Numerical Analysis Hilary Term 2024

Lecture 9: Best Approximation in Inner-Product Spaces

Best approximation of functions: given a function f on $[a, b]$, find the "closest" polynomial/piecewise polynomial (see later sections)/ trigonometric polynomial (truncated Fourier series).
Norms: are used to measure the size of/distance between elements of a vector space. Given a vector space V over the field \mathbb{R} of real numbers, the mapping $\|\cdot\|: V \rightarrow \mathbb{R}$ is a norm on V if it satisfies the following axioms:
(i) $\|f\| \geq 0$ for all $f \in V$, with $\|f\|=0$ if, and only if, $f=0 \in V$;
(ii) $\|\lambda f\|=|\lambda|\|f\|$ for all $\lambda \in \mathbb{R}$ and all $f \in V$; and
(iii) $\|f+g\| \leq\|f\|+\|g\|$ for all $f, g \in V$ (the triangle inequality).

Examples: 1. For vectors $x \in \mathbb{R}^{n}$, with $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{\mathrm{T}}$,

$$
\|x\| \equiv\|x\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}\right)^{\frac{1}{2}}=\sqrt{x^{\mathrm{T}} x}
$$

is the ℓ^{2} - or vector two-norm.
2. For continuous functions on $[a, b]$,

$$
\|f\| \equiv\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)|
$$

is the L^{∞} - or ∞-norm.
3. For integrable functions on (a, b),

$$
\|f\| \equiv\|f\|_{1}=\int_{a}^{b}|f(x)| \mathrm{d} x
$$

is the L^{1} - or one-norm.
4. For functions in

$$
V=\mathrm{L}_{w}^{2}(a, b) \equiv\left\{f:[a, b] \rightarrow \mathbb{R} \mid \int_{a}^{b} w(x)[f(x)]^{2} \mathrm{~d} x<\infty\right\}
$$

for some given weight function $w(x)>0$ (this certainly includes continuous functions on $[a, b]$, and piecewise continuous functions on $[a, b]$ with a finite number of jump-discontinuities),

$$
\|f\| \equiv\|f\|_{2}=\left(\int_{a}^{b} w(x)[f(x)]^{2} \mathrm{~d} x\right)^{\frac{1}{2}}
$$

is the L^{2} - or two-norm - the space $\mathrm{L}^{2}(a, b)$ is a common abbreviation for $\mathrm{L}_{w}^{2}(a, b)$ for the case $w(x) \equiv 1$.
Note: $\|f\|_{2}=0 \Longrightarrow f=0$ almost everywhere on $[a, b]$. We say that a certain property \mathbf{P} holds almost everywhere (a.e.) on $[a, b]$ if property P holds at each point of $[a, b]$ except perhaps on a subset $S \subset[a, b]$ of zero measure. We say that a set $S \subset \mathbb{R}$ has zero measure (or that it is of measure zero) if for any $\varepsilon>0$ there exists a sequence $\left\{\left(\alpha_{i}, \beta_{i}\right)\right\}_{i=1}^{\infty}$ of subintervals of \mathbb{R} such that
$S \subset \cup_{i=1}^{\infty}\left(\alpha_{i}, \beta_{i}\right)$ and $\sum_{i=1}^{\infty}\left(\beta_{i}-\alpha_{i}\right)<\varepsilon$. Trivially, the empty set $\emptyset(\subset \mathbb{R})$ has zero measure. Any finite subset of \mathbb{R} has zero measure. Any countable subset of \mathbb{R}, such as the set of all natural numbers \mathbb{N}, the set of all integers \mathbb{Z}, or the set of all rational numbers \mathbb{Q}, is of measure zero.
Least-squares polynomial approximation: aim to find the best polynomial approximation to $f \in \mathrm{~L}_{w}^{2}(a, b)$, i.e., find $p_{n} \in \Pi_{n}$ for which

$$
\left\|f-p_{n}\right\|_{2} \leq\|f-q\|_{2} \quad \forall q \in \Pi_{n}
$$

Seeking p_{n} in the form $p_{n}(x)=\sum_{k=0}^{n} \alpha_{k} x^{k}$ then results in the minimization problem

$$
\min _{\left(\alpha_{0}, \ldots, \alpha_{n}\right)} \int_{a}^{b} w(x)\left[f(x)-\sum_{k=0}^{n} \alpha_{k} x^{k}\right]^{2} \mathrm{~d} x .
$$

