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CONTENTS 1

These notes cover the first ten lectures of A2: Metric Spaces and Complex

Analysis, which deals with the theory of Metric Spaces. In preparing these notes I

made considerable use of the previous notes for this section of the course, written

by Kevin McGerty.

Synopsis

Basic definitions: metric spaces, isometries, continuous functions (ε-δ defini-

tion), homeomorphisms, open sets, closed sets. Examples of metric spaces, includ-

ing metrics derived from a norm on a real vector space, particularly `1, `2, `∞-norms

on Rn, the sup norm on the bounded real-valued functions on a set, and on the

bounded continuous real-valued functions on a metric space. The characterisation

of continuity in terms of the pre-image of open sets or closed sets. The limit of a

sequence of points in a metric space. A subset of a metric space inherits a metric.

Discussion of open and closed sets in subspaces. The closure of a subset of a metric

space.

Completeness (but not completion). Completeness of the space of bounded real-

valued functions on a set, equipped with the norm, and the completeness of the

space of bounded continuous real-valued functions on a metric space, equipped with

the metric. Lipschitz maps and contractions. Contraction Mapping Theorem.

Connected metric spaces, path-connectedness. Closure of a connected space is

connected, union of connected sets is connected if there is a non-empty intersection,

continuous image of a connected space is connected. Path-connectedness implies

connectedness. Connected open subset of a normed vector space is path-connected.

Definition of sequential compactness and proof of basic properties of sequen-

tially compact sets. Preservation of sequential compactness under continuous maps,

equivalence of continuity and uniform continuity for functions on a sequentially com-

pact set. Equivalence of sequential compactness with being complete and totally

bounded. The Arzelà-Ascoli theorem (proof non-examinable). Open cover defini-

tion of compactness. Heine-Borel (for the interval only) and proof that compactness

implies sequential compactness (statement of the converse only).

Important notes for 2021/22. The synopsis above differs very slightly from the

published one, in that I have replaced “compact” with “sequentially compact” on

a few occasions. These notions turn out to be the same for metric spaces (as we

will show) but in my opinion using the words interchangably is nonstandard and

potentially confusing. I will fix the synopsis in future years.

I have omitted the number of lectures, since the division into, and timings of,

video lectures will be quite different. This part of the course should be thought of

as comprising roughly one third of A2: Metric Spaces and Complex Analysis, and

would normally be scheduled for 10 lectures.





CHAPTER 1

Metric spaces

1.1. The real numbers and the axiom of choice

The real numbers. I will assume familiarity with the real numbers R as discussed

at some length in the Prelims course Analysis I. I will not repeat the long list of

axioms for the real numbers here. The most important properties we shall need are

• Any non-empty, bounded subset S ⊆ R has a least upper bound sup(S),

which is a real number c such that x 6 c for all x ∈ S, and such that if

c′ is any other number with this property then c′ > c;

• Similarly, any non-empty, bounded subset S ⊆ R has a greatest lower

bound inf(S);

• (Bolzano-Weierstauss) Any bounded subsequence of the reals has a con-

vergent subsequence;

• Any Cauchy sequence of real numbers converges.

It might be a good idea to remind yourself of the precise meaning of these

statements now, though we shall be going over the last two points in a more general

context later in the course.

The Prelims course Analysis I assumed that the real numbers exist. This is not,

by any means, obvious! We will also assume they exist. For some comments on

how they can actually be constructed, see Section 6.5 (which is non-examinable).

The axiom of choice. The following statement, used for example in the proof of

Corollary 5.1.5, seems very uncontroversial: given nonempty subsets S1, S2, . . . of

some set X, we may find a sequence (xn)∞n=1 with xn ∈ Sn for all n. One might

have thought that this is the most trivial induction imaginable: pick x1 ∈ S1, then

pick x2 ∈ S2, and so on. This does indeed show that there are x1, . . . , xN with

xn ∈ Sn for n = 1, . . . , N , but it does not show the infinitary statement about the

existence of a sequence. In fact, the existence of a sequence (xn)∞n=1 with xn ∈ Sn
for all n has the status of a separate axiom of mathematics, called the axiom of

countable choice.

You can learn much more about this and, more particularly, the axiom of choice

itself in the course B1.2: Set Theory. However, the introduction of the Wikipedia

page on the Axiom of Choice is a good read.
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1.2. The definition of a metric space

One of the key definitions of Analysis I was that of the continuity of a function.

Recall that if f : R→ R is a function, we say that f is continuous at a ∈ R if, for

any ε > 0, we can find a δ > 0 such that if |x− a| < δ then |f(x)− f(a)| < ε.

Stated somewhat more informally, this means that no matter how small an ε we

are given, we can ensure f(x) is within distance ε of f(a) provided we demand x is

sufficiently close to – that is, within distance δ of – the point a.

Now consider what it is about real numbers that we need in order for this defi-

nition to make sense: Really we just need, for any pair of real numbers x1 and x2,

a measure of the distance between them. (Note that we needed this notion of dis-

tance in the above definition of continuity for both the pairs (x, a) and (f(x), f(a)).)

Thus we should be able to talk about continuous functions f : X → X on any set

X provided it is equipped with a notion of distance. Even more generally, provided

we have prescribed a notion of distance on two sets X and Y , we should be able

to say what it means for a function f : X → Y to be continuous. In order to make

this precise, we will therefore need to give a mathematically rigorous definition of

what a “notion of distance” on a set X should be. This is the concept of a metric

space.

Definition 1.2.1. Let X be a set. Then a distance function on X is a function

d : X ×X → R with the following properties:

(i) (positivity) d(x, y) > 0 and d(x, y) = 0 if and only if x = y;

(ii) (symmetry) d(x, y) = d(y, x);

(iii) (triangle inequality) if x, y, z ∈ X then we have d(x, z) 6 d(x, y)+d(y, z).

The pair (X, d) consisting of a set X together with a distance function d on it is

called a metric space.

Remark. Often we will not be quite so formal, and will refer to X (rather than

the pair (X, d)) as a metric space. However, it is important to note that the same

space X can have many different distances on it, and in fact that different distances

on the same space X can have wildly differing properties.

Occasionally, we will be more formal, for instance when we have two metric

spaces (X, dX) and (Y, dY ) and wish to make it clear which distance we are talking

about.

The axioms that a distance function d is required to satisfy are very basic, and

one feels that any “reasonable” notion of distance ought to satisfy these properties.

This, coupled with the fact that using just these axioms one can develop a satisfac-

tory theory of continuity of functions – as well as many other things – is the point

of the definition.
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Before moving on, let us record one very simple but useful equivalent form of

the triangle inequality, sometimes (but not by me) known as the reverse triangle

inequality.

Lemma 1.2.2. Let x, y, z be points in a metric space. Then we have |d(x, y) −
d(x, z)| 6 d(y, z).

Proof. This is two inequalities in one, namely the inequality d(x, y) − d(x, z) 6

d(y, z), and the inequality d(x, z)−d(x, y) 6 d(y, z). Both are instances of (in fact,

equivalent to) the triangle inequality.

1.3. Some examples of metric spaces

In this section we look at some examples of metric spaces. A very basic example

is that of the real numbers.

Example 1.3.1. Take X = R and d(x, y) = |x− y|.

Let us generalise this to higher dimensions. In fact, there is no “obvious” gen-

eralisation. Here are several natural ones.

Example 1.3.2. Take X = Rn. Then each of the following functions define

metrics on X.

d1(v, w) =

n∑
i=1

|vi − wi|;

d2(v, w) =
( n∑
i=1

(vi − wi)2
)1/2

d∞(v, w) = max
i∈{1,2,...,n}

|vi − wi|.

These are called the `1- (“ell one”), `2- (or Euclidean) and `∞-distances respec-

tively. Of course, the Euclidean distance is the most familiar one.

The proof that each of d1, d2, d∞ defines a distance is mostly very routine,

with the exception of proving that d2, the Euclidean distance, satisfies the triangle

inequality. To establish this, recall that the Euclidean norm ‖v‖2 of a vector v =

(v1, . . . , vn) ∈ Rn is

‖v‖2 :=
( n∑
i=1

|vi|2
)1/2

= 〈v, v〉1/2,

where the inner product is given by

〈v, w〉 =

n∑
i=1

viwi.
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Then d2(v, w) = ‖v − w‖2, and so the triangle inequality is the statement that

‖u− w‖2 6 ‖u− v‖2 + ‖v − w‖2.

This follows immediately by taking x = u−v and y = v−w in the following lemma.

Lemma 1.3.3. If x, y ∈ Rn then ‖x+ y‖2 6 ‖x‖2 + ‖y‖2.

Proof. Since ‖v‖2 > 0 for all v ∈ Rn the desired inequality is equivalent to

‖x+ y‖22 6 ‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22.

But since ‖x + y‖22 = 〈x + y, x + y〉 = ‖x‖22 + 2〈x, y〉 + ‖y‖22, this inequality

is immediate from the Cauchy-Schwarz inequality, that is to say the inequality

|〈x, y〉| 6 ‖x‖2‖y‖2.

The next example is rather a routine and trivial one. However, it behaves very

differently to the Euclidean examples and can often provide counterexamples to

over-optimistic conjectures based on geometric intuition.

Example 1.3.4 (Discrete metric). Let X be an arbitrary set. The discrete

metric on a set X is defined as follows:

d(x, y) =

{
1, if x 6= y

0, if x = y

The axioms for a distance function are easy to check.

Now we turn to some metrics which come up very naturally in diverse areas

of mathematics. Our first example is critical in number theory, and also serves to

show that metrics need not conform to one’s most näıve understand of “distance”.

Example 1.3.5 (2-adic metric). Let X = Z, and define d(x, y) to be 2−m, where

2m is the largest power of two dividing x− y. The triangle inequality holds in the

following stronger form, known as the ultrametric property :

d(x, z) 6 max(d(x, y), d(y, z)).

Indeed, this is just a rephrasing of the statement that if 2m divides both x− y and

y − z, then 2m divides x− z.
This metric is very unlike the usual distance. For example, d(999, 1000) = 1,

whilst d(0, 1000) = 1
8 !

The role of 2 can be replaced by any other prime p, and the metric may also be

extended in a natural way to the rationals Q.

