
Numerical Analysis Hilary Term 2024

Lecture 12–13: Introduction to numerical methods for initial-value problems

Initial value problems (IVP)1: These arise everywhere in mathematics where we wish

to model the evolution in time of a given system.

Definition 1. Let I = [x0, X] ⊂ R be a (time) interval and D ⊂ Rd be an open subset,

where d ∈ N+ denotes the space dimension.

� A first-order ordinary differential equation (ODE) is an equation of the form

y′(x) = f(x,y) ,

where the righthand side is a function f : I ×D → Rd.

� An initial value problem (IVP) is an ODE with an initial condition, that is,

y′(x) = f(x,y) , y(x0) = y0 .

The goal is to find y(x), either at the final (time) value x = X, or any x ∈ [x,X].

We’ll focus on IVPs in this course, but another important class of ODEs is boundary value

problems (BVP), where the condition(s) are imposed at e.g. both the initial and final

values x = x and X (and more intricate conditions in domains I ⊆ R2 and I ⊆ R3).

Picard’s Theorem gives sufficient conditions to ensure that the IVP admits a unique

solution2.

Picard’s Theorem. Suppose that f is continuous in a neighborhood U ⊂ R1+d of

(x0,y0) that contains the (closed) cylinder

R = {(x,y) : x0 ≤ x ≤ XM , ∥y − y0∥ ≤ YM} ,

where XM > x0 and YM > 0 are constants. Suppose also that there exists a positive

constant L such that

∥f(x,y)− f(x, z)∥ ≤ L∥y − z∥

holds whenever (x,y) and (x, z) lie in R. Finally, letting

M := max{∥f(x,y)∥ : (x,y) ∈ R} ,

suppose that M(XM − x0) ≤ YM . Then, there exists a unique continuously differentiable

function

[x0, XM ] ∋ x 7→ y(x) ∈ Rd

that is the solution to our IVP.

Remarks about Picard’s theorem.
1The remaining lecture notes on IVP are based on notes by Patrick Farrell, Yuji Nakatsukasa, Alberto Paganini,

and Endre Süli. Many of the figures presented are courtesy of Maike Meier.
2In the remainder, we only deal with problems that satisfy the conditions in Picard’s theorem, and assume y is

differentiable as many times as we take derivatives. For more details about Picard’s theorem, including the proof,

we refer to the lecture notes of A1 Differential Equations. Another source is chapter 11 of Nick Trefethen’s book

Exploring ODEs, which is freely available at http://people.maths.ox.ac.uk/trefethen/Exploring.pdf
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� The solution, if it exists, can be expressed by the integral equation

y(x) = y(x0) +

∫ x

x0

f(t,y(t))dt , (1)

which is obtained by integrating the IVP, and where the integration is to be under-

stood componentwise.

� Picard’s theorem guarantees the existence of a solution only up to a finite time XM ;

consider : y′ = y2, y(0) = 1, which has solution y(x) = (1 − x)−1 and blows up at

x = 1.

� If an IVP satisfies the assumptions of Picard’s theorem, its solution is stable on the

bounded interval [x0, X]. This means that if y : [x0, X] → D solves the IVP

y′(x) = f(x,y) , y(x0) = y0 , (2)

and ỹ : [x0, X] → D solves the same ODE with a perturbed initial condition ỹ0, that

is,

ỹ′(x) = f(x, ỹ) , ỹ(x0) = ỹ0 ,

then

∥y(x)− ỹ(x)∥ ≤ eL(X−x0)∥y0 − ỹ0∥ ∀x ∈ [x0, X] .

(We’ll prove a related result in the theorem below.) This implies that a small error

in the initial condition does not compromise dramatically the solution of the IVP.

This is an important property—small errors in y, either at x0 or some other x ∈
[x0, X), would not stop us from getting an accurate y at x = X. However, note that

the constant eL(X−x0) in the above bound grows exponentially as the final time X

increases.

Note. Any higher-order IVP can be reformulated as a larger first-order IVP. The

simplest way to do so is to define ŷ :=
[
y, y′, y′′, . . . , y(k)

]T
and solve the IVP with

respect to ŷ. We therefore mainly consider numerical methods for first-order problems.