The unique minimizer can be found from the (linear) system

$$
\frac{\partial}{\partial \alpha_{j}} \int_{a}^{b} w(x)\left[f(x)-\sum_{k=0}^{n} \alpha_{k} x^{k}\right]^{2} \mathrm{~d} x=0 \text { for each } j=0,1, \ldots, n,
$$

but there is important additional structure here.
Inner-product spaces: a real inner-product space is a vector space V over \mathbb{R} with a mapping $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ (the inner product) for which
(i) $\langle v, v\rangle \geq 0$ for all $v \in V$ and $\langle v, v\rangle=0$ if, and only if $v=0$;
(ii) $\langle u, v\rangle=\langle v, u\rangle$ for all $u, v \in V$; and
(iii) $\langle\alpha u+\beta v, z\rangle=\alpha\langle u, z\rangle+\beta\langle v, z\rangle$ for all $u, v, z \in V$ and all $\alpha, \beta \in \mathbb{R}$.

Examples: 1. $V=\mathbb{R}^{n}$,

$$
\langle x, y\rangle=x^{\mathrm{T}} y=\sum_{i=1}^{n} x_{i} y_{i}
$$

where $x=\left(x_{1}, \ldots, x_{n}\right)^{\mathrm{T}}$ and $y=\left(y_{1}, \ldots, y_{n}\right)^{\mathrm{T}}$.
2. $V=\mathrm{L}_{w}^{2}(a, b)=\left\{f:(a, b) \rightarrow \mathbb{R} \mid \int_{a}^{b} w(x)[f(x)]^{2} \mathrm{~d} x<\infty\right\}$,

$$
\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) \mathrm{d} x
$$

where $f, g \in \mathrm{~L}_{w}^{2}(a, b)$ and w is a weight-function, defined, positive and integrable on (a, b).
Notes: 1. Suppose that V is an inner product space, with inner product $\langle\cdot, \cdot\rangle$. Then $\langle v, v\rangle^{\frac{1}{2}}$ defines a norm on V (see the final paragraph on the last page for a proof). In Example 2 above, the norm defined by the inner product is the (weighted) L^{2}-norm.
2. Suppose that V is an inner product space, with inner product $\langle\cdot, \cdot\rangle$, and let $\|\cdot\|$ denote the norm defined by the inner product via $\|v\|=\langle v, v\rangle^{\frac{1}{2}}$, for $v \in V$. The angle θ between $u, v \in V$ is

$$
\theta=\cos ^{-1}\left(\frac{\langle u, v\rangle}{\|u\|\|v\|}\right) .
$$

Thus u and v are orthogonal in $V \Longleftrightarrow\langle u, v\rangle=0$.
E.g., x^{2} and $\frac{3}{4}-x$ are orthogonal in $\mathrm{L}^{2}(0,1)$ with inner product $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x$ as

$$
\int_{0}^{1} x^{2}\left(\frac{3}{4}-x\right) \mathrm{d} x=\frac{1}{4}-\frac{1}{4}=0 .
$$

3. Pythagoras Theorem: Suppose that V is an inner-product space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$ such that $\langle u, v\rangle=0$ we have

Proof.

$$
\|u \pm v\|^{2}=\|u\|^{2}+\|v\|^{2} .
$$

$$
\begin{array}{rlr}
\|u \pm v\|^{2} & =\langle u \pm v, u \pm v\rangle=\langle u, u \pm v\rangle \pm\langle v, u \pm v\rangle & \\
& =\langle u, u \pm v\rangle \pm\langle u \pm v, v\rangle & \\
& =\langle u, u\rangle \pm\langle u, v\rangle \pm\langle u, v\rangle+\langle v, v\rangle & \\
& =\langle u, u\rangle+\langle v, v\rangle & \\
& =\|u\|^{2}+\|v\|^{2} . & \text { [orthom (iii)] } \\
&
\end{array}
$$

4. The Cauchy-Schwarz inequality: Suppose that V is an inner-product space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$,

$$
|\langle u, v\rangle| \leq\|u\|\|v\| .
$$

Proof. For every $\lambda \in \mathbb{R}$,

$$
0 \leq\langle u-\lambda v, u-\lambda v\rangle=\|u\|^{2}-2 \lambda\langle u, v\rangle+\lambda^{2}\|v\|^{2}=\phi(\lambda),
$$

which is a quadratic in λ. The minimizer of ϕ is at $\lambda_{*}=\langle u, v\rangle /\|v\|^{2}$, and thus since $\phi\left(\lambda_{*}\right) \geq 0,\|u\|^{2}-\langle u, v\rangle^{2} /\|v\|^{2} \geq 0$, which gives the required inequality.
5. The triangle inequality: Suppose that V is an inner-product space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$ defined by this inner product. For any $u, v \in V$,