Metrics are also ubiquitous in graph theory:

Example 1.3.6 (path metric). Let G be a graph, that is to say a finite set

of vertices V joined by edges. Suppose that G is connected, that is to say that
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there is a path joining any pair of distinct vertices. Define a distance d as follows:

d(v, v) = 0, and d(v, w) is the length of the shortest path from v to w. Then d is a

metric on V , as can be easily checked.

They also come up in group theory:

Example 1.3.7 (Word metric). Let G be a group, and suppose that it is gener-

ated by elements a, b and their inverses. Define a distance on G as follows: d(v, w)

is the minimal k such that v = wg1 · · · gk, where gi ∈ {a, b, a−1, b−1} for all i.

When G is finite, the word metric is a special case of the path metric – you may

wish to think about why.

There are many metrics with a prominent position in computer science, for

instance:

Example 1.3.8 (Hamming distance). Let X = {0, 1}n (the boolean cube), the

set of all strings of n zeroes and ones. Define d(x, y) to be the number of coordinates

in which x and y differ.

Remark. In fact, one can if desired see {0, 1}n as a subset of Rn, and in this

case d is the restriction of one of the metrics already considered in Example 1.3.2

(you may care to contemplate which one).

It hardly need be said that metrics are ubiquitous in geometry.

Example 1.3.9 (Projective space). Consider the set P(Rn) of one-dimensional

subspaces of Rn, that is to say lines through the origin). One way to define a

distance on this set is to take, for lines L1, L2, the distance between L1 and L2 to

be

d(L1, L2) =

√
1− |〈v, w〉|

2

‖v‖2‖w‖2
,

where v and w are any non-zero vectors in L1 and L2 respectively. It is easy to

see this is independent of the choice of vectors v and w. The Cauchy-Schwarz

inequality ensures that d is well-defined, and moreover the criterion for equality

in that inequality ensures positivity. The symmetry property is evident, while the

triangle inequality is left as an exercise.

It is useful to think of the case when n = 2 here, that is, the case of lines through

the origin in the plane R2. The distance between two such lines given by the above

formula is then sin(θ) where θ is the angle between the two lines (another exercise).

1.4. Norms

In Example 1.3.2, we looked at three examples of metrics on Rn. They are all,

as it turns out, induced from norms. This is an important notion which we now

develop in its general context.
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Definition 1.4.1 (Norms). Let V be any vector space (over the reals). A

function ‖ · ‖ : V → [0,∞) is called a norm if the following are all true:

• ‖x‖ = 0 if and only if x = 0;

• ‖λx‖ = |λ|‖x‖ for all λ ∈ R, x ∈ V ;

• ‖x+ y‖ 6 ‖x‖+ ‖y‖ whenever x, y ∈ V .

Given a norm, it is very easy to check that d(x, y) := ‖x − y‖ defines a metric

on V . Indeed, we have already seen that when V = Rn, ‖ · ‖2 is a norm (and so

the name “Euclidean norm” is appropriate) and we defined d2(x, y) = ‖x− y‖2.

As we mentioned, the other metrics in Example 1.3.2 also come from norms.

Indeed, d1 comes from the `1-norm

‖x‖1 :=

n∑
i=1

|xi|,

whilst d∞ comes from the `∞-norm

‖x‖∞ := max
i=1,...,n

|xi|.

As the notation suggests, these are special cases of a more general family of norms,

the `p-norms

‖x‖p :=
( n∑
i=1

|xi|p
)1/p

.

It is true (but we shall not prove it in this course) that these do indeed define norms

for 1 6 p <∞. Moreover,

lim
p→∞

‖x‖p = ‖x‖∞,

which is how the `∞-norm comes to have its name.

The principle of turning norms into metrics is important enough that we state

it as a lemma in its own right.

Lemma 1.4.2. Let V be a vector space over the reals, and let ‖ · ‖ be a norm on

it. Define d : V × V → [0,∞) by d(x, y) := ‖x− y‖. Then (V, d) is a metric space.

It is important to note that the converse is very far from true. For instance,

the discrete metric does not arise from a norm. All metrics arising from a norm

have the translation invariance property d(x + z, y + z) = d(x, y), as well as the

scalar invariance d(λx, λy) = |λ|d(x, y), neither of which are properties of arbitrary

metrics. Conversely one can show that a metric with these two additional properties

does come from a norm, an exercise we leave to the reader (Hint : the norm must

arise as ‖v‖ = d(v, 0)).

We call a vector space endowed with a norm ‖ · ‖ a normed space. Whenever

we talk about normed spaces it is understood that we are also thinking of them as

metric spaces, with the metric being defined by d(v, w) = ‖v − w‖.
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Note that we do not assume that the underlying vector space V is finite-

dimensional. Here are some examples which are not finite-dimensional (whilst we

do not prove that they are not finite-dimensional here, it is not hard to do so and

we suggest this as an exercise).

Example 1.4.3 (`p spaces). Let

`1 = {(xn)∞n=1 :
∑
n>1

|xn| <∞}

`2 = {(xn)∞n=1 :
∑
n>1

x2
n <∞}

`∞ = {(xn)∞n=1 : sup
n∈N
|xn| <∞}.

The sets `1, `2, `∞ are all real vector spaces, and moreover ‖(xn)‖1 =
∑
n>1 |xn|,

‖(xn)‖2 =
(∑

n>1 x
2
n

)1/2
, ‖(xn)‖∞ = supn∈N |xn| define norms on `1, `2 and `∞

respectively. Note that `2 is in fact an inner product space where

〈(xn), (yn)〉 =
∑
n>1

xnyn,

(the fact that the right-hand side converges if (xn) and (yn) are in `2 follows from

the Cauchy-Schwarz inequality).

The space `2 is known as Hilbert space and it is of great importance in mathe-

matics.

1.5. New metric spaces from old ones

Subspaces. Suppose that (X, d) is a metric space and let Y be a subset of X.

Then the restriction of d to Y × Y gives Y a metric so that (Y, d|Y×Y ) is a metric

space. We call Y equipped with this metric a subspace.

The word “subspace” is rather overused in mathematics. If X = Rn, so that X

is a vector space, then Y need not be a vector subspace – it is just a subset of X.

Let us give an example of a subspace of a metric space. If X = R, we could

take Y = [0, 1], for instance, or Y = Q (the rationals) or Y = Z (the integers).

(It would be perverse to define the usual metric on Z or on Q by restricting from

X = R. Indeed, the metric space (X, d) with X = Z and d(x, y) := |x − y| is a

much more basic object than R.)

Product spaces. If (X, dX) and (Y, dY ) are metric spaces, then it is natural to

try to make X × Y into a metric space. One method is as follows: if x1, x2 ∈ X
and y1, y2 ∈ Y then we set

dX×Y ((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2
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The use of the square mean on the right, rather than the max or the sum, is

appealing since then the product R×R becomes the space R2 with the Euclidean

metric. However, either of those alternative definitions results in a metric which

is equivalent, in the sense made precise in Section 3.3. See Sheet 1, Q4 for more

details.

Lemma 1.5.1. With notation as above, dX×Y gives a metric on X × Y .

Proof. Reflexivity and symmetry are obvious. Less clear is the triangle inequality.

We need to prove that√
dX(x1, x3)2 + dY (y1, y3)2+

√
dX(x3, x2)2 + dY (y3, y2)2 >√

dX(x1, x2)2 + dY (y1, y2)2.(1.1)

To make this appear less frightening, write a1 = dX(x2, x3), a2 = dX(x1, x3),

a3 = dX(x1, x2) and similarly b1 = dY (y2, y3), b2 = dY (y1, y3) and b3 = dY (y1, y2).

Thus we want to show

(1.2)
√
a2

2 + b22 +
√
a2

1 + b21 >
√
a2

3 + b23.

To prove this, note that from the triangle inequality we have a1 + a2 > a3,

b1 + b2 > b3. Squaring and adding gives

a2
1 + b21 + a2

2 + b22 + 2(a1a2 + b1b2) > a2
3 + b23.

By Cauchy-Schwarz,

a1a2 + b1b2 6
√
a2

1 + b21

√
a2

2 + b22.

Substituting this into the previous line gives precisely the square of (1.2), and (1.1)

follows.

1.6. Balls and boundedness

Definition 1.6.1 (Balls). Let X be a metric space. If a ∈ X and ε > 0 then

we define the open ball of radius ε to be the set

B(a, ε) = {x ∈ X : d(x, a) < ε}.

Similarly we defined the closed ball of radius ε about a to be the set

B(a, ε) = {x ∈ X : d(x, a) 6 ε}.

Thus when X = R3 with the Euclidean metric we see that B(0, 1) really is what

we understand geometrically as a ball (minus its boundary, the unit sphere), whilst

B(0, 1) contains the unit sphere and everything inside it.
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We caution that this intuitive picture of the closed ball being the open ball

“together with its boundary” is totally misleading in general. For instance, in the

discrete metric on a set X, the open ball B(a, 1) contains only the point a, whereas

the closed ball B(a, 1) is the whole of X.

Definition 1.6.2. Let X be a metric space, and let Y ⊆ X. Then we say that

Y is bounded if Y is contained in some open ball.

Lemma 1.6.3. Let X be a metric space and let Y ⊆ X. Then the following are

equivalent.

(i) Y is bounded;

(ii) Y is contained in some closed ball;

(iii) The set {d(y1, y2) : y1, y2 ∈ Y } is a bounded subset of R.

Proof. That (i) implies (ii) is totally obvious. That (ii) implies (iii) follows

immediately from the triangle inequality. Finally, suppose Y satisfies (iii). Then

there is some K such that d(y1, y2) 6 K whenever y1, y2 ∈ Y . If Y is empty,

it is certainly bounded. Otherwise, let a ∈ Y be an arbitrary point. Then Y is

contained in B(a, r) where r = K + 1.





CHAPTER 2

Limits and continuity

The main purpose of introducing the idea of a metric space is that many notions

familiar over R, such as those of limit and continuous function, can be extended to

metric spaces, and theorems about them proven in that context.

2.1. Basic definitions and properties

Definition 2.1.1 (Limit). Suppose that (xn)∞n=1 is a sequence of elements of a

metric space (X, d). Let x ∈ X. Then we say that xn → x, or that limn→∞ xn = x,

if the following is true. For every ε > 0, there is an N such that d(xn, x) < ε for

all n > N .