It is also possible to reformulate nonautonomous problems as larger autonomous ones

(wherein y′ = f(y), by working with ŷ :=

[
x

y

]
), so sometimes we will restrict ourselves

to autonomous ones when it is convenient to do so.

Numerical methods for IVPs: basic idea (Explicit and Implicit methods)

An inconvenient truth is that most IVPs (and most differential equations) cannot be

solved analytically (i.e., exactly, to obtain closed-form solutions). It therefore becomes

necessary to find approximate solutions with a numerical algorithm. Fortunately, a number

of reliable and efficient methods are available for such solution. The remainder of this

course is devoted to these methods and their analysis.

Assume that the IVP

y′ = f(x,y) , y(x0) = y0 ,

admits a unique stable solution y : [x0, X] → D that is defined on the bounded interval

[x0, X]. How can we compute a numerical approximation of y that can be made arbitrarily
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accurate? A simple idea is to first divide the interval [x0, X] into N ∈ N+ subintervals

defined by the equidistant points xn = x0 + nh, n = 0, . . . , N , where the step size h is

h = (X − x0)/N . To each time step xn, we associate an approximation yn of y(xn).

y0 = 

y1 

y2 

yn 

y(x0)
y(x1)

y(x2)

Exact solution

Approximations

y(xn)

yN 

x0 x1 x2

h

xn xN=X

y(xN)=y(X)

To define how to compute these approximations, we take inspiration from a variant of

the integral equation (1)

y(xn+1) = y(xn) +

∫ xn+1

xn

f(x,y(x)) dx ,

This equality suggests that, if we have already computed an approximation yn of y(xn),

we could compute yn+1 by adding to yn an approximation of the integral appearing on

the right-hand side. There is therefore a deep connection between quadrature and the

solution of IVPs. Indeed if f(x,y) = f(x), i.e., f does not depend on y, then computing y

is a standard quadrature problem, and can be solved by e.g. Gauss quadrature. Starting

with n = 0, we could iterate such a strategy to compute the entire sequence {yn}Nn=0. In

what follows, we construct three different schemes based on three different (and still very

similar) approximations of the integral and investigate the impact that this choice has on

the properties of the resulting numerical method.

To construct an approximation of the integral, we recall that by the mean value theorem

there is a ξ ∈ [xn, xn+1] such that∫ xn+1

xn

f(x,y(x)) dx = hf(ξ,y(ξ)) .

Therefore, we can construct an approximation by replacing ξ with a value s we like. The

resulting numerical approximation rule is called a rectangle rule. A consequence is that,

for any s ∈ [xn, xn+1], the approximation error is at most∫ xn+1

xn

f(x,y(x)) dx− hf(s,y(s)) = h(f(ξ,y(ξ))− f(s,y(s))) ≤ h max
r∈[xn,xn+1]

|f(r,y(r))− f(s,y(s))|.

For instance, we can choose s = xn, so that∫ xn+1

xn

f(x,y(x)) dx ≈ hf(xn,y(xn)) .
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Inserting this gives

y(xn+1) ≈ y(xn) + hf(xn,y(xn)) ,

which motivates the definition of the explicit Euler method3

yn+1 = yn + hf(xn,yn) .

Two other interesting choices are ξ = xn+1 and ξ = (xn + xn+1)/2, which give rise to the

implicit Euler method

yn+1 = yn + hf(xn+1,yn+1)

and the implicit midpoint rule

yn+1 = yn + hf(xn + h/2, (yn + yn+1)/2) ,

respectively.

