)).

The trouble is that the integrals are all ’integrals’: undefined,
nor are they real actions as δ isn’t a test function. But it’s the
right answer.



Answer 2. Suppose we accept that δ ∗ δ is a distribution. Pick a
test function φ. We should have

〈δ ∗ δ,φ〉= 〈δ(x),〈δ(x − t)φ(t)〉〉
(here the inner action is ‘over the variable t ’)

= 〈δ(x),φ(x)〉

so δ ∗ δ = δ. (To unpack this, think of both the action and the
convolution as ‘integrals: this is really answer 1 in disguise.)
The other convolution is similar. The problem is the
assumptions we had to make.



Answer 3. In Example 83a we showed that (with a = b = ε),

ε

π(x2 + ε2)
∗ ε

π(x2 + ε2)
=

2ε
π(x2 +(2ε)2)

.

As we let ε→ 0, each of the three functions here tends to δ(x).
The only issue is how we should interpret the limit of the LHS
(we could multiply by a test function and integrate before
taking the limit).
Note that we can use any continuous function whose integral
is 1 (eg any PDF). This leads us to . . .

Answer 4. Suppose that X and Y are independent RVs with
P[X = 0] = 1 amd P[Y = 0] = 1. Then fX (x) = δ(x) = fY (x), and
fX+Y = fX ∗ fY . But P[X +Y = 0] = 1 so fX+Y (x) = δ(x). Thus
δ ∗ δ = δ.

Answer 4 is a probability interpretation of Answer 5: as
δ̂(s) = 1, δ̂ ∗ δ = δ̂ · δ̂ = 1 ·1 = 1 so δ ∗ δ = δ.



Towards the inversion theorem

Recall two examples of FT pairs from Lecture 7. We had

̂e−a |x |(s) =
2a

s2 +a2
= 2π · a

π(s2 +a2)︸        ︷︷        ︸
integrates to 1

.

But as a→ 0,

e−a |x |→ 1 and
a

π(s2 +a2)
→ δ(s)

(recall Sheet 1 Exercise 8). Similarly, as a→ 0,

e−a2x2
→ 1 and ̂e−a2x2

=

√
π

a
e−s2/4a2

= 2π
e−s2/4a2

√
4πa2

→ 2πδ(s)

(note that e−s2/4a2
/
√

2π ·2a2 is the PDF of N(0,2a2)).



This strongly suggests the amazing result that

1̂(s) = 2πδ(s).

Corollary.

The FT of eiax is 2πδ(s −a).

Proof (of corollary). The FT of eiax f(x) is f̂(s −a). Put f(x) = 1.

We don’t have a complete framework for the FT of

distributions, as needed to show properly that

1̂(s) = 2πδ(s). We’ll accept that it is correct, and we’ll use it

to great effect before long.

Note: these results do not say that functions like eiax are

integrable in any classical sense. They are statements

about distributions and their FTs in the same way that δ(x)
is not a classical function.



A couple of asides

Talking point: can you get to 1̂ = 2πδ(s) from the FT of 1[−a ,a]

by letting a→∞? (You will need
∫∞
−∞u−1 sinu du which is a

standard indented-contour integral.)

Talking point: The LT of δ(x −a) is e−pa . So we should have

δ(x −a) =
1

2πi

∫ σ+i∞

σ−i∞
e−paepxdp =

1
2πi

∫ σ+i∞

σ−i∞
ep(x−a)dp .

Now in this contour integral (in the p-plane),

• If x < a , you can close the contour with a semicircle on the
right, as x −a < 0 gives exponential decay.12 By Cauchy’s
theorem, the integral is zero.

12NB you can’t use Jordan directly to show decay of the arc-integral
because the maximum on the arc of |ep(x−a)| does not tend to zero. You have
to use the rapid oscillation property as well, as in the R–L Lemma. (You might
like to try this, by splitting the range of integration as we did when we
showed that a LT vanishes at +∞.) But the result is true.



• If x > a , close on the left and use the same argument.

• And if x = a , put p = σ + is to get the ’integral’

1
2π

∫ ∞
−∞

1ds .

This is exactly what we saw in the formula 1̂/2π = δ.

