
Numerical Analysis Hilary Term 2024

Lecture 16: Multistep methods

Linear multi-step methods

Runge-Kutta methods deliver an approximate solution to

y′ = f(x,y) , y(x0) = y0 , (1)

but tacitly assume that it is possible to evaluate the right-hand side f(x,y) anywhere,

and use a lot of such function evaluations. Instead, linear multi-step methods are more

parsimonious, requiring values of f at grid points only. That is, these methods re-use

quantities that have already been computed, and thus available without extra computation.

Definition 1. Let X > x0 be a final time, N, k ∈ N, N ≥ k, h := (X − x0)/N , and xn :=

x0 + hn. A linear k-step method is an iterative method that computes the approximation

yn+k to y(xn+k) by solving

k∑
j=0

αjyn+j = h

k∑
j=0

βjf(xn+j,yn+j) , (2)

where {αj}kj=0 and {βj}kj=0 are real coefficients. To avoid degenerate cases, we assume that

αk ̸= 0 and that α2
0 + β2

0 ̸= 0.

Note that if βk = 0, the method is explicit.

Non-examinable: It is also possible to construct multi-step methods on nonequidistant

grids, and good timestepping software does so for you.

In the same way Runge-Kutta methods are summarized with Butcher tables, linear

multi-step methods can be summarized with two polynomials.

Definition 2. For the k-step method defined by (2),

ρ(z) =
k∑

j=0

αjz
j and σ(z) =

k∑
j=0

βjz
j (3)

are called the first and second characteristic polynomials.

Example 3. A simple linear 3-step method can be constructed using Simpson’s quadrature

rule. Indeed,

y(xn+1)= y(xn−1) +
∫ xn+1

xn−1
f(x,y(x)) dx

≈ y(xn−1) +
2h
6
(f(xn−1,y(xn−1)) + 4f(xn,y(xn)) + f(xn+1,y(xn+1))) .

This motivates the following linear 2-step method

yn+2 − yn = h

(
2

6
f(xn,yn) +

8

6
f(xn+1,yn+1) +

2

6
f(xn+2,yn+2)

)
(4)

Its first and second characteristic polynomials are

ρ(z) = z2 − 1 and σ(z) =
2

6
(z2 + 4z + 1) . (5)

Here’s an illustration.
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xn xn+1

Degree 2 polynomial through 
(xn,fn), (xn+1,fn+1), and (xn+2, fn+2)

xn+2 xn xn+1 xn+2

f(xn, y(xn))

f(xn+1, y(xn+1))

f(xn+2, y(xn+2))

xn+2y(xn+2) = y(xn) + ∫xn         
f(x,y(x))dx y(xn+2) = y(xn) +     (f(xn,yn)+2f(xn+1,yn+1)+f(xn+2,yn+2))

2h
6
-

Exact solution for y(xn+2): Approximate integral with Simpson's quadrature rule

f(xn+1, yn+1)

f(xn, yn)
f(xn+2, yn+2)

Example 4. Two important families of multistep methods are Adams-Moulton methods

and the Adams-Bashforth methods. The three-step Adams–Moulton method is (an implicit

method)

yn+3 = yn+2 +
1

24
h (9fn+3 + 19fn+2 − 5fn+1 − 9fn) , (6)

and the four-step Adams-Bashforth method is (explicit)

yn+4 = yn+3 +
1

24
h (55fn+3 − 59fn+2 + 37fn+1 − 9fn) (7)

(If you’re curious how they can be derived, see the non-examinable material at the end).

The methods listed above are all good (‘convergent’) methods, in that they compute

solutions that converge to the exact ones as the step size h → 0. Now let us look at

yn+2 = −4yn+1 + 5yn + h(4f(xn+1,yn+1)− 2f(xn,yn)) (8)

and

yn+3 = −2yn+2 + yn+1 + 2yn + h(2f(xn+3,yn+3) + f(xn+2,yn+2) + 3f(xn,yn)). (9)

These methods are consistent— method (8) has consistency order 3, and (9) has 2 (see

below for the precise definition). However, these methods are catastrophically bad—as

h → 0, the error does not decrease, it grows unboundedly! Our next goal is to understand

why the methods in Examples 3 and 4 converge, while methods like (8), (9) do not.

