Numerical Analysis Hilary Term 2024

Lecture 2: Gaussian Elimination and LU factorisation

In lecture 1 we treated Lagrange interpolation. A traditional, more straightforward approach (worse for computation!) would be to express the interpolating polynomial as $p_{n}(x)=\sum_{i=0}^{n} c_{i} x^{i}$ and find the coefficients c_{i} by a linear system of equations:

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
f_{0} \\
f_{1} \\
\vdots \\
f_{n}
\end{array}\right] .
$$

(The matrix here is known as the Vandermonde matrix, and nonsingular iff $\left\{x_{i}\right\}$ are distinct.) This is a linear algebra problem, which is the subject we will discuss in the next lectures. We start with solving linear systems.
Setup: Given a square n by n matrix A and vector with n components b, find x such that

$$
A x=b .
$$

Equivalently find $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$ for which

$$
\begin{gather*}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2} \tag{1}\\
\vdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
\end{gather*}
$$

Lower-triangular matrices: the matrix A is lower triangular if $a_{i j}=0$ for all $1 \leq i<j \leq n$. The system (1) is easy to solve if A is lower triangular.

$$
\begin{array}{llll}
a_{11} x_{1} & =b_{1} & \Longrightarrow & x_{1}=\frac{b_{1}}{a_{11}} \\
a_{21} x_{1}+a_{22} x_{2} & & \Downarrow \\
\vdots & b_{2} & \Longrightarrow & x_{2}=\frac{b_{2}-a_{21} x_{1}}{a_{22}} \\
& & \\
& & \\
a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i i} x_{i} & =b_{i} & \Longrightarrow & x_{i}=\frac{b_{i}-\sum_{j=1}^{i-1} a_{i j} x_{j}}{a_{i i}} \\
\vdots & & & \Downarrow \\
\vdots
\end{array}
$$

This works if, and only if, $a_{i i} \neq 0$ for each i. The procedure is known as forward substitution.
Computational work estimate: one floating-point operation (flop) is one scalar multiply/division/addition/subtraction as in $y=a * x$ where a, x and y are computer representations of real scalars. ${ }^{1}$

[^0]Hence the work in forward substitution is 1 flop to compute x_{1} plus 3 flops to compute x_{2} plus \ldots plus $2 i-1$ flops to compute x_{i} plus \ldots plus $2 n-1$ flops to compute x_{n}, or in total

$$
\sum_{i=1}^{n}(2 i-1)=2\left(\sum_{i=1}^{n} i\right)-n=2\left(\frac{1}{2} n(n+1)\right)-n=n^{2}+\text { lower order terms }
$$

flops. We sometimes write this as $n^{2}+O(n)$ flops or more crudely $O\left(n^{2}\right)$ flops.
Upper-triangular matrices: the matrix A is upper triangular if $a_{i j}=0$ for all $1 \leq j<i \leq n$. Once again, the system (1) is easy to solve if A is upper triangular.

$$
\begin{align*}
\vdots & \\
a_{i i} x_{i}+\cdots+a_{i n-1} x_{n-1}+a_{1 n} x_{n}=b_{i} & \Longrightarrow x_{i}=\frac{b_{i}-\sum_{j=i+1}^{n} a_{i j} x_{j}}{a_{i i}} \\
\vdots & \\
a_{n-1 n-1} x_{n-1}+a_{n-1 n} x_{n}=b_{n-1} & \Longrightarrow x_{n-1}=\frac{b_{n-1}-a_{n-1 n} x_{n}}{a_{n-1 n-1}} \Uparrow \\
a_{n n} x_{n}=b_{n} & \Longrightarrow x_{n}=\frac{b_{n}}{a_{n n}} .
\end{align*}
$$

Again, this works if, and only if, $a_{i i} \neq 0$ for each i. The procedure is known as backward or back substitution. This also takes approximately n^{2} flops.
For computation, we need a reliable, systematic technique for reducing $A x=b$ to $U x=c$ with the same solution x but with U (upper) triangular \Longrightarrow Gauss elimination.