Note, however, that δ(x −a) is very far from satisfying the
conditions needed for the Laplace Inversion Theorem,
emphasising that all this discussion is purely intuitive.

We return to the relationship between FT and LT in a moment.

For now, moving on . . .



The Fourier inversion theorem

Theorem 84. Let f(x) be continuous and integrable. Then

f(x) =
1

2π

∫ ∞
−∞

f̂(s)eixs ds where f̂(s) =
∫ ∞
−∞

f(x)e−isx dx .

Proof. We have

1
2π

∫ ∞
−∞

f̂(s)eixs ds =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(y)e−isy dy

)
eixs ds

(∗) =
1

2π

∫ ∞
−∞

f(y)
∫ ∞
−∞

eixse−iys ds︸              ︷︷              ︸
FT (in s) of eixs

dy

(∗∗) =
1

2π

∫ ∞
−∞

f(y) ·2πδ(y − x)dy

= f(x).

Wow.



Notes. (1) We swapped the order of integration in key step (∗);
in the term labelled ’FT (in s) of eixs ’, we used the result
êiax = δ(s −a) and relabelled the variables a ,x ,s 7→ x ,s ,y : this
is, I agree, a bit confusing (but inevitable).

(2) There are lots of classical proofs, all of which boil down to
approximating the delta function in steps (∗)-(∗∗).
(3) If f(x) has a jump, the inverse FT gives the average of the
left- and right-hand limits (like Fourier series).

Example. Invert f̂(s) = e−a |s | (here a > 0).

Solution. By the inversion formula,

f(x) =
1

2π

∫ ∞
−∞

e−a |s |eixs ds

=
1

2π

∫ 0

−∞
eas+ixs ds +

1
2π

∫ ∞
0

e−as+ixs ds

=
1

2π
2a

x2 +a2
=

a
π(x2 +a2)

.



Aside: Fourier Transforms and Fourier Series

At the heart of the FT is the idea of expanding in an orthogonal
basis. You have seen this:

• In finite dimensions: linear algebra, a basis of vectors eg {ei }
in R

n , orthogonality

ei ·ej = δij (Kronecker);

• In a countably infinite setting: eg Fourier series, basis of trig
functions (in complex form) {einx }, with orthogonality∫ π

−π
eimxe−inx dx = 2πδmn ;

• Now in an uncountably infinite setting: FT, basis functions
{eisx }, orthogonality as the ‘integral’∫ ∞

−∞
eixse−iys ds = 2πδ(y − x).

Clearly we need theory to back this up! But not in this course.



Now compare the FT and Fourier series:

• If f(x) is 2π-periodic then it has the complex FS13

f(x) =
∞∑

n=−∞
cne

inx where cn =
1

2π

∫ π

−π
f(x)e−inx dx .

• And for a function on all of R,

f(x) =
1

2π

∫ ∞
−∞

f̂(s)eixs ds where f̂(s) =
∫ ∞
−∞

f(x)e−isx dx .

Apart from the position of 2π, the correspondence is clear.

And now if f(x) =
∑∞

n=−∞ cneinx , using êinx = δ(s −n), we get
the frequency decomposition of a periodic function:

f̂(s) =
∞∑

n=−∞
cnδ(s −n).

13This is easily seen to be equivalent to the all-real series in terms of son
and cos, but much cleaner for our needs.



The Laplace Inversion Theorem

We end this lecture by deducing the Laplace inversion theorem
from Fourier inversion.

Corollary 85 (to Theorem 84). Let the continuous function f(x)
have Laplace Transform f(p) for Re(p) > p0; then, for x > 0,

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
f(p)exp dp (σ > p0).

Proof. Put p = σ + is . Then

f(σ + is) =
∫ ∞

0
f(x)e−(σ+is)xdx

=

∫ ∞
0

(f(x)e−σx)e−isx dx

= [f(x)e−σxH(x)] .̂



We have found that f(σ + is) is the FT of f(x)e−σxH(x). By
Fourier inversion, for x > 0 (this is whereH(x) = 1)

f(x)e−σx =
1

2π

∫ ∞
−∞

f(σ + is)eixs ds

Take e−σx to the RHS and insert i twice:

f(x) =
1

2πi

∫ ∞
−∞

f(σ + is)ex(σ+is) ids .