Let us bolster this definition with a couple of easy remarks. First, it is quite

possible and indeed usual for a sequence (xn)∞n=1 to have no limit. Take, for in-

stance, the sequence (0, 1, 0, 1, 0, 1, . . . ) in R. Second, if the limit does exist then

it is unique. To see this, suppose that xn → a and xn → b, but that a 6= b. Let

δ := d(a, b). Then, taking ε = δ/2 in the definition of limit, we see that for n

sufficiently large we have d(xn, a), d(xn, b) < δ/2. But then the triangle inequality

yields

δ = d(a, b) 6 d(xn, a) + d(xn, b) < δ,

a contradiction.

Definition 2.1.2 (Continuity). Let (X, dX) and (Y, dY ) be metric spaces. We

say a function f : X → Y is continuous at a ∈ X if for any ε > 0 there is a δ > 0

such that for any x ∈ X with dX(a, x) < δ we have dY (f(x), f(a)) < ε.

We say f is continuous if it is continuous at every a ∈ X.

Although we will come across it all that much in this course, it is important to

note that the definition of uniform continuity may be extended to metric spaces as

well. As for real functions, the idea is that “δ should depend only on ε”.

Definition 2.1.3 (Uniform continuity). Let (X, dX) and (Y, dY ) be metric

spaces. We say a function f : X → Y is uniformly continuous if for any ε > 0 there

is a δ > 0 such that for any x, y ∈ X with dX(x, y) < δ we have dY (f(x), f(y)) < ε.

13
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As for functions on the reals, one may also phrase the definition of continuity

in terms of limits.

Lemma 2.1.4. Let f : X → Y be a function between metric spaces. Then f is

continuous at a if and only if the following is true: for any sequence (xn)∞n=1 with

limn→∞ xn = a, we have limn→∞ f(xn) = f(a).

Proof. Suppose first that f is continuous at a. Then given ε > 0 there is a

δ > 0 such that for all x ∈ X with d(x, a) < δ we have d(f(x), f(a)) < ε. Now

if (xn)∞n=1 is a sequence with limit a then, by the definition of limit, there is an

N > 0 such that d(a, xn) < δ for all n > N . But then for all n > N we see that

d(f(a), f(xn)) < ε, so indeed limn→∞ f(xn) = f(a) as required.

In the other direction, suppose f is not continuous at a. Then there is an ε > 0

such that for all δ > 0 there is some x ∈ X with d(x, a) < δ and d(f(x), f(a)) > ε.

Taking δ = 1/n, we see that for each n there is some xn ∈ X with d(xn, a) < 1/n

and d(f(xn), f(a)) > ε. Therefore limxn = a, but lim f(xn) 6= f(a).

2.2. Continuity of linear functions in normed spaces

An important source of metric spaces are the normed spaces. Recall Lemma

1.4.2: If V is a vector space, and ‖ · ‖ a norm on it, we can define a metric d :

V × V → [0,∞) by d(x, y) := ‖x− y‖.
Suppose now that we have two normed spaces V,W , with norms ‖·‖V and ‖·‖W

respectively; henceforth, we will drop the subscripts since it will always be clear

which space we are working on. There is a pleasant criterion for when a linear map

f : V →W is continuous.

Lemma 2.2.1. Let f : V → W be a linear map between normed vector spaces.

Then f is continuous if and only if {‖f(x)‖ : ‖x‖ 6 1} is bounded.

Proof. Suppose first that f is continuous. In particular, it is continuous at

0 ∈ V . Therefore, taking ε = 1 in the definition of continuity, there is some δ > 0

such that d(f(x), f(0)) < 1 whenever ‖x‖ < δ. Since f(0) = 0, this implies that

‖f(x)‖ 6 1 for these x. Now suppose that ‖v‖ = 1. Then ‖δv/2‖ = δ/2 < δ,

and so ‖f(δv/2)‖ 6 1. Since f is linear, f(δv/2) = δf(v)/2, and so ‖f(δv/2)‖ =

δ‖f(v)‖/2. It follows that ‖f(v)‖ 6 2/δ, and so indeed the set {‖f(x)‖ : ‖x‖ 6 1}
is bounded.

For the converse, suppose that ‖f(v)‖ < M for all v with ‖v‖ 6 1. Let ε > 0,

and set δ := ε/M . Then if ‖v − w‖ < δ we have

‖f(v)− f(w)‖ = ‖f(v − w)‖ = δ‖f(δ−1(v − w))‖ < δM = ε,

so that f is in fact uniformly continuous on V .
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As a consequence of Lemma 2.2.1, one never really hears about “continuous

linear functions”, it being completely standard to refer to them as bounded instead.

2.3. Function spaces

A great deal of power comes from considering the set of all functions on a space

satisfying some property, such as continuity, as a metric space in its own right. In

this section we consider some important examples of such spaces.

We begin with the space of bounded real-valued functions on a set X. At this

stage we assume nothing about X.

Definition 2.3.1. If X is any set we define B(X) to be the space of functions

f : X → R for which f(X) = {f(x) : x ∈ X} is bounded. If f ∈ B(X), define

‖f‖∞ = supx∈X |f(x)|.

Lemma 2.3.2. For any set X, B(X) is a vector space, and ‖ · ‖∞ is a norm.

We leave the proof as an easy exercise.

Now we turn to the space of continuous real-valued functions, C(X). To make

sense of what this means we now need X to be a metric space.

Definition 2.3.3. Let X be a metric space. Then we write C(X) for the space

of all continuous functions f : X → R.

Lemma 2.3.4. The space C(X) is a vector space over R, with pointwise addition

and multiplication by scalars.

Proof. One must check that C(X) is closed under addition and scalar multi-

plication. We do the case of addition; scalar multiplication is left as an (easy)

exercise.

Suppose that f, g ∈ C(X), and let ε > 0. Let a ∈ X.

Since f is continuous at a, there is some δ1 such that d(x, a) < δ1 implies

|f(x)− f(a)| < ε/2.

Since g is continuous at a, there is some δ2 such that d(x, a) < δ2 implies

|g(x)− g(a)| < ε/2.

Take δ = min(δ1, δ2). Then, if d(x, a) < δ we have

|(f + g)(x)− (f + g)(a)| = |f(x) + g(x)− f(a)− g(a)|

6 |f(x)− f(a)|+ |g(x)− g(a)|

< ε/2 + ε/2 = ε.

Therefore f + g is continuous at a.

In general, we certainly do not have B(X) ⊆ C(X), and unless X is special we do

not have C(X) ⊆ B(X). We will discuss situations in which this is true later on; you
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will already be familiar with a nontrivial example, namely that C([0, 1]) ⊆ B([0, 1]),

that is to say all continuous functions on [0, 1] are bounded.

Definition 2.3.5. Let X be a metric space. Write Cb(X) := C(X)∩B(X) for

the space of continuous, bounded functions on X. Since Cb(X) is a subspace of

B(X), it inherits the norm ‖f‖∞ = supx∈X |f(x)|, and we may define a metric d∞

on Cb(X) in the usual way via d∞(f, g) := ‖f − g‖∞

A useful exercise in checking your understanding of these definitions is Example

2.3.6 below. Here, let X = [0, 1]. Then, as we just remarked, C(X) = Cb(X).

Instead of writing C([0, 1]), it is conventional to write C[0, 1] for the vector space

of continuous (and automatically bounded) functions on [0, 1].

Example 2.3.6. Consider the space C[0, 1] together with the metric d∞ induced

from the norm ‖ · ‖∞. Let (fn)∞n=1 be a sequence of elements (functions) of this

space, and let f be a further element. Then fn → f in the metric d∞ if, and only

if, fn converges to f uniformly.

Proof. This is essentially a tautology, but it takes a little thought to unravel all

the definitions.

The norm ‖ · ‖∞ is by no means the only natural one on C[0, 1].

Lemma 2.3.7. For f ∈ C[0, 1], define

‖f‖1 =

∫ 1

0

|f(t)|dt.

Then ‖ · ‖1 is a norm on C[0, 1].

Remarks. This norm is called the L1- (“big ell one”) norm. Note that, although

we use the same notation as for the `1-norm, this is quite a different object; in

particular, the underlying vector space C[0, 1] is infinite-dimensional.

Proof. Most of what needs to be shown is very routine, at least given the results

in the Prelims course Analysis III: integration. The fact that ‖f‖1 exists, behaves

well with respect to the scalar multiplication and satisfies the triangle inequality

all fall into this category.

One point deserves further comment. It needs to be shown that ‖f‖1 = 0 implies

f = 0. Suppose not. Then there is some point x ∈ [0, 1] with |f(x)| > 0, let us say

|f(x)| = ε. Since f is continuous, there is some δ > 0 such that if |x− y| 6 δ then

|f(y)| > ε/2. The set of all y ∈ [0, 1] with |x−y| 6 δ is a subinterval I ⊂ [0, 1] with

length at least min(1, δ), and so∫
|f | >

∫
I

|f | > ε

2
min(1, δ) > 0,
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a contradiction.

Note carefully that for the last part of the argument crucial use was made of

the continuity of f . Indeed, the result is false without at least some assumption.

Suppose one attempts to define ‖f‖1 for all bounded Riemann integrable functions.

This is well-defined, and satisfies the scalar multiplication property and the triangle

inequality, as required in the definition of norm. However, it is not a norm, since

there are non-zero functions with ‖f‖1 = 0, for instance the function f : [0, 1]→ R

defined by f(0) = 1 and f(x) = 0 for 0 < x 6 1.

We should also say that there is nothing special about the interval [0, 1]; every-

thing we have said works, with essentially identical proofs, for any closed interval

[a, b] ⊂ R with a < b.

As with the `p norms on Rn, one may also define norms ‖f‖p = (
∫ 1

0
|f(t)|pdt)1/p

on C[0, 1] for any p ∈ [1,∞). These are called Lp-norms, and the case p = 2 is

particularly important. We will not discuss it further here.





CHAPTER 3

Isometries, homeomorphisms and equivalence

One learns as mathematician that, when one studies a type of structure, one

should also study maps which preserve that structure. In this chapter we will look

at various such notions applicable to metric spaces.

3.1. Isometries

Maps which genuinely preserve the distance function are called isometries.