Consistency+Zero-Stabiliy⇒Convergence To gain insight, let us examine what hap-

pens to yn as h → 0 in (9). For tiny h and n = O(1), the recursion effectively yields

yn+3 + 2yn+2 − yn+1 − 2yn = 0. How does yn behave? This is a difference equation, and

one way to solve it is as follows: (as in “Note” in lecture 12) we rewrite (assuming for

simplicity yn are scalars) yn+3

yn+2

yn+1

 =

 −2 1 2

1 0 0

0 1 0

 yn+2

yn+1

yn

 =: A

 yn+2

yn+1

yn

 .
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Since this holds for all n, it follows immediately that (noting that the eigenvalues of A are

−2, 1,−1)  yn+2

yn+1

yn

 = An

 y2

y1

y0

 = X

 (−2)n

1n

(−1)n

X−1

 y2

y1

y0

 (10)

for an invertible matrix X of A’s eigenvectors. Now since (−2)n blows up to ±∞, so

does yn; regardless of f ! Finally, notice that the matrix A =

 −2 1 2

1 0 0

0 1 0

 has the same

structure as the companion matrix from lecture 8!1 Thus the eigenvalues of A are equal

to the roots of the first characteristic polynomial ρ(z) = z3 + 2y2 − y − 2 = 0.

More generally, given any multistep method, any root of ρ(z) outside the unit disk will

lead to similar blowups. What about roots on the unit circle? The answer is that they are

fine if they are simple roots; however multiple roots on the unit circle leads to divergence2.

This motivates the following definition:

Definition 5. A linear k-step method satisfies the root condition if all roots of its first

characteristic polynomial ρ(z) lie inside the closed unit disc, and every root that lies on

the unit circle is simple.

The root condition is thus a necessary condition for a multistep method to be convergent.

The remarkable result by Dahlquist is that this property is also sufficient, as long as the

method is consistent, which is a straightforward condition. That is, “Consistency + root

condition ⇒ Convergence”. Finally, the root condition can be shown to be identical to the

so-called zero-stability (which we define and explain in the non-examinable appendix3).

Thus Dahlquist’s theorem is colloquially often known as

“Consistency + (Zero-)Stability ⇒ Convergence”.

This result has sometimes been called the Fundamental Theorem of Numerical Analysis.

It explains why the method (9) does not converge (the roots of ρ(z) are −5 and 1, violating

the root condition), whereas the other ones are convergent (by checking consistency, and

that the root condition is satisfied).

To state Dahlquist’s theorem precisely, let us define consistency properly for multistep

methods.
1This is why we’re solving the difference equation this way. You may well have seen other ways to solve it.
2This is because companion matrices cannot have eigenvalues of geometric multiplicity 2 or more, because A−λI

has rank deficiency at most one. Put another way, if there is a multiple eigenvalue, A must have a Jordan block of

the form Jλ =

[
λ 1

λ

]
. If |λ| = 1, then ∥Jn

λ ∥2 → ∞ as n → ∞.

3Note that the word ’stability’ in zero-stability is used in a rather different way than the stability we’ve been

discussing, as in A-stability and L-stability, which relate to the question ’how small is small enough for h’. If

confused, think of zero-stability as an exceptional use of the word.
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Definition 6. The consistency error of a linear k-step method with σ(1) ̸= 0 is

τ (h) =

∑k
j=0 αjy(xj)− h

∑k
j=0 βjy

′(xj)

h
∑k

j=0 βj

, (11)

where y is a smooth function. A linear multi-step method has (consistency) order p if

τ (h) = O(hp).

As in Runge-Kutta methods, The consistency error here is defined to model the local error

of the method; for example it reduces to that for one-step methods when k = 1 and αk = 1.

By a simple Taylor expansion of y, we can obtain the following theorem.

Theorem 7. A linear multi-step method has consistency order p if and only if σ(1) ̸= 0

and
k∑

j=0

αj = 0 and
k∑

j=0

αjj
q = q

k∑
j=0

βjj
q−1 for q = 1, . . . , p . (12)

A multi-step method is said to be consistent if these conditions are satisfied at least for

p = 1.

From the above theorem we see that a linear multi-step method is consistent iff

ρ(1) = 0 and ρ′(1) = σ(1) ̸= 0. (13)

In general, these conditions can be reformulated more elegantly (nonexaminable): Equation

(12) is equivalent to ρ(eh)− hσ(eh) = O(hp+1).

To discuss convergence precisely for linear k-step methods, we need to specify some

criteria about the choice of the starting conditions. Below, we say that a set of starting

conditions yi = ηi(h), i = 0, . . . , k − 1 is consistent with the initial value y0 if ηs(h) → y0

as h → 0 for every s = 0, . . . , k − 1.

We are now ready to state Dahlquist’s Equivalence Theorem.

Theorem 8 (Dahlquist’s Equivalence Theorem). For a consistent linear k-step method

with consistent starting values, the root condition (=zero-stability) is necessary and suffi-

cient for convergence, that is, limh→0 yN = y(X) (with N = (X − x0)/h).

Moreover, if τ (h) = O(hp) and ∥y(xs) − ηs(h)∥ = O(hp) for s = 0, . . . , k − 1, then

max0≤n≤N ∥y(xn)− yn∥ = O(hp).