Example

$$
\left[\begin{array}{rr}
3 & -1 \\
1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
12 \\
11
\end{array}\right] .
$$

Multiply first equation by $1 / 3$ and subtract from the second \Longrightarrow

$$
\left[\begin{array}{rr}
3 & -1 \\
0 & \frac{7}{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
12 \\
7
\end{array}\right] .
$$

Gauss(ian) Elimination (GE): this is most easily described in terms of overwriting the matrix $A=\left\{a_{i j}\right\}$ and vector b. At each stage, it is a systematic way of introducing zeros into the lower triangular part of A by subtracting multiples of previous equations (i.e., rows); such (elementary row) operations do not change the solution.
for columns $j=1,2, \ldots, n-1$
for rows $i=j+1, j+2, \ldots, n$

$$
\begin{aligned}
\text { row } i & \leftarrow \text { row } i-\frac{a_{i j}}{a_{j j}} * \text { row } j \\
b_{i} & \leftarrow b_{i}-\frac{a_{i j}}{a_{j j}} * b_{j}
\end{aligned}
$$

end
end

Example.

$$
\begin{gathered}
{\left[\begin{array}{ccc}
3 & -1 & 2 \\
1 & 2 & 3 \\
2 & -2 & -1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
12 \\
11 \\
2
\end{array}\right]: \text { represent as }\left[\begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
1 & 2 & 3 & 11 \\
2 & -2 & -1 & 2
\end{array}\right]} \\
\Longrightarrow \quad \text { row } 2 \leftarrow \text { row } 2-\frac{1}{3} \text { row } 1 \\
\\
\quad \begin{array}{rrr|r}
\text { row } 3 \leftarrow \operatorname{row} 3-\frac{2}{3} \text { row } 1
\end{array}\left[\begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
0 & \frac{7}{3} & \frac{7}{3} & 7 \\
0 & -\frac{4}{3} & -\frac{7}{3} & -6
\end{array}\right] \\
\\
\quad \begin{array}{rrrrr}
& \text { row } 3 \leftarrow \operatorname{row} 3+\frac{4}{7} \operatorname{row} 2
\end{array}\left[\begin{array}{rrr|r}
3 & -1 & 2 & 12 \\
0 & \frac{7}{3} & \frac{7}{3} & 7 \\
0 & 0 & -1 & -2
\end{array}\right]
\end{gathered}
$$

Back substitution:

$$
\begin{aligned}
& x_{3}=2 \\
& x_{2}=\frac{7-\frac{7}{3}(2)}{\frac{7}{3}}=1 \\
& x_{1}=\frac{12-(-1)(1)-2(2)}{3}=3 .
\end{aligned}
$$

Cost of Gaussian Elimination: note, row $i \leftarrow$ row $i-\frac{a_{i j}}{a_{j j}} *$ row j is for columns $k=j+1, j+2, \ldots, n$

$$
a_{i k} \leftarrow a_{i k}-\frac{a_{i j}}{a_{j j}} a_{j k}
$$

end
This is approximately $2(n-j)$ flops as the multiplier $a_{i j} / a_{j j}$ is calculated with just one flop; $a_{j j}$ is called the pivot. Overall therefore, the cost of GE is approximately

$$
\sum_{j=1}^{n-1} 2(n-j)^{2}=2 \sum_{l=1}^{n-1} l^{2}=2 \frac{n(n-1)(2 n-1)}{6}=\frac{2}{3} n^{3}+O\left(n^{2}\right)
$$

flops. The calculations involving b are

$$
\sum_{j=1}^{n-1} 2(n-j)=2 \sum_{l=1}^{n-1} l=2 \frac{n(n-1)}{2}=n^{2}+O(n)
$$

flops, just as for the triangular substitution.

LU factorization:

The basic operation of Gaussian Elimination, row $i \leftarrow$ row $i+\lambda *$ row j, can be achieved by pre-multiplication by a special lower-triangular matrix

$$
M(i, j, \lambda)=I+\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & 0
\end{array}\right] \leftarrow i
$$

where I is the identity matrix.
Example: $n=4$,

$$
M(3,2, \lambda)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \lambda & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } M(3,2, \lambda)\left[\begin{array}{c}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
a \\
b \\
\lambda b+c \\
d
\end{array}\right]
$$

i.e., $M(3,2, \lambda) A$ performs: row 3 of $A \leftarrow$ row 3 of $A+\lambda *$ row 2 of A and similarly $M(i, j, \lambda) A$ performs: row i of $A \leftarrow$ row i of $A+\lambda *$ row j of A.