Definition 3.1.1. Let (X, dX) and (Y, dY ) be metric spaces. A function f : X →
Y between metric spaces (X, dX) and (Y, dY ) is said to be an isometry if

(3.1) dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X.

Remarks. An isometry is automatically injective, but not automatically sur-

jective. For instance, the right-shift map on `2 defined by f((x1, x2, x3, . . . )) =

(0, x1, x2, . . . ) is an isometry, but it is not surjective.

If an isometry is surjective as well, we call it a bijective isometry. Some authors

use the word “isometry” to mean “bijective isometry”, but we have refrained from

doing this so that we are consistent with Prelims course M4: Geometry. There,

isometries in the case X = Y = Rn were discussed in considerable detail. It was

shown that they all have the form f(x) = Ax+ b for some orthogonal matrix A; in

particular, they are automatically surjective.

For any metric space X the set of all bijective isometries from X to itself is a

group under composition, denoted Isom(X).

3.2. Homeomorphisms

The notion of isometry is rather rigid. A weaker notion is that of a homeomor-

phism.

Definition 3.2.1. Let f : X → Y be a continuous function between metric

spaces X and Y . We say that f is a homeomorphism if it is continuous, a bijection,

and if its inverse f−1 : Y → X is also continuous.

Remark. Note that it is possible for a map f : X → Y to be both continuous

and a bijection, but for its inverse to fail to be continuous (so in this case f is

19
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not a homeomorphism). For instance, consider the spaces X = [0, 1) ∪ [2, 3] and

Y = [0, 2]. Then the function f : X → Y given by

f(x) =

{
x, if x ∈ [0, 1)

x− 1, if x ∈ [2, 3]

is a bijection and is clearly continuous. However, its inverse g : Y → X is not

continuous at 1 – the one-sided limits of g as x tends to 1 from above and below

are 1 and 2 respectively.

The following examples illustrate the extent to which homeomorphisms are less

rigid than isometries.

Example 3.2.2. The closed disk B̄(0, 1) of radius 1 in R2 is homeomorphic to

the square [−1, 1] × [−1, 1]. The easiest way to see this is to inscribe the disk in

the square and stretch the disk radially out to the square. One can write explicit

formulas for this in the four quarters of the disk given by the lines x ± y = 0 to

check this does indeed give a homeomorphism.

Example 3.2.3. The open interval (−1, 1) is homeomorphic to R: an explicit

homeomorphism is given by f(x) = x/(1 − |x|), which has inverse g(x) = x/(1 +

|x|). It follows (using translation and scaling maps) that any open interval is

homeomorphic to R. Similarly, the function h(x) = 1/x shows that (0, 1) and

(1,∞) are homeomorphic, and from this one can see that the spaces R, (a, b),

(−∞, a) and (a,∞) are all homeomorphic for any a, b ∈ R with a < b.

Example 3.2.4. A coffee cup (reusable, with a handle) is homeomorphic to a

doughnut.

3.3. *Equivalent metrics

One space X can certainly support wildly different metrics. For instance, the

2-adic metric on Q is very different to the standard Euclidean metric. However,

there is a useful notion of two metrics d1, d2 on the same space being equivalent.

Definition 3.3.1 (Equivalent metrics). Let X be a set, and let d, d′ be two

metrics on X. Then we say that the metrics d, d′ are equivalent if the identity map

ι : (X, d)→ (X, d′) is a homeomorphism.

An easy exercise in the definitions show that this is equivalent to the following

property: every open ball B(x, ε) with respect to the d-metric contains an open

ball B′(x, ε′) in the d′-metric, and vice versa.

If two metrics d, d′ are equivalent then, for example, the notions of limit coincide

in the two metric spaces (X, d) and (X, d′). We leave the detailed proof as an

exercise.
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Proposition 3.3.2. The metrics d1, d2, d∞ on Rn are equivalent.

Proof. In fact, we will show that these metrics are strongly equivalent. Two

metrics d, d′ on a space X are strongly equivalent if there is a constant C such that

d(x, y) 6 Cd′(x, y) and d′(x, y) 6 Cd(x, y)

for all x 6= y. We leave it as an easy exercise to show that strongly equivalent

metrics are indeed equivalent (the converse is not true).

The three metrics under consideration all come from norms, and it is enough to

find some constant C such that

(3.2) ‖x‖ 6 C‖x‖′

for each pair ‖ · ‖, ‖ · ‖′ of these norms. Four such inequalities are obvious, namely

‖x‖∞ 6 ‖x‖1 6 n‖x‖∞

and

‖x‖∞ 6 ‖x‖2 6 n1/2‖x‖∞.

The remaining two inequalities follow from these two, or one could use the Cauchy-

Schwarz inequality to get better constants.





CHAPTER 4

Open and closed sets

4.1. Basic definitions

The definition of open set, which we give now, is one of the most important in

the course.

Definition 4.1.1 (Open sets). If X is a metric space then we say a subset

U ⊆ X is open (or open in X) if for each y ∈ U there is some δ > 0 such that the

open ball B(y, δ) is contained in U .

To check you have understood the definition, convince yourself of the following

facts:

• The interval (0, 1) is open in R, but [0, 1] is not;

• The rationals Q are not open in R;

• If X is a set with the discrete metric, every set is open.

Note carefully that the notion of open set is a relative notion, depending on

U being contained in X. Thus, while [0, 1] is not open in R, it is an open set

considered as a subspace of itself.

The first basic result about open sets is that open balls B(a, ε) are open. Note

that this is not a tautology – at this point “open ball” is just the name we gave to

the sets B(a, ε), and the fact that they are indeed open in the sense of Definition

4.1.1 needs to be proven.

Lemma 4.1.2. Every open ball in an metric space is an open set.

Proof. Let the ball be B(a, ε). Let x ∈ B(a, ε). Then d(x, a) < ε, so there is

ε′ > 0 so that d(x, a) < ε − ε′. We claim that the open ball B(x, ε′) is contained

in B(a, ε). To see this, suppose that z ∈ B(x, ε′). Then d(z, x) < ε′ and so by the

triangle inequality d(z, a) 6 d(z, x) + d(x, a) < ε′ + (ε− ε′) = ε.

The complement of an open set is a closed set.

Definition 4.1.3 (Closed sets). If X is a metric space, then a subset F ⊆ X is

said to be a closed subset of X if and only if its complement F c = X\F is an open

subset.

23
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It is important to note that the property of being closed is not the property of

not being open! In a metric space, it is possible for a subset to be open, closed,

both or neither: In R the set R is open and closed, the set (0, 1) is open and not

closed, the set [0, 1] is closed and not open while the set (0, 1] is neither.

Just as open balls are open sets, so closed balls are closed sets, and this is also

a fact requiring proof.

Lemma 4.1.4. Every closed ball in a metric space is a closed set. In particular,

singleton sets are closed.

Proof. Let the ball be B̄(a, ε). We will show that the complement B̄(a, ε)c is

open. Let x ∈ B̄(a, ε)c. Then d(x, a) > ε, so there is ε′ > 0 so that d(x, a) > ε+ ε′.

We claim that the open ball B(x, ε′) is contained in B̄(a, ε)c. To see this, suppose

that z ∈ B(x, ε′). Then d(z, x) < ε′ and so by the triangle inequality d(z, a) >

d(x, a)− d(z, x) > (ε+ ε′)− ε′ = ε.

The second statement – that singleton sets are closed – follows from the obser-

vation that {a} = B̄(a, 0).

4.2. Basic properties of open sets

Lemma 4.2.1. Let X be metric space. Then we have

(i) The subsets X and ∅ are open.

(ii) For any indexing set I and {Ui : i ∈ I} a collection of open sets, the set⋃
i∈I Ui is an open set.

(iii) If I is finite and {Ui : i ∈ I} are open sets then
⋂
i∈I Ui is open.

Proof. The first claim is trivial. For the second claim, if x ∈
⋃
i∈I Ui then there is

some i ∈ I with x ∈ Ui. Since Ui is open, some open ball B(x, ε) is contained in Ui

and hence in
⋃
i∈I Ui.

Finally, for claim (iii), suppose that I is finite and that x ∈
⋂
i∈I Ui. For

each i ∈ I, we have x ∈ Ui, and so some ball B(x, εi) is contained in Ui. Set

ε := mini∈I εi; then ε > 0 (here it is, of course, crucial that I be finite), and

B(x, ε) ⊆ B(x, εi) ⊆ Ui for all i. Therefore B(x, ε) ⊆
⋂
i∈I Ui.

Remarks. (i) is in fact a special case of (ii) and (iii), taking I to be the empty

set.

It is extremely important to note that, whilst the indexing set I in (ii) can be

arbitrary, the indexing set in (iii) must be finite. In general, an arbitrary intersection

of open sets is not open; for instance, the intervals Ui = (−1/i, 1/i) are all open

in R, but their intersection
⋂∞
i=1 Ui is just the singleton {0}, which is not an open

set.
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A result equivalent to Lemma 4.2.1 may be formulated in terms of closed sets,

simply by taking complements and applying de Morgan’s laws. We simply state

the outcome.

Lemma 4.2.2. Let X be a metric space and let {Fi : i ∈ I} be a collection of

closed subsets.

(i) The subsets X and ∅ are closed.

(ii) The intersection
⋂
i∈I Fi is a closed subset.

(iii) If I is finite then
⋃
i∈I Fi is closed.

If X is a metric space, the collection of all open sets in X is calld the topology

of X.

4.3. Continuity in terms of open sets

An interesting and important fact is that continuity of a function may be ex-

pressed in an ε-δ-free manner using open sets. To formulate a precise statement,

we introduce the concept of a neighbourhood.

Definition 4.3.1 (Neighbourhood). Let X be a metric space, and let Z ⊆ X.

Let z ∈ Z. We say Z is a neighbourhood of z if some open ball about z is contained

in Z: that is, if there is some δ > 0 such that B(z, δ) ⊆ Z.

Thus any open set containing z is a neighbourhood of z. However, the converse

is not true: there is no requirement that a neighbourhood itself be an open set.

Here is the formulation of continuity in terms of neighbourhoods.