The proof is long and non-examinable, but you should understand the statement.

Stability of linear multi-step methods Now that we understand convergence of mul-

tistep methods, we turn to stability4. Similar to one-step methods, stability is investigated

by applying a linear multi-step method to the Dahlquist test equation y′ = zy, z ∈ C,
y(0) = 1, and h = 1. Recall that the solution to this ODE is y(x) = exp(zx), that

|y(x)| → 0 as t → ∞ whenever Re(z) < 0, and that we call its numerical approximation

{yn}n∈N (asymptotically) stable if yn → 0 as n → ∞ when Re(z) < 0.

4Not to be confused with zero-stability, which was crucial for convergence; here we mean the analogues of

A-stability, L-stability, that is, related to the question of ’how small does h need to be?’
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Our goal is to investigate when the sequence {yn}n∈N computed with a linear k-step

method is stable. First of all, note that the n-th iterate yn satisfies

k∑
j=0

αjyn+j =
k∑

j=0

βjzyn+j , or equivalently,
k∑

j=0

(αj − zβj)yn+j = 0 . (14)

By an argument similar to that surrounding (10), we obtain

yn = p1(n)r
n
1 + . . .+ pℓ(n)r

n
ℓ , (15)

where the rjs are the roots of the polynomial π(x) =
∑k

j=0(αj − zβj)x
j, and the pj(n)s are

polynomials of degree mj − 1, where mj is the multiplicity of rj.

With (15), we can fully analyze the asymptotic behavior of {yn}n∈N. Indeed:

� if π(x) has a zero rj outside the unit disc, than yn grows as |rj|n,

� if an rj is on the unit circle and has multiplicity mj > 1, then yn ∼ nmj−1,

� otherwise, yn → 0 geometrically as n → ∞.

This computation shows that the polynomial π plays a crucial role in this stability

analysis. Therefore, similarly to one-step methods, we introduce the following definitions.

Definition 9. The stability polynomial of a linear k-step method is

π(x) = π(x; z) :=
k∑

j=0

(αj − zβj)x
j = ρ(x)− zσ(x) . (16)

The stability domain of a linear multistep method is

S := {z ∈ C : if π(x; z) = 0, then |x| ≤ 1; multiple zeros satisfy |x| < 1} . (17)

Note that 0 ∈ S if the method is zero-stable (as π(x; 0) = ρ(x)).

Dahlquist’s second barrier theorem places sharp limits on the stability domains of linear

multi-step methods.

Theorem 10 (Dahlquist’s second barrier). An A-stable linear multi-step method must

be implicit and of order p ≤ 2. The trapezium rule is the second-order A-stable linear multi-

step method with the smallest error constant.

The proof is long and omitted, and non-examinable. It is possible to break the Dahlquist

barrier by hybridising between multi-stage (Runge-Kutta) and multi-step methods. Such

methods are called general linear methods5.

Example 11. We conclude with an example illustrating some of the results. Consider

the scalar IVP y′ = sin(x2)y, y(0) = 1. We use explicit Euler, implicit Euler, implicit

midpoint, explicit 4-stage Runge-Kutta, and 4th order Adam-Bashforth method to solve it.

Here are the solutions.
5See General linear methods, J. C. Butcher, Acta Numerica (2006).
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We now look at the error y(xn)−yn, shown in Figure 1. There we also examine the unstable

multistep method (8), which is not zero-stable; we thus expect it to not converge. In fact

the solution blows up and the error diverges to ∞—it hardly gets any worse than that!
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Figure 1: Errors with stable methods (left) and an unstable method (8)

Finally, we can vary the step size h and examine the convergence as h → 0. Higher-

order methods should have better accuracy especially for small h. We confirm this in the

figure (note the loglog scale).
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(MATLAB code is lec16 demo.m)

Summary of lectures 12–15 Here is a summary and key takeaways from the last part

of the course on numerical solution of IVPs:

� Euler’s method; explicit and implicit methods. Implicit methods are more expensive,

but sometimes achieve higher order, and more importantly, more stable (can be A-

stable, L-stable).

� Consistency error (local error as h → 0), order of accuracy (global error) and conver-

gence (does computed y tend to the exact solution as h → 0?).

� Runge-Kutta methods, which achieve higher order of accuracy by evaluating f(x, y)

at ’intermediate points’. Convergence (relatively straightforward from the thereom

in Lecture 12) and stability (A-stable, L-stable).

� Multistep methods, which achieve higher order of accuracy by using previously com-

puted solutions. Convergence (requires zero-stability) and stability (A-stable).

This concludes this course—for further courses related to numerical analysis, check out

e.g.

� Numerical Solution of Partial Differential Equations (Part B)

� Approximation of Functions (Part C, offered –2023)

� Numerical Linear Algebra (Part C)

� Finite Element Method for PDEs (Part C)

� Continuous Optimisation (Part C)

The remainder is nonexaminable.