But σ + is = p , so

f(x) =
1

2πi

∫ σ+i∞

σ−i∞
f(p)exp dp .



Using the inversion theorem

Example 90a. Use the inversion theorem to evaluate

I1 =

∫ ∞
−∞

sins
s

ds and I2 =

∫ ∞
−∞

1
s2 +1

ds .

Solution. These depend on the fact that f(0) = 1
2π

∫∞
−∞ f̂(s)ds

(analogous to f̂(0) =
∫∞
−∞ f(x)dx). For the first integral, set

f(x) = 1[−1,1] so f̂(s) =
2sins

s
.

Hence

f(x) =
1

2π

∫ ∞
−∞

2sins
s

eixs ds

and putting x = 0 gives I1 = π. For I2 use f(x) = e−|x |.

There are other (more complicated) examples in LN.



Some differential equation examples

Example. Invert f̂(s) = e−ts2
(t > 0). We have seen this before,

reverse-engineering the transform of e−ax2
.

Solution. A little trick:

d̂f
ds

= −2tse−ts2
= −2tŝf .

so

i
d̂f
ds

= x̂f = −2t(iŝf) = −2t f̂ ′ .

Inverting,
xf = −2tf ′ , or f ′ = − x

2t
f .

This separable ODE has the solution f(x) = f(0)e−x2/4t . And

f(0) =
1

2π

∫ ∞
−∞

f̂(s)ds =
1

2π

∫ ∞
−∞

e−ts2
dt =

1

2
√
πt
,

so f(x) = e−x2/4t /2
√
πt .



Example. Solve the differential equation problem

f ′′ + xf ′ + f = 0, f(x)→ 0 as x→±∞,
∫ ∞
−∞

f(x)dx = 1

(the integral condiion normalises f ).

Solution. Take the FT in x :

(is)2 f̂ + i
d
ds

(iŝf)+ f̂ = 0,

tidying up to

d̂f
ds

= −ŝf , giving f̂(s) = f̂(0)e−s2/2.

But f̂(0) =
∫∞
−∞ f(x)dx = 1, so f̂(s) = e−s2/2 and then (use

previous example with t = 1
2 ) we get f(x) = e−x2/2/

√
2π (this

is the PDF of N(0,1)).



Heat equation initial-value problem

Example 95a. Find u(x , t) satisfying

∂u
∂t

=
∂2u
∂x2

, t > 0, −∞ < x <∞, with u(x ,0) = f(x),

with both f(x) and u(x , t) vanishing at x = ±∞. This is the
evolution of temperature in an infinite bar from its initial
distribution f(x). The conditions at infinity are technical.

Solution. Take the FT in x , û(s , t) =
∫∞
−∞u(x , t)e−isx ds , to give

∂û
∂t

= (is)2û = −s2û with û(s ,0) = f̂(s).

The solution is û(s , t) = f̂(s)e−ts2
, so by convolution

u(x , t) =

(
f(x) ∗ 1

2
√
πt

e−x2/4t
)
=

1

2
√
πt

∫ ∞
−∞

f(y)e−(x−y)2/4t dy (†)

Note: when f(x) = δ(x), u(x , t) = e−x2/4t /2
√
πt , representing a

point unit amount of heat diffusing away from x = 0, called the
fundamental solution. Eqn (†) at t = 0 illustrates δ ∗ δ = δ.



Laplace’s equation in a half-space

Example 93. Find u(x ,y) satisfying

∂2u
∂x2

+
∂2u
∂y2

= 0, −∞ < x <∞, y > 0, with u(x ,0) = f(x)

and the decay conditions u , |∇u |= O(1/
√

x2 + y2) at infinity.14

This problem models the steady heat-flow in a half-plane with a
prescribed temperature f(x) on y = 0.

14These conditions (more important than the corresponding ones for the
heat equation) let you use a standard proof (integrate ∇ · (u∇u) over the
inside of a large semicircle) to show uniqueness. Without them, you can add
solutions such as u = y or u = xy .



Solution. Take the FT in x to get

−s2û +
∂2û
∂y2

= 0, û(s ,0) = f̂(s).