Proposition 4.3.2. Let X,Y be metric spaces and let f : X → Y be a map. If

a ∈ X then f is continuous at a if and only if for every neighbourhood N ⊆ Y of

f(a), the preimage f−1(N) is a neighbourhood of a ∈ X.

Proof. Before embarking on the proof, let us make sure that the statement is

clear. Here, f−1(N) denotes the preimage of N under f , the set of all points in X

which map, under f , to N . Note that we are not asserting that f is invertible, and

f−1 is not a function; a given point in Y may have several preimages.

We now turn to the proof. There is little more to it than working through the

definitions, but there have been sufficiently many of them that it is worth doing

properly. Let dX , dY be the metrics on X,Y respectively.

Suppose first that f is continuous at a. Let N be a neighbourhood of f(a).

By the definition of neighbourhood, N contains some open ball B(f(a), ε). By

the definition of continuity, there is some δ > 0 such that, if dX(a, x) < δ, then

dY (f(a), f(x)) < ε. Equivalently, if x ∈ B(a, δ), then f(x) ∈ B(f(a), ε). Put

another way, f−1(B(f(a), ε)) ⊇ B(a, δ). Since N contains B(f(a), ε), f−1(N)
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contains f−1(B(f(a), ε). Therefore f−1(N) ⊇ B(a, δ). We have found an open ball

about a which is contained in f−1(N), which is precisely what it means for f−1(N)

to be a neighbourhood of a.

In the other direction, suppose that f satisfies the neighbourhood preimages

property. We show that f is continuous at a. Let ε > 0, and consider the open ball

B(f(a), ε). This is an open set containing f(a), and hence it is a neighbourhood of

f(a). By assumption, its preimage f−1(B(f(a), ε)) is a neighbourhood of a, which

means that it contains some open ball B(a, δ). Thus B(a, δ) ⊆ f−1(B(f(a), ε)), or

in other words if x ∈ B(a, δ) then f(x) ∈ B(f(a), ε). This is what it means for f

to be continuous at a.

One can prove a very closely related characterisation of what it means for a

function to be continuous at every point. I personally find it easier to prove this

afresh, rather than deduce it from Proposition 4.3.2.

Proposition 4.3.3. Let X,Y be metric spaces and let f : X → Y be a map.

Then f is continuous on all of X if and only if for each open subset U of Y , its

preimage f−1(U) is open in X.

Proof. Suppose first that f is continuous at every point. and let U ⊆ Y be open;

we want to show that f−1(U) is open. Let a ∈ f−1(U) be arbitrary. Then f(a) ∈ U ,

and so, since U is open, some ball B(f(a), ε) also lies in U . By the definition of

continuity, there is some δ > 0 such that if x ∈ B(a, δ) then f(x) ∈ B(f(a), ε),

and therefore f−1(B(f(a), ε)) ⊇ B(a, δ). Therefore f−1(U) contains B(a, δ), which

means that f−1(U) is open.

Now suppose that f satisfies the open sets preimages property, and let a ∈ X.

The ball B(f(a), ε) is open, and so by assumption the preimage f−1(B(f(a), ε)) is

open. Since a lies in this set, it follows from the definition of open that there is

some δ > 0 such that B(a, δ) ⊆ f−1(B(f(a), ε)), whence f(B(a, δ)) ⊆ B(f(a), ε).

This is what it means for f to be continuous at a.

By taking complements, one can show the following version of Proposition 4.3.3

for closed sets: f : X → Y is continuous if and only if for each closed subset V of

Y , its preimage f−1(V ) is a closed subset of X.

Finally, it is important to take note of what Proposition 4.3.3 does not say,

namely that a continuous function maps open sets to open sets. This is obvious

since, for example, constant functions are continuous. Less obvious is the fact that

it still fails even under the assumption that f is injective. For instance, the natural

map f : [0, 1)→ R/Z is continuous. The set [0, 1/2) is open in [0, 1), but its image

is not open in R/Z.
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4.4. *Topological spaces

In this section we offer a very brief taster of the course A5: Topology by dis-

cussing the notion of a topological space. One may of course observe that Proposi-

tion 4.3.3 allows one to define the notion of a continuous function without explicitly

mentioning the metric X or concepts equivalent to it such as the notion of an open

ball of radius δ. Of course, those notions are embedded within the definition of the

notion of an open set, so this comment is a little misleading.

In the concept of a topological space, the open sets are to the fore. Thus a

topological space is a set X together with a collection of sets U (which we call the

open sets) satisfying certain properties. The properties we require are precisely

those which we proved in Lemma 4.2.1, namely

(i) The subsets X and ∅ are open.

(ii) For any indexing set I and {Ui; i ∈ I} a collection of open sets, the set⋃
i∈I Ui is an open set.

(iii) If I is finite and {Ui : i ∈ I} are open sets then
⋂
i∈I Ui is open in X.

Note that we have not said anything about the “geometry” of the open sets, or

anything about them containing balls - indeed there are no such notions, because

X is equipped with no structure.

Lemma 4.2.1 may then be phrased as follows.

Lemma 4.4.1 (Lemma 4.2.1). Let X be a metric space together with the open

sets as defined in Definition 4.1.1. Then X is a topological space, with the same

collection of open sets.

The concept of a topological space is considerably more general than that of

a metric space, and there are certainly topological spaces which do not have the

structure of a metric space (are not metrizable). However, as a consequence of

Proposition 4.3.3 we may still formulate the notion of a continuous function between

two topological spaces, in such a way that when restricted to metric spaces it

coincides with the usual definition.

Definition 4.4.2. Suppose that X and Y are two topological spaces. Then we

say that f : X → Y is continuous if and only if, for every open set U ⊆ Y , the

inverse f−1(U) is open in X.

Let us emphasise that in the generality of topological spaces, there is no equiv-

alent form of this definition in terms of εs and δs.

4.5. Subspaces

If (X, d) is a metric space, then as we noted in Section 1.5, any subset Y ⊆ X

is automatically also a metric space since the distance function d : X ×X → R>0
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restricts to a distance function on Y . We will use the letter d for both metrics, but

it is important to distinguish the balls in Y from the balls in X, because these are

quite different objects.

We will write

BY (y, r) = {z ∈ Y : d(z, y) < r}

for the open ball about y of radius r in Y and

BX(y, r) = {x ∈ X : d(x, y) < r}

for the open ball of radius r about y in X.

Note that BY (y, r) = Y ∩BX(y, r).

Similarly, the notions of a set being open in X and of being open in Y are quite

different.

By way of an example, consider X = R2 and Y = R× {0}, that is to say Y is

the x-axis. The the ball BX(0, 1) is simply the open unit disc of radius 1, whilst the

ball BY (0, 1) is the open unit line segment (−1, 1). Note carefully that BY (0, 1),

whilst it is open as a subset of Y , does not look remotely like an open subset of X.

The following lemma clarifies the relationship between open sets in X and open

sets in the subspace Y .

Lemma 4.5.1. Let X be a metric space and suppose that Y ⊆ X. Then a subset

U ⊆ Y is an open subset of Y if and only if there is an open subset V of X such

that U = Y ∩ V . Similarly a subset Z ⊆ Y is a closed subset of Y if and only if

there is a closed subset F of X such that Z = F ∩ Y .

Proof. Suppose first that U = Y ∩ V , where V is open in X. We will show that

U is open in Y . Let y ∈ U . Then, since V is open, there is some ε > 0 such that

BX(y, ε) ⊆ V . Therefore

BY (y, ε) = Y ∩BX(y, ε) ⊆ V ∩ Y = U.

We have shown that some open ball (in Y ) about y is contained in U , and therefore

U is open.

In the other direction, suppose that U is an open subset of Y . Then for each y ∈
U we may pick an open ball BY (y, εy) contained in U . We have

⋃
y∈U BY (y, εy) =

U . Now define V =
⋃
y∈U BX(y, εy). Then V , being a union of open balls in X, is

open. Moreover

Y ∩ V = Y ∩
⋃
y∈Y

BX(y, εy) =
⋃
y∈Y

(Y ∩BX(y, εy)) =
⋃
y∈Y

BY (y, εy) = U.

The corresponding result for closed sets follows by taking complements – we

leave the detailed verification as an exercise.
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The concept of being open in a subspace is a bit confusing when you first meet it,

so let us give an example. Let X = R, and Y = (0, 1]∪ [2, 3]. Set U = (0, 1]. Then

U is not open as a subset of X – for instance, no open ball BX(1, ε) is contained

in U . However, U is open as a subset of Y . For example, the ball BY (1, 1
2 ), which

consists of all points of Y at distance less than 1
2 from 1, is the set ( 1

2 , 1], and this

is contained in U .

*Remark. (For those who have read Section 4.4). Lemma 4.5.1 shows that the

topology on X determines the topology on the subspace Y ⊆ X without reference

to the metric. If X is just a topological space (not necessarily a metric space) and if

Y ⊆ X is a subset, this shows how to provide Y with the structure of a topological

space, by declaring the open sets in Y to be the intersections of Y with open sets

in X.





CHAPTER 5

Interiors, closures, limit points

In this chapter we explore some further concepts in the basic theory of metric

spaces.

5.1. Interiors and closures

Definition 5.1.1. Let X be a metric space, and let S ⊂ X. The interior int(S)

of S is defined to be the union of all open subsets of X contained in S. The closure

S̄ is defined to be the intersection of all closed subsets of X containing S. The set

S̄\int(S) is known as the boundary of S and denoted ∂S. A set S ⊆ X is said to

be dense if S = X.

It is very important to note that, in Definition 5.1.1, the notion of open and

closed is here being taken in the metric space X, not in the subspace metric on S,

which would result in trivial definitions.

Since an arbitrary union of open sets is open (Lemma 4.2.1), int(S) is itself an

open set, and it is clearly the unique largest open subset of X contained in S. If S

is itself open then evidently S = int(S).

Since an arbitrary intersection of closed sets is closed, S̄ is the unique smallest

closed subset of X containing S. If S is itself closed then evidently S = S.

If x ∈ int(S) we say that x is an interior point of S. One can also phrase this

in terms of neighbourhoods: the interior of S is the set of all points in S for which

S is a neighbourhood.

Example 5.1.2. If S = [a, b] is a closed interval in R then its interior is just

the open interval (a, b). If we take S = Q ⊂ R then int(Q) = ∅.