Here is an illustration of the three methods.

f(xn, y(xn))

f(xn+1, y(xn+1))

x
n

x
n+1 x

n
x

n+1
x

n
x

n+1
x

n
x

n+1

f(xn, yn)

yn+1 = yn + hf(xn,yn)
xn+1

y(xn+1) = 

y(xn) + ∫xn       
f(x,y(x))dx

f(xn, yn) f(xn, yn)

f(xn+  , (yn+yn+1)/2)

f(xn+1, yn+1)
f(xn+1, yn+1)

Exact solution Explicit Euler
yn+1 = yn + hf(xn+1,yn+1) yn+1 = yn + hf(xn+   , (yn+yn+1)/2)

Implicit Euler Implicit midpoint rule

h
2
-

h
2
-

Note the occurrence of yn+1 on the right-hand side of these last two methods. These

numerical methods are called implicit, because computing yn+1 requires solving a (generally

nonlinear) system, which makes them more computationally expensive than explicit Euler.

The arising equations are typically solved with Newton’s method, which you saw in M4

Constructive Mathematics. Explicit methods are faster per timestep, but as we will see

often suffer from severe timestep restrictions to retain stability, and implicit methods are

usually faster for such problems.

Examples. We test these methods on two different examples. First, we consider the

linear test case

y′ = λy , y0 = 1 , x ∈ [0, 1] . (3)

For λ = 3 and N = 10, we observe that all three methods compute a qualitatively

correct solution, although the one computed with the implicit midpoint rule is way more

accurate. Doubling the value ofN , we see that the accuracy of the Euler methods improves,

although they are not nearly as accurate as the implicit midpoint rule.

3The explicit and the implicit Euler methods have been known since 1768! Due, of course, to the great Leonhard

Euler.
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Next, we investigate what happens for negative values of λ. This case is interesting

because the exact solution converges to 0 exponentially as x → ∞. We fix N = 10 and

investigate different values of λ. For λ ∈ [−1,−10], we see that all methods provide a

qualitatively correct solution. For λ < −10, we see that the explicit Euler solution start

oscillating, becoming equioscillatory for λ = −20, and diverging to ±∞ for λ < −20.
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Figure 1: Solving (3) using explicit Euler, midpoint and implicit Euler methods.

For λ < −20, the solution computed with the implicit midpoint rule also starts to

oscillate, although the level of these oscillations cannot be compared with the ones of the

explicit Euler method, and the method does not diverge (not even for λ = −9000). On

the other hand, it is surprising to see that the implicit Euler method provides excellent

solutions for any negative number of λ. This example shows that the stability of a numerical

method can vary drastically. We will explore this further in the upcoming lectures.

The second test case we consider is the following IVP:

y′ =

(
y2
−y1

)
, y0 =

(
1

0

)
, x ∈ [0, 2π] , (4)

whose analytical (exact) solution is y(x) =
(
cos(x)
sin(x)

)
. This case is interesting because the

quantity Q(y) := ∥y(x)∥ is constant in time. We fix N = 40 and plot the orbit (that is,

the curve t 7→ y(x)) of the numerical solutions computed with the three methods above

and the evolution of their quantity Q.

The numerical solutions are illustrated in Figure 2. We see that the implicit midpoint

rule is the only method that preserves Q, and that it does it up to machine precision! The

laws of physics are typically formulated by considering the conservation laws of energy,

mass, momentum, etc., and numerical methods that exactly preserve key structural prop-

erties of the underyling models are now of prime importance. This line of thinking has led

to a beautiful confluence of numerical analysis with geometry and topology, leading to the

field called geometric numerical integration (which is off-syllabus).

Convergence and consistency of a one-step method To discuss the convergence

and convergence speed of methods, we formally define the class of one-step methods.

Definition 2. A one-step method is a function Ψ that takes the triplet (s,y, h) ⊂ R ×
Rd × R and a function f , and computes an approximation Ψ(s,y, h, f) of y(s+ h), which
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Figure 2: Numerical solutions for (4).

is the solution at s+ h of the IVP

y′(x) = f(x,y) , y(s) = y .

Here, we tacitly assume that y(s + h) exists. Additionally, the timestep h may need to be

sufficiently small for Ψ to be well defined.

Definition 3. A one-step method Ψ is said to be consistent if

Ψ(s,y, 0, f) = y

and
d

dh
Ψ(s,y, h, f)|h=0 = f(s,y) .

Informally, consistency imposes that the derivative is computed sensibly. It can be

seen as a minimum requirement for a good method—the more interesting question is the

consistency order, which indicates how quickly the consistency error goes to 0 as h → 0.

