
Numerical Analysis Hilary Term 2024

Lecture 14–15: Runge–Kutta methods

Runge–Kutta methods: Runge–Kutta (RK) methods form a broad class of algorithms

for the numerical solution of IVPs. The idea is to achieve a higher order of accuracy than

1 (as in Euler’s method) by approximately finding the derivative f at ’intermediate values’

(called stages) between xn and xn+1 (and similarly yn and yn+1).

The class includes both explicit and implicit schemes. When applications call for an

integrator with some kind of stability or conservation property, there usually exists a suit-

able RK method. In particular, RK methods can be made arbitrarily high-order without

the loss of stability.

Definition 1. The family of s-stage Runge–Kutta methods is defined by

Ψ(x,y, h, f) = y + h
s∑

i=1

biki , (1)

where the stages ki (recall that y ∈ Rd, and also ki ∈ Rd) are the solutions of the coupled

system of (generally nonlinear) equations

ki := f(x+ cih,y + h
s∑

j=1

aijkj) , i = 1, . . . , s . (2)

The coefficients {ci}si=1 are always given by

ci :=
s∑

j=1

aij i = 1, . . . , s .

Definition 2. The coefficients of a Runge–Kutta method are commonly summarized in a

Butcher tableau1

c A[
b⊤ .

Example 3. The explicit Euler method, the implicit Euler method, and the implicit mid-

point rule are Runge–Kutta methods. Their Butcher tables are

0 0

1
,

1 1

1
, and

1/2 1/2

1
, respectively.

Example 4. Let us derive two famous RK methods using Taylor expansions. Consider

the following family of methods (where for simplicity we assume d = 1, i.e., yn ∈ R is a

scalar and write yn, ki etc):

yn+1 = yn + h(b1k1 + b2k2), (3)

1The use of this tableau was introduced by J. C. Butcher in 1963 with the article Coefficients for the study of

Runge–Kutta integration processes.
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where

k1 = f(xn, yn), (4)

k2 = f(xn + c2h, yn + a21hk1), (5)

and where the parameters b1, b2, c2 and a21 are to be determined.2 The method is consistent

iff b1+b2 = 1. Further conditions on the parameters are obtained by attempting to maximise

the order of accuracy of the method. Indeed, expanding the consistency error τn of (3)–(5)

in powers of h, after some algebra we obtain

τn =
1

2
hy′′(xn) +

1

6
h2y′′′(xn)

−b2h[c2fx + a21fyf ]− b2h
2

[
1

2
c22fxx + c2a21fxyf +

1

2
a221fyyf

2

]
+O(h3).

Here we have used the abbreviations f = f(xn, y(xn)), fx = ∂f
∂x
(xn, y(xn)), etc. On noting

that y′′ = fx + fyf , it follows that τn = O(h2) for any f provided that

c2b2 = a21b2 =
1

2
,

which implies that if a21 = c2, b2 = 1/(2a2) and b1 = 1 − 1/(2c2) then the method is

second-order accurate; while this still leaves one free parameter, c2, it is easy to see that no

choice of the parameters will make the method generally third-order accurate. There are

two well-known examples of second-order explicit Runge–Kutta methods of the form (3),

(5):

a) The modified Euler method: In this case we take c2 =
1
2
to obtain

yn+1 = yn + h f

(
xn +

1

2
h,yn +

1

2
hf(xn,yn)

)
;

Ψ(x,y, h, f) = x+ hf

(
x+

h

2
,y +

h

2
f(x,y)

)
. (6)

The figure below illustrates this method.

f(xn, y(xn))

f(xn+  , y(xn+  ))

f(xn+1, y(xn+1)) f(xn, yn)

f(xn+   , yn+   f(xn,yn))

Approximate integral with 
1-point Gauss quadrature

yn+1 = yn  + hf(xn+   ,yn+   f(xn,yn)) 
h
2
- h

2
-

Approximate y(x+  ) with 
explicit Euler

h
2
-

y(xn+  ) ≈ yn+   f(xn,yn) 
h
2
- h

2
-

h
2
- h

2
-

h
2
- h

2
- f(xn+   , yn+   f(xn,yn))

h
2
- h

2
-

2We note in passing that Euler’s explicit method is a member of this family of methods, corresponding to b1 = 1

and b2 = 0. However we are now seeking methods that are at least second-order accurate.
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b) The improved Euler method: This is obtained by choosing c2 = 1, which gives

yn+1 = yn +
1

2
h [f(xn,yn) + f(xn + h,yn + hf(xn,yn))] .