So GE for e.g., $n=3$ is

$$
\begin{array}{cccc}
M\left(3,2,-l_{32}\right) & M\left(3,1,-l_{31}\right) \cdot & M\left(2,1,-l_{21}\right) \cdot & A=U=(\square) \\
l_{32}=\frac{a_{32}}{a_{22}} & l_{31}=\frac{a_{31}}{a_{11}} & l_{21}=\frac{a_{21}}{a_{11}} & \text { (upper triangular) }
\end{array}
$$

The $l_{i j}$ are called the multipliers.
Be careful: each multiplier $l_{i j}$ uses the data $a_{i j}$ and $a_{i i}$ that results from the transformations already applied, not data from the original matrix. So l_{32} uses a_{32} and a_{22} that result from the previous transformations $M\left(2,1,-l_{21}\right)$ and $M\left(3,1,-l_{31}\right)$.
Lemma. If $i \neq j,(M(i, j, \lambda))^{-1}=M(i, j,-\lambda)$.
Proof. Exercise.
Outcome: for $n=3, A=M\left(2,1, l_{21}\right) \cdot M\left(3,1, l_{31}\right) \cdot M\left(3,2, l_{32}\right) \cdot U$, where

$$
M\left(2,1, l_{21}\right) \cdot M\left(3,1, l_{31}\right) \cdot M\left(3,2, l_{32}\right)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]=\underset{\text { (lower triangular) }}{L=(\llcorner) .}
$$

This is true for general n :
Theorem. For any dimension n, GE can be expressed as $A=L U$, where $U=(7)$ is upper triangular resulting from GE, and $L=(L)$ is unit lower triangular (lower
triangular with ones on the diagonal) with $l_{i j}=$ multiplier used to create the zero in the (i, j) th position.

Most implementations of GE therefore, rather than doing GE as above,

$$
\begin{array}{rll}
\text { factorize } & A=L U & \left(\approx \frac{1}{3} n^{3} \text { adds }+\approx \frac{1}{3} n^{3}\right. \text { mults) } \\
\text { and then solve } & A x=b & \text { (forward substitution) } \\
\text { by solving } & L y=b & \text { (back substitution) }
\end{array}
$$

Note: this is much more efficient if we have many different right-hand sides b but the same A.
Pivoting: GE or LU can fail if the pivot $a_{i i}=0$. For example, if

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],
$$

GE fails at the first step. However, we are free to reorder the equations (i.e., the rows) into any order we like. For example, the equations

$$
\begin{aligned}
& 0 \cdot x_{1}+1 \cdot x_{2}=1 \\
& 1 \cdot x_{1}+0 \cdot x_{2}=2
\end{aligned} \quad \text { and } \quad \begin{aligned}
& 1 \cdot x_{1}+0 \cdot x_{2}=2 \\
& 0 \cdot x_{1}+1 \cdot x_{2}=1
\end{aligned}
$$

are the same, but their matrices

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { and }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

have had their rows reordered: GE fails for the first but succeeds for the second \Longrightarrow better to interchange the rows and then apply GE.
Partial pivoting: when creating the zeros in the j th column, find

$$
\left|a_{k j}\right|=\max \left(\left|a_{j j}\right|,\left|a_{j+1 j}\right|, \ldots,\left|a_{n j}\right|\right),
$$

then swap (interchange) rows j and k.
For example,

$$
\left[\begin{array}{cccccccc}
a_{11} & \cdot & a_{1 j-1} & a_{1 j} & \cdot & \cdot & \cdot & a_{1 n} \\
0 & \cdot \\
0 & \cdot & a_{j-1 j-1} & a_{j-1 j} & \cdot & \cdot & \cdot & a_{j-1 n} \\
0 & \cdot & 0 & a_{j j} & \cdot & \cdot & \cdot & a_{j n} \\
0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & 0 & a_{k j} & \cdot & \cdot & \cdot & a_{k n} \\
0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & 0 & a_{n j} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right] \rightarrow\left[\begin{array}{cccccccc}
a_{11} & \cdot & a_{1 j-1} & a_{1 j} & \cdot & \cdot & \cdot & a_{1 n} \\
0 & \cdot \\
0 & \cdot & a_{j-1 j-1} & a_{j-1 j} & \cdot & \cdot & \cdot & a_{j-1 n} \\
0 & \cdot & 0 & a_{k j} & \cdot & \cdot & \cdot & a_{k n} \\
0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & 0 & a_{j j} & \cdot & \cdot & \cdot & a_{j n} \\
0 & \cdot & 0 & \cdot & \cdot & \cdot & \cdot & \cdot \\
0 & \cdot & 0 & a_{n j} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right]
$$