To examine this, we define

Definition 4. The consistency error (also known as the local trunction error) τ is defined

as

τ (s,y, h, f) :=
y(s+ h)− y

h
− Ψ(s,y, h, f)− y

h
=

y(s+ h)−Ψ(s,y, h, f)

h
, (5)

where y(s+ h) is the solution at s+ h of the IVP.

The following lemma gives additional insight about the definition of consistent one-step

method. The gist of it is that a one-step method is consistent if the consistency error can

be made arbitrarily small by reducing h.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if, for any fixed f ,

∥τ (s̃, ỹ, h, f)∥ → 0 as h → 0

Lecture 12–13 pg 6 of 9



locally uniformly in (s̃, ỹ) ∈ R, where R is the cylinder from Picard’s Theorem.

It is sometimes convenient to represent an abstract one-step method via its increment

function.

Lemma. Assume that h 7→ Ψ(s,y, h, f) is continuously differentiable in a neighborhood

of 0. Then, Ψ is consistent if and only if there is a continuous increment function h 7→
ψ(s,y, h, f) such that

Ψ(s,y, h, f) = y + hψ(s,y, h, f) , ψ(s,y, 0, f) = f(s,y) .

We also define the global error

en := y(xn)− yn.

Then e := eN = y(xN) − yN is the (global) error in the solution at x = X. With a good

method, we hope e → 0 as the step size h → 0 (and hence τ → 0).

Theorem. Let Ψ be a consistent one-step method and assume that its increment function

ψ is Lipschitz continuous with respect to y, that is, that there exists a positive constant

Lψ such that, for 0 ≤ h ≤ h0 and for the same region R of Picard’s theorem,

∥ψ(x,y, h, f)−ψ(x, z, h, f)∥ ≤ Lψ∥y − z∥ for(x,y), (x, z) inR .

Then, assuming that (xn,yn) remains in R, it follows that

e ≤
(
exp (Lψ(xN − x0))− 1

Lψ

)
max

n=0,...,N−1
∥τ (xn,y(xn), h, f)∥ .

Proof. For a generic n ∈ {1, . . . , N − 1},

en+1= ∥y(xn+1)− yn+1∥ ,
= ∥y(xn+1)−Ψ(xn,yn, h, f)∥ ,
= ∥y(xn+1)−Ψ(xn,y(xn), h, f) +Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)∥ ,
≤ ∥y(xn+1)−Ψ(xn,y(xn), h, f)∥+ ∥Ψ(xn,y(xn), h, f)−Ψ(xn,yn, h, f)∥ ,
= h∥τ (xn,y(xn), h, f)∥+ ∥ (y(xn) + hψ(x,y(xn), h, f))− (yn + hψ(x,yn, h, f)) ∥ ,
≤ h∥τ (xn,y(xn), h, f)∥+ ∥y(xn)− yn∥+ h∥ψ(x,y(xn), h, f)−ψ(x,yn, h, f)∥ ,
= h∥τ (xn,y(xn), h, f)∥+ en + h∥ψ(x,y(xn), h, f)−ψ(x,yn, h, f)∥ ,
≤ h∥τ (xn,y(xn), h, f)∥+ en + hLψ∥y(xn)− yn∥ ,
= h∥τ (xn,y(xn), h, f)∥+ (1 + hLψ)en .

Iterating recursively, this implies that (note that e0 = 0)

en+1≤ (1 + hLψ)
n+1e0 + h

∑n
k=0(1 + hLψ)

k maxm=0,...,n ∥τ (xm,y(xm), h, f)∥
=

(1+hLψ)
n+1−1

Lψ
maxm=0,...,n ∥τ (xm,y(xm), h, f)∥ .

