
Numerical Analysis Hilary Term 2024

Lecture 3: QR Factorization

Definition: a square real matrix Q is orthogonal if QT = Q−1. This is true if, and only

if, QTQ = I = QQT.

Example: the permutation matrices P in LU factorization with partial pivoting are

orthogonal.

Proposition. The product of orthogonal matrices is an orthogonal matrix.

Proof. If S and T are orthogonal, (ST )T = TTST so

(ST )T(ST ) = TTSTST = TT(STS)T = TTT = I.

Definition: The scalar (dot)(inner) product of two vectors

x =


x1

x2
...

xn

 and y =


y1
y2
...

yn


in Rn is

xTy = yTx =
n∑

i=1

xiyi ∈ R

Definition: Two vectors x, y ∈ Rn are orthogonal if xTy = 0. A set of vectors

{u1, u2, . . . , ur} is an orthogonal set if uT
i uj = 0 for all i, j ∈ {1, 2, . . . , r} such that

i ̸= j.

Lemma. The columns of an orthogonal matrixQ form an orthogonal set, which is moreover

an orthonormal basis for Rn.

Proof. Suppose that Q = [q1 q2 · · · qn], i.e., qj is the jth column of Q. Then

QTQ = I =


qT1
qT2
...

qTn

 [q1 q2 · · · qn] =


1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 .

Comparing the (i, j)th entries yields

qTi qj =

{
0 i ̸= j

1 i = j.

Note that the columns of an orthogonal matrix are of length 1 as qTi qi = 1, so they form

an orthonormal.
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To see that it forms a basis, let x ∈ Rn be any vector. One has x = QQTx = Qc where

c = QTx, so x =
∑n

i=1 ciqi.

Lemma. If u ∈ Rn, P is n-by-n orthogonal and v = Pu, then uTu = vTv.

Proof. vTv = (Pu)T(Pu) = (uTPT)(Pu) = uT(PTP )u = uTu.

Definition: The outer product of two vectors x and y ∈ Rn is

xyT =


x1y1 x1y2 · · · x1yn
x2y1 x2y2 · · · x2yn
...

...
. . .

...

xny1 xny2 · · · xnyn

 ,

an n-by-n matrix (notation: xyT ∈ Rn×n). More usefully, if z ∈ Rn, then

(xyT)z = xyTz = x(yTz) =

(
n∑

i=1

yizi

)
x.

Definition: For w ∈ Rn, w ̸= 0, the Householder reflector H(w) ∈ Rn×n is the matrix

H(w) = I − 2

wTw
wwT.

Proposition. H(w) is a symmetric orthogonal matrix.

Proof.

Symmetry is straightforward to verify. For orthogonality,

H(w)H(w)T =

(
I − 2

wTw
wwT

)(
I − 2

wTw
wwT

)
= I − 4

wTw
wwT +

4

(wTw)2
w(wTw)wT

= I. 2

Lemma. Given u ∈ Rn, there exists a w ∈ Rn such that

H(w)u =


α

0
...

0

 ≡ v,

say, where α = ±
√
uTu.

Remark: Since H(w) is an orthogonal matrix for any w ∈ R, w ̸= 0, it is necessary for

the validity of the equality H(w)u = v that vTv = uTu, i.e., α2 = uTu; hence our choice

of α = ±
√
uTu.

Proof. Take w = γ(u− v), where γ ̸= 0. Recall that uTu = vTv. Thus,

wTw = γ2(u− v)T(u− v) = γ2(uTu− 2uTv + vTv)

= γ2(uTu− 2uTv + uTu) = 2γuT(γ(u− v))

= 2γwTu.
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So

H(w)u =

(
I − 2

wTw
wwT

)
u = u− 2wTu

wTw
w = u− 1

γ
w = u− (u− v) = v.

2

Now if u is the first column of the n-by-n matrix A,

H(w)A =


α × · · · ×
0
...

0

B

 , where × = general entry.

Similarly for B, we can find ŵ ∈ Rn−1 such that

H(ŵ)B =


β × · · · ×
0
...

0

C


and then 

1 0 · · · 0

0
...

0

H(ŵ)

H(w)A =



α × × · · · ×
0 β × · · · ×
0

0
...

0

0

0
...

0

C


.

Note [
1 0

0 H(ŵ)

]
= H(w2), where w2 =

[
0

ŵ

]
.

Thus if we continue in this manner for the n− 1 steps, we obtain

H(wn−1) · · ·H(w3)H(w2)H(w)︸ ︷︷ ︸
QT

A =


α × · · · ×
0 β · · · ×
...

...
. . .

...

0 0 · · · γ

 = ( ) .

The matrix QT is orthogonal as it is the product of orthogonal (Householder) matrices, so

we have constructively proved that

Theorem. Given any square matrix A, there exists an orthogonal matrix Q and an upper

triangular matrix R such that

A = QR

Notes: 1. This could also be established using the Gram–Schmidt Process.

2. If u is already of the form (α, 0, · · · , 0)T, we just take H = I.

3. Householder reflectors can be applied to a vector in O(n2) flops; 4n2 to be precise. To
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see this, note that Hv = (I − 2wwT )v = v − 2w(wTv). Using this, the QR factorisation

can be computed in O(n3) flops. 4. It is not necessary that A is square: if A ∈ Rm×n, then

we need the product of (a) m− 1 Householder matrices if m ≤ n =⇒

( ) = A = QR = ( )( )

or (b) n Householder matrices if m > n =⇒( )
= A = QR =

( )( )
. (1)

This m > n case is particular important, and we note that one can also write( )
= A = QR =

( )
( ) .

This is called the thin QR factorization, wherein Q ∈ Rm×n has orthonormal columns and

has the same size as A; by contrast, in (1) Q is square orthogonal, and (1) is called the

full QR.
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