Solutions are of the form Aesy +Be−sy or, equivalently,
Ce|s |y +De−|s |y . Remember that y > 0: the solution that decays
as y→∞ is û(s ,y) = f̂(s)e−|s |y . But we know that

e−y |s | is the FT (in x) of g(x ,y) =
y

π(x2 + y2)
.

so, by the convolution theorem (in x),

u(x ,y) = (f ∗g)(x ,y) =
y
π

∫ ∞
−∞

f(t)
(x − t)2 + y2

dt .



Aside: some low-hanging fruit

The special case f(x) = δ(x) gives u(x ,y) = g(x ,y); this is
known as a dipole and is the limit of the method-of-images
solution for a source at (0,ε) and a sink at (0,−ε) as ε→ 0 (the
strengths of the source and sink have to go to infinity as 1/ε).
Note it is the real part of the holomorphic function i/πz .

Another special case is f(x) =H(x) (note it does not decay at
infinity); direct integration (exercise) gives u(x ,y) = (1−θ)/π
where θ is the polar angle. What holomorphic function is this
the real part of? How is this function related to its counterpart
in the case f(x) = δ(x)?

And if f(x) =H(x +1)−H(x −1) = 1[−1,1] you have
u = (θ1 −θ2)/π where θ1 and θ2 are polar angles with respect
to (1,0) and (−1,0) respectively. This solution does vanish at
infinity. Again, what holomorphic function?



Parseval and Plancherel

We end with two important results.

Example 84 (Parseval’s theorem). If f(x) and g(x) have FTs
f̂(s) and ĝ(s), then (using an overline for complex conjugate)∫ ∞

−∞
f(x)g(x)dx =

1
2π

∫ ∞
−∞

f̂(s) ĝ(s)ds .

Corollary (Plancherel’s theorem). Putting g = f , we have∫ ∞
−∞
|f(x)|2dx =

1
2π

∫ ∞
−∞
|̂ f(s)|2ds .

This says that the ’energy’ in f and its FT are the same (up to a
scaling of 2π). It is the analogue of saying that if f(x) has
Fourier series

∑∞
n=−∞ cneinx then∫ π

−π
|f(x)|2 = 2π

∞∑
n=−∞

|cn |2.

Parseval says the ’angle’ between f and g is the same as that
between f̂ and ĝ .



Proof (of Parseval). Intuitive version: start with∫ ∞
−∞

f̂(s) ĝ(s)ds =

∫ ∞
−∞

(∫ ∞
−∞

f(x)e−isx dx

)(∫ ∞
−∞

g(y)eisy dy

)
ds

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)eis(y−x)dx dy ds

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y)

(∫ ∞
−∞

eis(y−x)ds

)
dx dy

=

∫ ∞
−∞

∫ ∞
−∞

f(x)g(y) ·2πδ(y − x)dx dy (∗)

=

∫ ∞
−∞

f(y)g(y)dy .

(For the manouevre giving (∗), see the corresponding step in
our proof of the Fourier inversion theorem.)

Although the proof lacks full rigour (step (∗), changing order of
integration etc) it is in the spirit of the course!



Another proof (sketch; fill in the gaps). This is a standard proof
combining convolution and inversion.

• Let h(x) = g(−x). Then show
∫

f(t)g(t)dt is the same as f ∗h
evaluated at x = 0.

• Note ĥ = ĝ .

• By convolution, f̂ ∗h = f̂ ĥ = f̂ ĝ .

• Invert: (f ∗h)(x) = 1
2π

∫
f̂(s)ĝ(s)eixs ds .

• Put x = 0 on both sides.

Final example. Evaluate
∫∞
−∞ sin2 s/s2ds .

Solution. Set f(x) = 1[−1,1], so f̂(s) = 2sins/s and use
Plancherel.



Final comments

I hope you have liked this course as much as I have. It brings
together a number of deep ideas. It reaches back to earlier
courses (especially complex analysis) and opens the door to a
huge range of further topics.

The final chapter of LN is a quick overview of where you can go
next. Possible destinations range from a proper theoretical
(functional analysis) treatment of all aspects of the course to a
wide variety of applications.

Enjoy!