Constructing multistep methods There is a formal calculus that can be used to

construct families of multi-step methods.
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Definition 12. For a fixed small h > 0, we define:

� the shift operator E : y(x) 7→ y(x+ h),

� its inverse E−1 : y(x) 7→ y(x− h),

� the difference operator ∆ : y(x) 7→ y(x)− y(x− h),

� the identity operator I : y(x) 7→ y(x),

� and the differential operator D : y(x) 7→ y′(x).

Lemma 13. Suppose that y(x) is analytic (hence infinitely differentiable) at x. Then

formally, hD = − log(I−∆).

Proof. First, using Taylor expansion, we can show that

Ey(x)= y(x) + hy′(x) + h2

2
y′′(x) + . . .

= y(x) + hDy(x) + h2

2
D2y(x) + . . . = exp(hD)y(x) ,

and thus, E = exp(hD). This implies that hD = log(E).

Then, using the definition, we see that E−1 = I−∆, and thus E = (I−∆)−1.

Therefore, hD = log(E) = log((I−∆)−1) = − log(I−∆). 2

Example 14. We can construct a multi-step method using the previous lemma. Indeed,

by Taylor expansion of the logarithm log(1− x) = −
∑∞

i=1 x
i/i,

hD = − log(I−∆) =

(
∆+

1

2
∆2 +

1

3
∆3 + . . .

)
, (18)

and thus

hf(xn,y(xn)) =

(
∆+

1

2
∆2 +

1

3
∆3 + . . .

)
y(xn) . (19)

To construct a family of multi-step methods, we truncate the infinite series at different

orders and replace y(xn) with yn. These methods are called backward differentiation for-

mulas, and their simplest instances are

yn − yn−1= hf(xn,yn) , (implicit Euler)
3
2
yn − 2yn−1 +

1
2
yn−2= hf(xn,yn) ,

11
6
yn − 3yn−1 +

3
2
yn−2 − 1

3
yn−3= hf(xn,yn) .

Example 15. Explicit Euler’s method arises from truncating the series

hD =

(
∆− 1

2
∆2 − 1

6
∆3 + . . .

)
E , (20)

which can be derived similarly.

Using the formal equalities

E∆= h
(
I− 1

2
∆− 1

12
∆2 − 1

24
∆3 − 19

720
∆4 + . . .

)
D ,

E∆= h
(
I+ 1

2
∆+ 5

12
∆2 + 3

8
∆3 + 251

720
∆4 + . . .

)
D ,

we can derive the Adams-Moulton methods (6) and Adams-Bashforth methods (7).
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More on zero-stability To compute yk with a linear k-step method, we need the

values y0, . . . ,yk−1. These (except y0) must be approximated with either a one-step (e.g.

Runge-Kutta) method or another multi-step method that uses fewer steps. At any rate,

they will contain numerical errors. Clearly, a meaningful multistep method should be

robust with respect to small perturbations of these initial values.

Definition 16. A linear k-step method is said to be zero-stable if there is a constant

K > 0 such that for every N ∈ N sufficiently large and for any two different sets of initial

data y0, . . . ,yk−1 and ỹ0, . . . , ỹk−1, the two sequences {yn}Nn=0 and {ỹn}Nn=0 that stem from

the linear k-step method with h = (X − x0)/N satisfy

max
0≤n≤N

∥yn − ỹn∥ ≤ K max
j≤k−1

∥yj − ỹj∥ . (21)

Zero-stability of a k-step method can be verified algebraically with the following property,

which is known as the root condition.

Definition 17. A linear k-step method satisfies the root condition if all zeros of its first

characteristic polynomial ρ(z) lie inside the closed unit disc, and every zero that lies on

the unit circle is simple.

Theorem 18. A linear multi-step method is zero-stable for any ODE y′(x) = f(x,y)

with Lipschitz right-hand side, if and only if the linear multi-step method satisfies the root

condition.

This theorem implies that zero-stability of a multi-step method can be determined by

merely considering its behavior when applied to the trivial differential equation y′ = 0; it

is for this reason that it is called zero-stability.

The first Dahlquist barrier theorem For Runge–Kutta methods, we showed that

one can construct s-stage methods of order 2s. Unfortunately, it is not possible to construct

linear k-step methods of order 2k without violating the zero-stability requirement (this

result is non-examinable).

Theorem 19 (The first Dahlquist-barrier). The order p of a zero-stable linear k-step

method satisfies

� p ≤ k + 2 if k is even,

� p ≤ k + 1 if k is odd,

� p ≤ k if βk/αk ≤ 0 (in particular if the method is explicit).

Lecture 16 pg 9 of 9