To conclude the proof, note that 1 + hLψ ≤ exphLψ. 2

Note that the global error accounts for the accumulation of errors over all steps, wheres

the consistency error measures the error in a single step.
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Order of accuracy and consistency order. In the following lectures we will examine

methods that can give higher accuracy than Euler’s methods. To explore these, let us state

a few definitions. A method is said to have the order of accuracy (or just order) p if e ≤ Chp

for some constant C; p > 0 is usually an integer. The related notion of consistency order

is the largest p̃ such that the consistency error ∥τ (s,y, h, f)∥ ≤ C̃hp̃ for some C̃. The

consistency order p̃ measures the local error, whereas p does the global error; they are

usually the same, as the above theorem suggests. Informally, at each step the computation

incurs an error of O(hp̃+1) (note the +1 from the definition (5)), and we perform O(h−1)

steps, so the global error is O(hp̃) = O(hp); the theorem above makes this precise.

In the next lectures we will study two classes of methods—Runge-Kutta and multistep

methods—that can achieve order of accuracy higher than 1. These usually result in more

accurate solutions for a fixed computational budget. In studying these methods, the two

overarching questions we shall address are:

(i) Convergence: Does the method converge to the exact solution as h → 0?

(ii) Stability : How small does h need to be for the computed solution to start resembling

the exact solution?

The theorem above shows that the answer to (i) is straightforward for one-step methods

(including Runge-Kutta methods); roughly, convergence holds as h → 0 if the method is

consistent. The second question (ii) is intricate (as we saw already in the discussion of the

test problem (3)), and we’ll explore this question for Runge-Kutta methods in the next

lecture.

For multistep methods, even (i) is not obvious; we’ll treat both questions in the final

lectures.

Listing 1: l11 ivp1.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 10; h = 1/N; lambda = -20; %modify these parameters to experiment

3 expEul = nan(1, N+1); impEul = nan(1, N+1); impMpr = nan(1, N+1);

4 y0 = 1; expEul (1) = y0; impEul (1) = y0; impMpr (1) = y0;

5

6 for ii = 1:N

7 expEul(ii+1) = expEul(ii )*(1+h*lambda );

8 impEul(ii+1) = impEul(ii)/(1-h*lambda );

9 impMpr(ii+1) = impMpr(ii )*(1+h*lambda /2)/(1 -h*lambda /2);

10 end

11

12 t = linspace(0, 1, N+1); figure (1);

13 plot(t, exp(lambda*t), t, impEul , ’*-’, t, impMpr , ’k*-’,t, expEul , ’*-’)

14 legend ({’exact’, ’impEul ’, ’impMpr ’,’expEul ’})

Listing 2: l11 ivp2.m

1 clear , set(0,’DefaultFigureWindowStyle ’,’docked ’)

2 N = 40; T = 2*pi; h = T/N; A = [0 1; -1 0];
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3 expEul = nan(2, N+1); impEul = nan(2, N+1); impMpr = nan(2, N+1);

4 y0 = [1; 0]; expEul (:,1) = y0; impEul (:,1) = y0; impMpr (:,1) = y0;

5

6 for ii = 1:N

7 expEul(:,ii+1) = (eye (2)+h*A)* expEul(:,ii);

8 impEul(:,ii+1) = (eye(2)-h*A)\ impEul(:,ii);

9 impMpr(:,ii+1) = (eye(2)-h*A/2)\(( eye (2)+h*A/2)* impMpr(:,ii));

10 end

11 figure (2); subplot (1,2,1);

12 plot(expEul (1,:), expEul (2,:), ’*-’, ’linewidth ’, 4);

13 plot(impEul (1,:), impEul (2,:), ’*-’, ’linewidth ’, 4);

14 plot(impMpr (1,:), impMpr (2,:), ’*-’, ’linewidth ’, 4);

15 axis equal

16 legend ({’expEul ’, ’impEul ’, ’impMpr ’})

17 subplot (1,2,2), t = linspace(0, T, N+1); Q = @(y) sqrt(sum(y.^2, 1));

18 plot(t, Q(expEul), ’*-’, t, Q(impEul), ’*-’, t, Q(impMpr), ’*-’,’linewidth ’, 4)

19 title(’Q(y(t))’,’FontSize ’ ,24);

20 fprintf(’max(abs(Q(impMpr )-1)) = %e\n’, max(abs(Q(impMpr )-1)))
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