Example 5.1.3. The rationals Q are a dense subset of R, as is the set { a2n :

a ∈ Z, n ∈ N}.

Let us give a couple of simple characterisations of the closure of a set.

Lemma 5.1.4. Let X be a metric space, and let S ⊆ X be a subset. Then a ∈ S̄
if and only if the following is true: every open ball B(a, ε) contains a point of S.

31
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Proof. Suppose a ∈ S̄. If B(a, ε) does not meet S, then B(a, ε)c is a closed

set containing S. Therefore B(a, ε)c contains S̄, and hence it contains a, which is

obviously nonsense.

Conversely, suppose that every ball B(a, ε) meets S. If a /∈ S̄ then, since

S̄c is open, there is a ball B(a, ε) contained in S̄c, and hence in Sc, contrary to

assumption.

Remark. A particular consequence of this is that S ⊆ X is dense if and only if

it meets every open set in X.

Corollary 5.1.5. Let X be a metric space, and let S ⊆ X be a subset. Let

a ∈ X. Then a lies in the closure S̄ if and only if there is a sequence (xn)∞n=1 of

elements of S with limn→∞ xn = a. In particular, S is closed if and only if the

limit of every convergent sequence (xn)∞n=1 of elements of S lies in S.

Proof. We use Lemma 5.1.4. Suppose that a ∈ S̄. Then by Lemma 5.1.4 every

ball B(a, 1/n) contains a point of S, so we may pick a sequence (xn)∞n=1 with

xn ∈ B(a, 1/n) ∩ S. Clearly limn→∞ xn = a.

Conversely, suppose limn→∞ xn = a, where xn ∈ S. If a /∈ S̄ then by Lemma

5.1.4 there must be some ball B(a, ε) not meeting S. But if n is large enough then

d(xn, a) < ε, and so xn ∈ S ∩B(a, ε), contradiction.

We conclude with a cautionary example which has often confused people when

they first meet it.

Example 5.1.6. In general, it need not be the case that B̄(a, ε) is the closure of

B(a, ε). Since we have seen that B̄(a, ε) is closed, it is always true that B(a, ε) ⊆
B̄(a, ε), but the containment can be proper. Indeed, take any set X with at least

two elements equipped with the discrete metric. Then if x ∈ X we have B(x, 1) =

B(x, 1) = {x}, but B̄(x, 1) is the whole space X.

5.2. Limit points

This section introduces the notion of limit points (also known in some places as

cluster points or accumulation points). The notion is a well-studied one, introduced

here for cultural reference, but we will not come across it in subsequent chapters of

the course.

Definition 5.2.1. If X is a metric space and S ⊆ X is any subset, then we say

a point a ∈ X is a limit point of S if any open ball about a contains a point of S

other than a itself.

We will write L(S) for the set of limit points of S; I am not sure that there is

any completely standard notation for this. Note that we do not necessarily have
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S ⊆ L(S), that is to say it is quite possible for a point a ∈ S not to be a limit point

of S. This occurs if there is some ball B(a, ε) such that B(a, ε) ∩ S = {a}, and in

this case we say that a is an isolated point of S.

Example 5.2.2. Take X = R and S = (0, 1] ∪ {2}. Then L(S) = [0, 1]. Note

in particular that 0 does not lie in S, but is a limit point; by contrast, 2 does lie in

S, but it is not a limit point, so it is an isolated point.

Lemma 5.2.3. Let S be a subset of a metric space X. Then L(S) is a closed

subset of X.

Proof. We need to show that the complement L(S)c is open. Suppose a ∈ L(S)c.

Then there is a ball B(a, ε) whose intersection with S is either empty or {a}.
We claim that B(a, ε/2) ⊆ L(S)c. Let b ∈ B(a, ε/2). If b = a, then clearly

b ∈ L(S)c. If b 6= a, there is some ball about b which is contained in B(a, ε), but

does not contain a: the ball B(b, δ) where δ = min(ε/2, d(a, b)) has this property.

This ball meets S in the empty set, and so b ∈ L(S)c in this case too.

Proposition 5.2.4. Let S be a subset of a metric space X. Let L(S) be its set

of limit points, and S̄ its closure. Then S̄ = S ∪ L(S).

Proof. We first show the containment S∪L(S) ⊆ S̄. Obviously S ⊆ S̄, so we need

only show that L(S) ⊆ S̄. Suppose a ∈ S̄c. Since S̄c is open, there is some ball

B(a, ε) which lies in S̄c, and hence also in Sc, and therefore a cannot be a limit

point of S. This concludes the proof of this direction.

Now we look at the opposite containment S̄ ⊆ S ∪ L(S). If a ∈ S̄, we saw in

Lemma 5.1.5 that there is a sequence (xn)∞n=1 of elements of S with xn → a. If

xn = a for some n then we are done, since this implies that a ∈ S. Suppose, then,

that xn 6= a for all n. Let ε > 0. Then all the xn, for n sufficiently large in terms

of ε, are elements of B(a, ε) \ {a}, and they all lie in S. It follows that a is a limit

point of S, and so we are done in this case also.

Corollary 5.2.5. Let S be a subset of a metric space X. Then S is closed if

and only if it contains all its limit points.

Proof. We already remarked, in Section 5.1, that S is closed if and only if S = S̄.

The corollary is immediate from this and Proposition 5.2.4.





CHAPTER 6

Completeness

Students may wish to remind themselves of the Prelims course M2: Analysis

I, which covered some of the topics of this section in the specific case of the real

numbers. Much of the theory in a general metric space is a natural generalisation

of what was done there.

6.1. Basic definitions and examples

Definition 6.1.1. Let (xn)∞n=1 be a sequence in some metric space X. Then

we say that this sequence is

• Bounded if the set {xn : n > 1} is bounded in the sense of Definition

1.6.2, that is to say if all the xn lie in some ball B(a,R);

• Cauchy if the xn become arbitrarily close together as n → ∞, in the

following sense: for every ε > 0, there is some N such that d(xn, xm) < ε

whenever n,m > N .

• Convergent if there is some a ∈ X such that limn→∞ xn = a.

If a sequence σ has any one of these properties, then any subsequence of σ also

has the property. We leave the proof of this as an exercise.

The relation between the above concepts is as follows.

Proposition 6.1.2. A convergent sequence is Cauchy. A Cauchy sequence is

bounded. Neither of the reverse implications holds in general.

Proof. We begin by showing that the reverse implications do not hold, since the

examples we will give serve to illustrate the concepts. Take X = (0, 1]. Then the

sequence xn = 1/n is Cauchy, but not convergent. The sequence in which xn = 1

for n odd and xn = 1/2 for n even is bounded, but it is not Cauchy since there is

no N such that d(xn, xn+1) < 1/2 for all n > N .

Now we show the two main implications. Suppose that (xn)∞n=1 is convergent,

and that limn→∞ xn = a. Let ε > 0. By the definition of limit, there is some N

such that, if n > N , d(xn, a) < ε/2. Now suppose that m,n > N . Then

d(xm, xn) 6 d(xn, a) + d(xm, a) < ε/2 + ε/2 = ε,

and so (xn)∞n=1 is Cauchy.

35
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Now suppose that (xn)∞n=1 is Cauchy. Taking ε = 1 in the definition, we see

that there is some N such that d(xm, xn) < 1 whenever m,n > N . In particular,

all points of the sequence except (possibly) x1, . . . , xN−1 lie in B(xN , 1). It follows

that all points of the sequence lie in B(xN , R), where R is the largest value of the

set {1, d(xN , x1), . . . , d(xN , xN−1)}, and so (xn)∞n=1 is bounded.

Now we turn to the key definition of the chapter.

Definition 6.1.3 (Completeness). A metric space is said to be complete if every

Cauchy sequence converges.

One of the main results of the Prelims course was that R is complete, and it is

easy to deduce from this that Rn is complete also (since a sequence in Rn converges

if and only if each of its coordinates converge).

On the other hand, we observed above that (0, 1] is not complete. For much the

same reason, (0, 1) is not complete. Note, however, that (0, 1) is homeomorphic to

R, as we showed earlier. Therefore the notion of completeness is not (necessarily)

preserved under homeomorphisms.

Let V be a normed vector space with norm ‖ · ‖. As previously discussed, we

can define a metric on V by d(v, w) = ‖v−w‖. We say that V is complete if, when

endowed with the structure of a metric space in this way, it is complete. That is,

when we talk about completeness of normed spaces we implicitly assume that the

obvious metric has been put on V , without necessarily mentioning it explicitly.

6.2. First properties of complete metric spaces

In this section we collect a couple of basic properties of complete metric spaces.

Lemma 6.2.1. A subspace of a complete metric space is complete if and only if

it is closed.

Proof. Let X be a complete metric space and suppose that Y ⊆ X. Suppose

first that Y is closed; we will show that it is complete. Let (yn)∞n=1 be a Cauchy

sequence in Y . Then it is also a Cauchy sequence in X. Since X is complete, it

converges, say limn→∞ yn = a. By Corollary 5.1.5, a ∈ Y .

In the other direction, suppose that Y is complete. Let (yn)∞n=1 be a sequence of

elements of Y with limn→∞ yn = a. Then (yn)∞n=1 is certainly a Cauchy sequence,

and so by completeness it has a subsequence which converges to an element of Y .

Since this subsequence must also converge to a, it follows that a ∈ Y . By Corollary

5.1.5, Y is closed.

The next lemma is sometimes known as Cantor’s intersection theorem.
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Lemma 6.2.2. Let X be a complete metric space and suppose that S1 ⊇ S2 ⊇
. . . form a nested sequence of non-empty closed sets in X with the property that

diam(Sn)→ 0 as n→∞. Then
⋂∞
n=1 Sn contains a unique point a.

Proof. For each n, pick xn ∈ Sn. We claim that (xn)∞n=1 is Cauchy. To see this, let

ε > 0, and suppose that N is large enough that diam(SN ) < ε. If n,m > N then,

since the Si are nested, xn, xm ∈ SN . By the definition of diameter, d(xn, xm) 6

diam(SN ) < ε.

Since X is complete, we have limn→∞ xn = a for some a. For each i, the nesting

property of the sets Si implies that we have xn ∈ Si for all i 6 n. Therefore, since

Si is closed, Corollary 5.1.5 tells us that a ∈ Si. Since this is true for all i, we have

a ∈
⋂∞
i=1 Si.