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

Proof. Note that

$$
\|u+v\|^{2}=\langle u+v, u+v\rangle=\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2} .
$$

Hence, by the Cauchy-Schwarz inequality,

$$
\|u+v\|^{2} \leq\|u\|^{2}+2\|u\|\|v\|+\|v\|^{2}=(\|u\|+\|v\|)^{2} .
$$

Taking square-roots yields

$$
\|u+v\| \leq\|u\|+\|v\| .
$$

Note: The function $\|\cdot\|: V \rightarrow \mathbb{R}$ defined by $\|v\|:=\langle v, v\rangle^{\frac{1}{2}}$ on the inner-product space V, with inner product $\langle\cdot, \cdot\rangle$, trivially satisfies the first two axioms of norm on V; this is a
consequence of $\langle\cdot, \cdot\rangle$ being an inner product on V. Result 5 above implies that $\|\cdot\|$ also satisfies the third axiom of norm, the triangle inequality.

Least-Squares Approximation

For the problem of least-squares approximation, $\langle f, g\rangle=\int_{a}^{b} w(x) f(x) g(x) \mathrm{d} x$ and $\|f\|_{2}^{2}=$ $\langle f, f\rangle$ where $w(x)>0$ on (a, b).
Theorem. If $f \in \mathrm{~L}_{w}^{2}(a, b)$ and $p_{n} \in \Pi_{n}$ is such that

$$
\begin{equation*}
\left\langle f-p_{n}, r\right\rangle=0 \quad \forall r \in \Pi_{n} \tag{1}
\end{equation*}
$$

then

$$
\left\|f-p_{n}\right\|_{2} \leq\|f-r\|_{2} \quad \forall r \in \Pi_{n},
$$

i.e., p_{n} is a best (weighted) least-squares approximation to f on $[a, b]$.

Proof.

$$
\begin{aligned}
\left\|f-p_{n}\right\|_{2}^{2}= & \left\langle f-p_{n}, f-p_{n}\right\rangle \\
= & \left\langle f-p_{n}, f-r\right\rangle+\left\langle f-p_{n}, r-p_{n}\right\rangle \quad \forall r \in \Pi_{n} \\
& \text { Since } r-p_{n} \in \Pi_{n} \text { the assumption (1) implies that } \\
= & \left\langle f-p_{n}, f-r\right\rangle \\
\leq & \left\|f-p_{n}\right\|_{2}\|f-r\|_{2} \text { by the Cauchy-Schwarz inequality. }
\end{aligned}
$$

Dividing both sides by $\left\|f-p_{n}\right\|_{2}$ gives the required result.
Remark: the converse is true too (see problem sheet 3).
This gives a direct way to calculate a best approximation: we want to find $p_{n}(x)=\sum_{k=0}^{n} \alpha_{k} x^{k}$ such that

$$
\begin{equation*}
\int_{a}^{b} w(x)\left(f-\sum_{k=0}^{n} \alpha_{k} x^{k}\right) x^{i} \mathrm{~d} x=0 \text { for } i=0,1, \ldots, n \text {. } \tag{2}
\end{equation*}
$$

[Note that (2) holds if, and only if,

$$
\left.\int_{a}^{b} w(x)\left(f-\sum_{k=0}^{n} \alpha_{k} x^{k}\right)\left(\sum_{i=0}^{n} \beta_{i} x^{i}\right) \mathrm{d} x=0 \quad \forall q=\sum_{i=0}^{n} \beta_{i} x^{i} \in \Pi_{n} .\right]
$$