Ψ(x,y, h, f) = y +
h

2
f(x,y) +

h

2
f (x+ h,y + hf(x,y)) . (7)

Here’s the corresponding figure.

f(xn, y(xn))

f(xn+1, y(xn+1)) f(xn, yn) f(xn, yn)

f(xn+1, yn+hf(xn,yn)) f(xn+1, yn+hf(xn,yn))

y(xn + h) ≈ yn + hf(xn,yn) 

Approximate y(xn+1) with 
explicit Euler

Approximate integral with 
trapezium rule

yn+1 = yn +   (f(xn,yn)+f(xn+1, yn + hf(xn,yn)) 
h
2
-

For these two methods it is easily verified by Taylor series expansion that the consistency

error is of the form, respectively,

τn =
1

6
h2

[
fyF1 +

1

4
F2

]
+O(h3),

τn =
1

6
h2

[
fyF1 −

1

2
F2

]
+O(h3),

where

F1 = fx + ffy and F2 = fxx + 2ffxy + f 2fyy.

The family (3)–(5) is referred to as the class of explicit two-stage explicit Runge–Kutta

methods.

Their Butcher tables read

0 0 0

1/2 1/2 0

0 1

and

0 0 0

1 1 0

1/2 1/2

,

respectively.

Example 5. Last but not least, RK4, a 4-stage 4th-order explicit Runge–Kutta method is

a famous and very popular choice.

Ψ(x,y, h, f) = y +
h

6
(k1 + 2k2 + 2k3 + k4) ,
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where

k1 = f(x,y), k2 = f

(
x+

1

2
h,y +

1

2
hk1

)
,

k3 = f

(
x+

1

2
h,y +

1

2
hk2

)
, k4 = f(x+ h,y + hk3).

Its Butcher table reads
0 0 0 0 0

1/2 1/2 0 0 0

1/2 0 1/2 0 0

1 0 0 1 0

1/6 2/6 2/6 1/6

.

We now turn to the convergence properties of RK methods. As mentioned at the end of

the last lecture, convergence in the sense that y converges to the exact solution as h → 0

holds under mild assumptions3. We shall thus look at two questions:

� What is the order of accuracy? (Which, as last lecture’s theorem showed, is essentially

the same as the consistency error)

� Stability: How small does h need to be?

We treat these questions separately.

Order of accuracy/consistency order of RK methods.

It is convenient at this point to restrict our attention to autonomous IVPs. (Recall that

a nonautonomous system can always be made autonomous by increasing its dimension.)

The process of making an IVP autonomous commutes with Runge–Kutta discretisation if

and only if
s∑

i=1

bi = 1, ck =
s∑

j=1

akj k = 1, . . . , s ,

which we assume henceforth. (In other words, if these conditions hold, the RK discreti-

sation of the autonomised system is the autonomisation of the RK discretisation of the

original problem.)

By computing appropriate Taylor expansions (as in Example 4), it is possible to derive

algebraic conditions the Runge–Kutta coefficients must satisfy for the method to have a

targeted consistency order. For example:

Lemma 6. A Runge–Kutta method is consistent if and only if
∑s

i=1 bi = 1. If the condi-

tion
s∑

i=1

bici =
1

2

3Strictly speaking, it is not trivial to apply that theorem to general RK methods, which cannot be written

easily, as writing a step as Ψ(s,y, h, f) is not trivial, especially for implicit methods. Nonetheless an analogous

result still holds; we refer to Section II.3 of the book by Hairer, Norsett, and Wanner for details.
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is also satisfied, the Runge–Kutta method has consistency order 2, and if the conditions

s∑
i=1

bic
2
i =

1

3
and

s∑
i=1

bi

s∑
j=1

aijcj =
1

6

are also satisfied, the Runge–Kutta method has consistency order 3.

Nonexaminable: The following table indicates the number of conditions as described

above that a Runge–Kutta method must satisfy to have order p:

p 1 2 3 4 5 6 7 8 9 10 20

#conditions 1 2 4 8 17 37 85 200 486 1205 20247374
.

The number of stages of a Runge–Kutta method provides an interesting upper bound

on its consistency order.

Lemma 7. The (consistency) order p of an s-stage Runge–Kutta method is bounded by

p ≤ 2s. If the Runge–Kutta method is explicit, then p ≤ s.

To evolve a numerical solution from xn to xn+1 with a Runge–Kutta method, one

needs to compute the stages ki. If the Runge–Kutta method is explicit, these stages can

be computed sequentially (and at a low-cost) starting from k1 (a Runge–Kutta method is

explicit if aij = 0 whenever j ≥ i, i.e. the matrixA is strictly lower-triangular). An example

of this is the explicit Euler method. If A is lower-triangular (i.e. possibly aii ̸= 0), then

the scheme is said to be diagonally-implicit ; one can compute the stages ki sequentially,

solving a sequence of nonlinear problems. The implicit Euler and implicit midpoint rules

are examples of diagonally-implicit RK methods. Finally, if A enjoys neither of these

structures, the RK method is said to be fully implicit; one must solve a large coupled

nonlinear system for all stages simultaneously.