To show that a is unique, suppose that b ∈
⋂∞
i=1 Si. Then d(a, b) 6 diam(Si)

for all i. Since diam(Si)→ 0, we have d(a, b) = 0 and so a = b.

What if we drop the condition diam(Si)→ 0? We certainly could not expect a

to be unique since, for instance, we could take all the Si to be the whole space X.

Somewhat surprisingly at first sight, the intersection
⋂∞
i=1 Si may even be empty.

For instance, take Si = [i,∞) ⊂ R.

6.3. Completeness of function spaces

In this section we show that two natural spaces of functions give rise to complete

metric spaces.

For the first result, recall that if X is a set then B(X) denotes the normed vector

space of bounded functions f : X → R, with norm ‖f‖∞ = supx∈X |f(x)|.

Theorem 6.3.1. Let X be any set. Then B(X) is complete.

Proof. Let (fn)∞n=1 be a Cauchy sequence in B(X). Then for each x the se-

quence (fn(x))∞n=1 is a Cauchy sequence of real numbers (convincing yourself of

this is a good exercise to check you have understood the definitions). Since R is

complete, each such sequence has a limit, and we write f(x) for this limit. That is,

limn→∞ fn(x) = f(x).

We claim that f is a bounded function. To see this, take ε = 1 in the definition of

Cauchy sequence. This gives an N such that, if n,m > N , supx |fn(x)−fm(x)| 6 1.

In particular, |fN (x) − fn(x)| 6 1 for all n > N and for all x ∈ X. Taking the

limit as n→∞, it follows that |fN (x)− f(x)| 6 1 for all x. Since fN is a bounded

function, so is f .

Finally, we need to show that fn → f in the norm ‖·‖∞ (at the moment we have

only shown pointwise convergence). The argument is a simple modification of the

preceding one. Let ε > 0, and let N be such that, if n,m > N , |fn(x)− fm(x)| 6 ε
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for all x ∈ X. For each fixed n > N and x ∈ X, we may let m → ∞, obtaining

that |fn(x)− f(x)| 6 ε. That is, for all n > N we have ‖fn − f‖∞ 6 ε. It follows

that fn → f in the ‖ · ‖∞-norm.

For the second result, recall that if X is a metric space then Cb(X) denotes the

normed vector space of bounded continuous functions f : X → R, again with norm

‖f‖∞ = supx∈X |f(x)|.

Theorem 6.3.2. Let X be a metric space. Then Cb(X) is complete.

Proof. We have shown in Theorem 6.3.1 that B(X) is complete, so by Lemma

6.2.1 it is enough to show that Cb(X) is a closed subset of B(X).

By Corollary 5.1.5, it suffices to show that if (fn)∞n=1 is a sequence of elements

of Cb(X) converging in the ‖ · ‖∞-norm to some f ∈ B(X), then f ∈ Cb(X), or in

other words f is continuous.

Let a ∈ X, and let ε > 0. Since fn → f in the ‖ · ‖∞-norm, there is some n

such that ‖fn − f‖∞ 6 ε/3. Since fn is continuous, there is a δ > 0 such that

|fn(x)− fn(a)| < ε/3 for all x ∈ B(a, δ). But then for x ∈ B(a, δ) we have

|f(x)− f(a)| 6 |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)|

< ε/3 + ε/3 + ε/3 = ε.

It follows that f is continuous at a, and since a was arbitrary, f is a continuous

function on X.

Remark. You may have the impression that you have seen something like this

argument before, and indeed that is the case. In Prelims: Analysis II you saw that

a uniform limit of continuous functions on R is continuous, and our task here was

essentially the same, but in the setting of a general metric space.

6.4. The contraction mapping theorem

The final topic of this section is a classic theorem about fixed points of certain

maps from a metric space to itself. We will discuss the result for its own intrinsic

interest, but it has important applications to the solutions of differential equations,

as you will see in the course A1 : Differential Equations.

Let us begin with a couple of definitions.

Definition 6.4.1. Let (X, dX) and (Y, dY ) be metric spaces and suppose that

f : X → Y . We say that f is a Lipschitz map (or is Lipschitz continuous) if there

is a constant K > 0 such that

dY (f(x), f(y)) 6 KdX(x, y).
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If Y = X and K ∈ [0, 1) then we say that f is a contraction mapping (or simply a

contraction).

An easy exercise is to check that every Lipschitz map is continuous, and to give

an example of a continuous map between metric spaces which is not Lipschitz.

It is very important to note, in the definition of a contraction, that it says some-

thing stronger than that d(f(x), f(y)) < d(x, y), namely that there is a constant

K < 1 such that d(f(x), f(y)) 6 Kd(x, y) for all x, y.

Theorem 6.4.2 (Contraction mapping theorem). Let X be a nonempty complete

metric space and suppose that f : X → X is a contraction. Then f has a unique

fixed point, that is, there is a unique x ∈ X such that f(x) = x.

Proof. We begin by showing that there cannot be two fixed points. Suppose that

f(x1) = x1 and that f(x2) = x2. Then we have

d(x1, x2) = d(f(x1), f(x2)) 6 Kd(x1, x2).

Since d(x1, x2) > 0 and K < 1, we are forced to conclude that d(x1, x2) = 0 and

hence that x1 = x2.

Now we show that there is a fixed point. The proof is constructive (and may

be used in practical situations to find fixed points numerically). The idea is as

follows. Pick an arbitrary x0 ∈ X, and form the sequence of iterates x1 := f(x0),

x2 := f(x1), and so on. We claim that (no matter which x0 we started with) the

sequence (xn)∞n=1 converges to some limit x, and that f(x) = x.

To show that (xn)∞n=1 converges, it suffices to show that it is Cauchy, since X is

complete. To do this, first observe that by repeated use of the contraction property

and the definition of the sequence (xn)∞n=1 we have

d(xn, xn−1) 6 Kd(xn−1, xn−2) 6 K2d(xn−2, xn−3) 6 . . . 6 Kn−1d(x0, x1)

(you could prove this formally by induction if you wanted). Therefore if n > m we

have

d(xn, xm) 6 d(xn, xn−1) + · · ·+ d(xm+1, xm)

6 (Kn−1 +Kn−2 + · · ·+Km)d(x0, x1)

6 Km(1 +K +K2 + . . . )d(x0, x1) = CKm,

where C = d(x0, x1)/(1−K) (by summing the geometric series).

It follows that if n,m > N then d(xm, xn) 6 CKN .

Since K < 1, for any ε > 0 there is some N such that CKN < ε, and therefore

(xn)∞n=1 is indeed a Cauchy sequence.

Since X is complete, xn → x for some x ∈ X. To complete the proof we must

show that f(x) = x. This is quite straightforward. Indeed, since f is continuous
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we have

f(x) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x.

This finishes the proof.

Remarks. Over the years, many people have lost a mark in exam questions for

forgetting that X must be non-empty.

Let us conclude by giving a couple of examples to show that the hypotheses

of the theorem are necessary. First, we observe that the weaker condition that

d(f(x), f(y)) < d(x, y) for all x 6= y is not sufficient. For instance, it may be

checked that the function f : [1,∞) → [1,∞) defined by f(x) = x + 1/x has this

property, but it obviously has no fixed points.

More obviously, the requirement that X is complete is important. For instance,

if we define f : (0, 1) → (0, 1) by f(x) = x/2 then clearly f is a contraction, but f

has no fixed points in (0, 1).

6.5. *Completions

In this section we mention the notion of the completion of a metric space. This

is explicitly declared to be non-examinable in the schedules.

The idea is that one may take an arbitrary metric space X and “add in the

limits of all Cauchy sequences” to get a new, complete, space X̃.

The space X̃ consists of all Cauchy sequence (xn)∞n=1 in X, modulo a natural

notion of equivalence: two Cauchy sequences (xn)∞n=1 and (x′n)∞n=1 are said to be

equivalent if and only if xn − x′n → 0 as n → ∞. It is not too hard to check that

this does give an equivalence relation. Write [(xn)∞n=1] for the equivalence class of

(xn)∞n=1.

To give X̃ the structure of a metric space, we define

d̃([(xn)∞n=1], [(x′n)∞n=1]) = lim
n→∞

d(xn, x
′
n).

There is a lot to be checked here: that the limit even exists and that it does not

depend on which representatives (xn)∞n=1, (x
′
n)∞n=1 one takes in a given equivalence

class, and finally that it is a distance.

Once this has been established, there are a number of other natural statements

to be proven about X̃, which include the following:

• X̃ is a complete metric space;

• There is a natural map ι : X → X̃ given by ι(x) = [(x, x, x, . . . , )]. It is

continuous, injective and has dense image.

Example 6.5.1. The completion of Q with respect to the usual metric is (iso-

metrically equivalent to) the real numbers R.
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As we noted at the start of the course, you have not been shown a proof that

the real numbers R exist. Can we define them as the completion of Q with respect

to the usual metric? Not exactly, because we have used the notion of R throughout

our development of the theory of metric spaces, so there is some circularity. In

particular, the definition of the metric d̃ makes crucial use of R in defining the

limit limn→∞ d(xn, x
′
n).

That said, arguably the most natural construction of R is as equivalence classes

of Cauchy sequences in Q – but this needs to be done separately from the general

definition of completion, and indeed should really be done before even beginning a

discussion of metric spaces, which involve R in their definition.

If you are interested in how to construct the reals (which I think you should be!)

then the Wikipedia page on the subject is a good place to start.

Example 6.5.2. A very important example of a completion in number theory

is the construction of the p-adics Qp, which is the completion of Q with respect to

the p-adic metric, which we briefly discussed in Example 1.3.5.

https://en.wikipedia.org/wiki/Construction_of_the_real_numbers




CHAPTER 7

Connectedness and path-connectedness

In this section we try to understand what makes a space “connected”. We will

consider two natural approaches to this question, and show that for reasonably nice

spaces the two notions in fact coincide.

In particular, the two notions of connectedness coincide for open subsets of the

complex plane, which will be our main subject of interest in the second half of the

course.

7.1. Connectedness

The concept of connectedness formulates the intuitive idea of a space which

cannot be split into two “separated” pieces.