However, (2) implies that

$$
\sum_{k=0}^{n}\left(\int_{a}^{b} w(x) x^{k+i} \mathrm{~d} x\right) \alpha_{k}=\int_{a}^{b} w(x) f(x) x^{i} \mathrm{~d} x \text { for } i=0,1, \ldots, n
$$

which is the component-wise statement of a matrix equation

$$
\begin{equation*}
A \alpha=\varphi, \tag{3}
\end{equation*}
$$

to determine the coefficients $\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)^{\mathrm{T}}$, where $A=\left\{a_{i, k}, i, k=0,1, \ldots, n\right\}$, $\varphi=\left(f_{0}, f_{1}, \ldots, f_{n}\right)^{\mathrm{T}}$,

$$
a_{i, k}=\int_{a}^{b} w(x) x^{k+i} \mathrm{~d} x \text { and } f_{i}=\int_{a}^{b} w(x) f(x) x^{i} \mathrm{~d} x .
$$

The system (3) are called the normal equations.
Example: the best least-squares approximation to e^{x} on $[0,1]$ from Π_{1} in $\langle f, g\rangle=$ $\int_{a}^{b} f(x) g(x) \mathrm{d} x$. We want

$$
\int_{0}^{1}\left[\mathrm{e}^{x}-\left(\alpha_{0} 1+\alpha_{1} x\right)\right] 1 \mathrm{~d} x=0 \text { and } \int_{0}^{1}\left[\mathrm{e}^{x}-\left(\alpha_{0} 1+\alpha_{1} x\right)\right] x \mathrm{~d} x=0 .
$$

\Longleftrightarrow

$$
\begin{aligned}
\alpha_{0} \int_{0}^{1} \mathrm{~d} x+\alpha_{1} \int_{0}^{1} x \mathrm{~d} x & =\int_{0}^{1} \mathrm{e}^{x} \mathrm{~d} x \\
\alpha_{0} \int_{0}^{1} x \mathrm{~d} x+\alpha_{1} \int_{0}^{1} x^{2} \mathrm{~d} x & =\int_{0}^{1} \mathrm{e}^{x} x \mathrm{~d} x
\end{aligned}
$$

i.e.,

$$
\left[\begin{array}{ll}
1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{e}-1 \\
1
\end{array}\right]
$$

$\Longrightarrow \alpha_{0}=4 \mathrm{e}-10$ and $\alpha_{1}=18-6 \mathrm{e}$, so $p_{1}(x):=(18-6 \mathrm{e}) x+(4 \mathrm{e}-10)$ is the best approximation.
Proof that the coefficient matrix A is nonsingular will now establish existence and uniqueness of (weighted) $\|\cdot\|_{2}$ best-approximation.
Theorem. The coefficient matrix A is nonsingular.
Proof. Suppose not $\Longrightarrow \exists \alpha \neq 0$ with $A \alpha=0 \Longrightarrow \alpha^{\mathrm{T}} A \alpha=0$

$$
\Longleftrightarrow \quad \sum_{i=0}^{n} \alpha_{i}(A \alpha)_{i}=0 \quad \Longleftrightarrow \quad \sum_{i=0}^{n} \alpha_{i} \sum_{k=0}^{n} a_{i k} \alpha_{k}=0,
$$

and using the definition $a_{i k}=\int_{a}^{b} w(x) x^{k} x^{i} \mathrm{~d} x$,

$$
\Longleftrightarrow \quad \sum_{i=0}^{n} \alpha_{i} \sum_{k=0}^{n}\left(\int_{a}^{b} w(x) x^{k} x^{i} \mathrm{~d} x\right) \alpha_{k}=0
$$

Rearranging gives

$$
\int_{a}^{b} w(x)\left(\sum_{i=0}^{n} \alpha_{i} x^{i}\right)\left(\sum_{k=0}^{n} \alpha_{k} x^{k}\right) \mathrm{d} x=0 \text { or } \int_{a}^{b} w(x)\left(\sum_{i=0}^{n} \alpha_{i} x^{i}\right)^{2} \mathrm{~d} x=0
$$

which implies that $\sum_{i=0}^{n} \alpha_{i} x^{i}=0$ and thus $\alpha_{i}=0$ for $i=0,1, \ldots, n$. This contradicts the initial supposition, and thus A is nonsingular.

Remark:

- Note in the simplest least-squares approximation problem $\min _{x}\|A x-b\|_{2}$ that we dealt with in lecture 4, the theorem gives the solution $A^{T}(A x-b)=0$, that is, $x=\left(A^{T} A\right)^{-1} A^{T} b$. This coincides with the QR-based solution derived in lecture 4 .
- The above theorem does not imply that the normal equations are usable in practice: the method would need to be stable with respect to small perturbations. In fact, difficulties arise from the "ill-conditioning" of the matrix A as n increases. The next lecture looks at a fix.