It is possible to construct Runge–Kutta methods that achieve maximal order. So-called

Butcher barriers quantify the minimal amount of stages that an explicit Runge–Kutta

method of order p requires (nonexaminable):

p 1 2 3 4 5 6 7 8 ≥ 9

minimal value of s 1 2 3 4 6 7 9 11 ≥ p+ 3
.

This implies that a Runge–Kutta method that has maximal order must be implicit.

Stability of Runge–Kutta methods

As discussed above, if the step size h is sufficiently small the computed solution with

a RK method tends to the exact solution. This does not tell us how small h needs to

be. Indeed, we have seen that numerical methods for IVPs may encounter stability issues

in the last lecture. We now study the appropriate values of h; taking h too small means

we’ll do many (O(h−1)) steps to find y(X), which is undesirable. For simplicity, we only

consider autonomous ODEs.

Definition 8. A fixed point of y′ = f(y) is a point y∗ such that f(y∗) = 0. A fixed point

y∗ is asymptotically stable (or attractive) if there exists a ball Bδ(y
∗) (of radius δ > 0

and centered at y∗) such that, whenever y0 ∈ Bδ(y
∗), the solution to y′ = f(y), y(0) = y0

satisfies limx→∞ y(x) = y∗.
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Theorem 9. A fixed point y∗ of an autonomous ODE is asymptotically stable if

σ (Df(y∗)) ⊂ C− := {z ∈ C : Rez < 0} ,

where σ (Df(y∗)) denotes the set of eigenvalues of the matrix Df(y∗).

This theorem implies that, to study the asymptotic stability of y∗, we can restrict our

considerations to the linearised ODE y′ = Df(y∗)(y − y∗), that is, we can restrict our

attention to linear ODEs. To further simplify the analysis, we restrict our attention to a

single eigenvalue, yielding the Dahlquist test equation

y′ = zy , y(0) = 1 , and Rez < 0 . (8)

Clearly, the solution of the Dahlquist test equation is y(x) = exp(zx), which satisfies

limx→∞ y(x) = 0. Therefore, y∗ = 0 is an attractive fixed point.

In what follows we ask the question: Is the fact that y → 0 respected by the computed

solution obtained by a RK method? This can be seen as a ’minimum requirement’ for a

method to be reasonable; if the exact solution is tending to 0 but the computed one isn’t,

that surely cannot be a good method. Conversely, if a method (with a given step size h)

does satisfy yn → 0, then it tends to work well also for more general problems with similar

h, in addition to respecting the asymptocic behavior of fixed points as discussed above;

this is why we look specifically at the Dahlquist test equation (8).

The solution of the Dahlquist test equation obtained with a Runge–Kutta method has

a special structure:

Definition 10. Let Ψ be a Runge–Kutta method. The function

S : C → C , z 7→ S(z) := Ψ(0, 1, 1, f : y 7→ zy) ,

is called the stability function of Ψ (defined in (1)). To shorten the notation, we henceforth

write Ψ(0, 1, 1, z) instead of Ψ(0, 1, 1, f : y 7→ zy).

Lemma 11. If Ψ is a Runge–Kutta method, then Ψ(0, ℓ, h, z) = Ψ(0, 1, 1, zh)ℓ.

Theorem 12. Let {yk}k∈N be the Runge–Kutta solution to the Dahlquist test equation

obtained with a time step h > 0. Then, yk = S(zh)k.

Proof. By direct computation, we can see that

y1 = Ψ(0, 1, h, z) = Ψ(0, 1, 1, zh) = S(zh)

and that

y2 = Ψ(0, y1, h, z) = Ψ(0, 1, 1, zh)y1 = S(zh)y1 = S(zh)2 .

Therefore, we conclude that yk = S(hλ)k. 2

As discussed, it is desirable that the discrete solution {yk}k∈N satisfies limk→∞ yk = 0,

mimicking the behavior of the exact solution to the Dahlquist test equation. When this

happens, we say that {yk}k∈N is asymptotically stable.
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Definition 13. The region in the complex plane

SΨ := {z ∈ C : |S(z)| < 1}

is called the stability region of the Runge–Kutta method. Clearly, {yk}k∈N is asymptotically

stable if zh ∈ SΨ.

It is not so difficult to see that the stability function of an explicit Runge–Kutta method

is a polynomial, which implies that SΨ is bounded. Therefore, the numerical approximation

computed with an explicit Runge–Kutta method cannot be asymptotically stable if the

time step h is too large. This is what we saw in our numerical experiments in the last

lecture. However, the stability function of an implicit Runge–Kutta method is a rational

function, and hence may not suffer from this limitation.

Definition 14. A Runge–Kutta method is said to be A-stable4 if C− ⊂ SΨ.

A-stability guarantees that {yk}k∈N will eventually converge to zero. However, the

decay can be very slow compared to that of the exact solution.