Property: GE with partial pivoting cannot fail if A is nonsingular.
Proof. If A is the first matrix above at the j th stage,

$$
\operatorname{det}[A]=a_{11} \cdots a_{j-1 j-1} \cdot \operatorname{det}\left[\begin{array}{ccccc}
a_{j j} & \cdot & \cdot & \cdot & a_{j n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{k j} & \cdot & \cdot & \cdot & a_{k n} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
a_{n j} & \cdot & \cdot & \cdot & a_{n n}
\end{array}\right]
$$

Hence $\operatorname{det}[A]=0$ if $a_{j j}=\cdots=a_{k j}=\cdots=a_{n j}=0$. Thus if the pivot $a_{k, j}$ is zero, A is singular. So if A is nonsingular, all of the pivots are nonzero. (Note: actually $a_{n n}$ can be zero and an LU factorization still exist.)
The effect of pivoting is just a permutation (reordering) of the rows, and hence can be represented by a permutation matrix P.
Permutation matrix: P has the same rows as the identity matrix, but in the pivoted order. So

$$
P A=L U
$$

represents the factorization - equivalent to GE with partial pivoting. E.g.,

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] A
$$

has the 2 nd row of A first, the 3 rd row of A second and the 1st row of A last.

Matlab example:

```
>> A = rand (5,5)
A =
\begin{tabular}{rrrrr}
0.69483 & 0.38156 & 0.44559 & 0.6797 & 0.95974 \\
0.3171 & 0.76552 & 0.64631 & 0.6551 & 0.34039 \\
0.95022 & 0.7952 & 0.70936 & 0.16261 & 0.58527 \\
0.034446 & 0.18687 & 0.75469 & 0.119 & 0.22381 \\
0.43874 & 0.48976 & 0.27603 & 0.49836 & 0.75127
\end{tabular}
>> exactx = ones(5,1); b = A*exactx;
>> [LL, UU] = lu(A) % note "psychologically lower triangular" LL
LL =
\begin{tabular}{rrrrr}
0.73123 & -0.39971 & 0.15111 & 1 & 0 \\
0.33371 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0.036251 & 0.316 & 1 & 0 & 0 \\
0.46173 & 0.24512 & -0.25337 & 0.31574 & 1
\end{tabular}
UU =
\begin{tabular}{rrrrr}
0.95022 & 0.7952 & 0.70936 & 0.16261 & 0.58527 \\
0 & 0.50015 & 0.40959 & 0.60083 & 0.14508 \\
0 & 0 & 0.59954 & -0.076759 & 0.15675 \\
0 & 0 & 0 & 0.81255 & 0.56608 \\
0 & 0 & 0 & 0 & 0.30645
\end{tabular}
```

```
>> [L, U, P] = lu(A)
L =
\begin{tabular}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0.33371 & 1 & 0 & 0 & 0 \\
0.036251 & 0.316 & 1 & 0 & 0 \\
0.73123 & -0.39971 & 0.15111 & 1 & 0 \\
0.46173 & 0.24512 & -0.25337 & 0.31574 & 1
\end{tabular}
U =
    0.95022 
        0.16261
        0.58527
        0.14508
        0.15675
        0.56608
P =
\begin{tabular}{lllll}
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1
\end{tabular}
>> max(max(P'*L - LL))) % we see LL is P'*L
ans =
    0
>> y = L \ (P*b); % now to solve Ax = b...
>> x = U \ y
x =
    1
    1
    1
    1
    1
>> norm(x - exactx, 2) % within roundoff error of exact soln
ans =
    3.5786e-15
```


[^0]: ${ }^{1}$ This is an abstraction: e.g., some hardware can do $y=a * x+b$ in one FMA flop ("Fused Multiply and Add") but then needs several FMA flops for a single division. For a trip down this sort of rabbit hole, look up the "Fast inverse square root" as used in the source code of the video game "Quake III Arena".