Example 15. Let {yk} be the approximate solution to the Dalhquist test equation obtained

with the implicit midpoint rule and a fixed step size h. By direct computation, we can see

that stability function of the implicit midpoint rule is

S(z) =
1 + z/2

1− z/2
.

The exact solution converges exponentially to zero with rate Rez; the smaller (more nega-

tive) the Rez, the quicker the convergence. On the other hand, {yk} is a geometric sequence

with ratio S(zh). This also converges to zero, but the more negative the Rez, the closer

|S(zh)| to 1, and the slower the decay of {yk}. This implies that, if Rez ≪ 0, the qualitative

behavior of {yk} can be very different from the one of the exact solution.

Therefore, if the initial value problem has a strongly attractive fixed point, it is advisable

to further ensure that limRez→−∞ |S(z)| = 0.

Definition 16. An A-stable method that further satisfies limRez→−∞ |S(z)| = 0 is said to

be L-stable.

One can verify that the implicit Euler method is L-stable, but it is not the only one.

The remainder is nonexaminable.

Construction of explicit/implicit RK methods To construct explicit Runge–Kutta

methods, we start by recalling that the analytic solution of

y′ = f(x,y) , y(x0) = y0 , (9)

4This concept was introduced by G. Dahlquist in 1963 with the article A special stability problem for linear

multistep methods.
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is given by the (implicit) formula

y(x+ h) = y(x) +

∫ x+h

x

f(τ,y(τ)) dτ = y(x) + h

∫ 1

0

f(x+ hτ,y(x+ hτ)) dτ .

Approximating the latter integral with a quadrature rule on [0, 1] with s nodes c1, . . . , cs
and weights b1, . . . , bs returns

y(x+ h) ≈ y(x) + h

s∑
i=1

bif(x+ cih,y(x+ cih)) . (10)

Note that this approximation requires the values y(x+ cih). To make the method explicit,

we approximate the values y(x0 + cih) with explicit Runge–Kutta methods we already

know. This way, we can construct s-stage explicit Runge–Kutta methods by induction.

Example 17. If we choose the 1-point Gauss quadrature rule, that is,

y(x+ h) ≈ y(x) + hf(x+ h/2,y(x+ h/2)) (11)

and approximate y(x+ h/2) with the explicit Euler method, the resulting scheme is (6).

Example 18. If we use the trapezium rule, that is,

y(x+ h) ≈ y(x) +
h

2
f(x,y(x)) +

h

2
f(x+ h,y(x+ h)) ,

and approximate y(x+ h) with the explicit Euler method, the resulting scheme is (7).

A similar approach leads to the most famous explicit Runge–Kutta method RK4.

We have seen that s-stage explicit Runge–Kutta methods have at most order s. Next,

we construct s-stage implicit Runge–Kutta methods whose order is at least s.

Definition 19. Let c1, . . . , cs ∈ [0, 1] be (pairwise distinct) collocation points. The corre-

sponding collocation method is the one-step method defined by

Ψ(x,y, h, f) = ỹ(h) ,

where ỹ is the unique polynomial of degree s that satisfies

ỹ(0) = y and ỹ′(cih) = f(x+ cih, ỹ(cih)) , for i = 1, . . . , s . (12)

Lemma 20. Let Q be the highest-order quadrature rule on [0, 1] that can be constructed

using the nodes c1, . . . , cs, and let pQ be its order (pQ = 1 + the maximal degree of polyno-

mials it integrates exactly). If f is sufficiently smooth and h > 0 is sufficiently small, the

collocation method associated to c1, . . . , cs has order pQ.

Corollary 21. If f is sufficiently smooth and h > 0 is sufficiently small, the order of the

collocation method associated to c1, . . . , cs is at least s and at most 2s (Gauss quadrature).
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It is not obvious, but collocation methods are indeed Runge–Kutta methods.

Lemma 22. Collocation methods are Runge–Kutta methods. Their coefficients are

aij =

∫ ci

0

Lj(τ) dτ , bi =

∫ 1

0

Li(τ) dτ , (13)

where {Li}si=1 are the Lagrange polynomials associated to c1, . . . , cs.

The Gauss collocation methods form a family of arbitrarily high-order A-stable methods

whose stability region is exactly C−.

An example of a family of L-stable RK methods is the Gauss–Radau family. This is

a family of collocation methods where the final quadrature point is fixed to cs = 1 and

the remaining points c1, . . . , cs−1 are chosen to obtain an associated quadrature rule of

maximal order 2s− 1.

For more detailed discussions on RK methods, we refer to the books

� Süli and Mayer, “Introduction to Numerical Analysis”

� Hairer, Norsett, and Wanner, “Solving Ordinary Differential Equations”

� Butcher, “Numerical Methods for Ordinary Differential Equations”
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