Definition 7.1.1. We say that a metric space is disconnected if we can write it

as the disjoint union of two nonempty open sets. We say that a space is connected

if it is not disconnected.

If X is written as a disjoint union of two nonempty open sets U and V then we

say that these sets disconnect X.

If X = [0, 1] ∪ [2, 3] ⊂ R then we have seen that both [0, 1] and [2, 3] are open

in X. Since X is their disjoint union, X is disconnected.

It is a little harder to give a nontrivial example of a connected space. Later on,

we will show that all intervals in R are connected.

The following lemma gives some equivalent ways to formulate the concept of

connected space.

Lemma 7.1.2. Let X be a metric space. Then the following are equivalent.

(i) X is connected.

(ii) If f : X → {0, 1} is a continuous function then f is constant.

(iii) The only subsets of X which are both open and closed are X and ∅.

(Here the set {0, 1} is viewed as a metric space via its embedding in R, or equiva-

lently with the discrete metric.)

Proof. (i) ⇒ (ii): Let X be connected, and let f : X → {0, 1} be a continuous

function. The singleton sets {0} and {1} are both open in {0, 1} and so both f−1(0)
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and f−1(1) are open subsets of X.They are clearly disjoint, and their union is X.

Therefore one of them must be empty, which means that f is constant.

(ii) ⇒ (iii): Suppose that A ⊆ X is both open and closed. Then Ac is open

(and closed), and so the function f : X → {0, 1} defined by f(x) = 1 for x ∈ A
and f(x) = 0 for x ∈ Ac (that is, the characteristic function of A) is continuous.

Assuming (ii), it must be constant. If it takes the constant value 1, then A = X.

If it takes the constant value 0, then A = ∅.
(iii)⇒ (i): Suppose that X = U ∪V with U, V open and disjoint. Then U c = V

is open, so U is also closed. Thus U is both open and closed, and hence (assuming

(iii)) is either X or ∅. Similarly for V . Hence there is no way to disconnect f(X).

Frequently one has a metric space X and a subset Y of it whose connectedness

or otherwise one wishes to ascertain. To this end, it is useful to record the following

lemma.

Lemma 7.1.3. Let X be a metric space, and let Y ⊆ X be a subset, considered

as a metric space with the metric induced from X. Then Y is connected if and only

if the following is true. If U, V are open subsets of X, and U ∩ V ∩ Y = ∅, then

whenever Y ⊆ U ∪ V , either Y ⊆ U or Y ⊆ V .

Proof. The key point here is to recall that the open sets in Y are precisely the

sets of the form U ∩ Y , where U is open in X. This was proven in Lemma 4.5.1.

Take a pair U ∩ Y , V ∩ Y of such open sets. They disconnect Y if and only if

(i) They are disjoint, thus U ∩ V ∩ Y = ∅;
(ii) They cover Y , which is equivalent to Y ⊆ U ∪ V ;

(iii) Neither is empty.

Thus Y is connected if and only if (i) and (ii) imply that one of U ∩ Y , V ∩ Y is

empty or equivalently that Y ⊆ V or Y ⊆ U .

We now turn to some basic properties of the notion of connectedness. These

broadly conform with one’s intuition about how connected sets should behave, but

of course proof is required in each case.

Lemma 7.1.4 (Sunflower lemma). Let X be a metric space. Let {Ai : i ∈ I}
be a collection of connected subsets of X such that

⋂
i∈I Ai 6= ∅. Then

⋃
i∈I Ai is

connected.

Proof. We use the alternative characterisation of connectedness given in Lemma

7.1.2 (ii). Suppose that f :
⋃
i∈I Ai → {0, 1} is continuous. We must show that

f is constant. Pick x0 ∈
⋂
i∈I Ai. Then if x ∈

⋃
i∈I Ai there is some i for which
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x ∈ Ai. But then the restriction of f to Ai is constant since Ai is connected, so

that f(x) = f(x0) as x, x0 ∈ Ai. But since x was arbitrary, it follows that f is

constant as required.

Lemma 7.1.5 (Connectedness and closures). Let X be a metric space. If A ⊆ X
is connected then if B is such that A ⊆ B ⊆ Ā, the set B is also connected.

Proof. We use the criterion for a subspace to be connected from Lemma 7.1.3.

Suppose that B ⊆ U ∪ V where U and V are open in X and U ∩ V ∩B = ∅. Then

certainly A ⊆ U ∪V and A∩U ∩V = ∅. Hence, since A is connected, either A ⊆ U
or A ⊆ V . Without loss of generality, A ⊆ U , and since A ∩ U ∩ V = ∅ this means

that A ⊆ V c. However, V c is closed and so taking closures we obtain Ā ⊆ V̄ c = V c.

In particular B ⊆ V c and so, since B ⊆ U ∪ V , we must have B ⊆ U . We have

verified the criterion (Lemma 7.1.3) for a subspace to be connected.

Lemma 7.1.6 (Connected image of a connected set). Let X be a connected metric

space, and let f : X → Y be continuous. Then f(X) is connected.

Proof. We may as well suppose that f is surjective (otherwise replace Y by f(X)).

Suppose that U and V are disjoint open subsets of Y with U ∪ V = Y . Then

f−1(U) and f−1(V ) are disjoint open subsets of X with f−1(U) ∪ f−1(V ) = X.

Since X is connected one of them, say f−1(U), is empty. Therefore U is empty.

It follows that there is no way to disconnect X.

A simple corollary is that (unlike completeness) the property of connectedness

is preserved under homeomorphisms.

Connected components. A consequence of the Sunflower Lemma is that, for

each x ∈ X, there is a unique maximal connected subset of X containing x, which

contains all other such sets (take the union of all connected subsets of X containing

x). This is called the connected component of X containing x.

Proposition 7.1.7 (Connected components). The connected components of a

metric space partition the space. A space is connected if and only if it has a unique

connected component.

Proof. Let X be the space, and for x ∈ X write Γ(x) for the connected component

containing x. Suppose that Γ(x) and Γ(y) are not disjoint, say a ∈ Γ(x) ∩ Γ(y).

We wish to show that they coincide, which is what it means for them to partition

the space. By the Sunflower Lemma, Γ(x) ∪ Γ(y) is connected. By the definition

of connected component, Γ(x) must contain this set, which of course means that

Γ(y) ⊆ Γ(x). Similarly Γ(x) ⊆ Γ(y), and so Γ(x) = Γ(y).
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The second statement is obvious.

7.2. *Connected subsets of R

In this section we classify the connected subsets of R, showing that they are

precisely the intervals. For the purposes of this section, the word interval includes

half-infinite or infinite intervals, and intervals can be open or closed at either end.

Thus the sets we are talking about are

[a,∞), (a,∞), (−∞, a) and (−∞, a],

together with all bounded intervals

(a, b), (a, b], [a, b) and [a, b] for a, b ∈ R with a 6 b.

Note that singleton sets {a} are intervals, as is the empty set.

Theorem 7.2.1. A subset of R is connected if and only if it is an interval.

Proof. We will prove this theorem, which is not by any means trivial, in two

stages. To this end, let us make a definition. Let E ⊆ R be a subset of the real

line. We say that E has the interval property if, whenever x < y both lie in E, we

have [x, y] ⊆ E.

The theorem is a consequence of the following two assertions:

(1) A subset of the real line R is connected if and only if it has the interval

property;

(2) A subset of the real line has the interval property if and only if it is itself an

interval.

We begin with (1). Suppose that E is connected and that x, y ∈ E. By sym-

metry we may assume that x < y. If [x, y] is not entirely contained in E, we may

find c ∈ (x, y) such that c /∈ E. Take U = (−∞, c) and V = (c,∞). Clearly

U ∩ V ∩E = ∅, E ⊆ U ∪ V , but we do not have E ⊆ U (since y ∈ E \U) or E ⊆ V
(since x ∈ E \ V ). By Lemma 7.1.3, E is not connected.

In the other direction, suppose that E has the interval property. We wil show

that E is connected using Lemma 7.1.3. Suppose E ⊆ U ∪ V where U and V are

open subsets of R with E ∩ U ∩ V = ∅, but that we do not have E ⊆ U or E ⊆ V .

Thus E ∩ U and E ∩ V are both non-empty. Let x ∈ E ∩ U and y ∈ E ∩ V . Since

E ∩U ∩ V = ∅, x and y are distinct, and we may assume without loss of generality

that x < y. Since E has the interval property, [x, y] is entirely contained in E.

Now define S = {z ∈ [x, y] : z ∈ U}. Then S is non-empty and bounded and

so c = sup(S) exists. Clearly c ∈ [x, y]. Since [x, y] ⊆ E ⊆ U ∪ V , we have either

c ∈ U or c ∈ V .



7.3. PATH-CONNECTEDNESS 47

If c ∈ U then c 6= y and so, since U is open, there is some interval [c, c + ε)

contained in U and also in [x, y]. This means that [c, c+ ε) ⊆ S, which contradicts

the fact that c = sup(S) (for instance, c+ ε/2 lies in S and is bigger than c).

If c ∈ V then c 6= x and so, since V is open, there is some interval (c − ε, c]
contained in V and also in [x, y]. In particular, [c− ε/2, c] is disjoint from S, which

contradicts the fact that c = sup(S) (for instance, c − ε/2 as an upper bound for

S, and is smaller than c).

These two contradictions show that we were wrong to assume that neither E ⊆ U
or E ⊆ V . Therefore E is connected. This concludes the proof of statement (1).

We turn now to statement (2). Here it is convenient to abuse some standard

notation. In particular, we let inf(E) take the value −∞ (if E is not bounded

from below) and sup(E) take the value ∞ (if E is not bounded from above). Also,

to save splitting into large numbers of cases, we allow ourselves to write [−∞, a],

when really we mean the half-line (−∞, a]. With these abuses of notation in place,

suppose that E has the interval property. Write c = inf(E) and C = sup(E) (where,

as just discussed, these can take the values −∞ and∞ respectively. We claim that

(7.1) (c, C) ⊆ E ⊆ [c, C],

which is easily seen to imply that E is one of the sets listed at the start of the

section. The right-hand inclusion is immediate from the definition of inf and sup.

To show the left-hand inclusion, suppose that z ∈ (c, C). Then there is some x ∈ E
with c 6 x < z, or else z would be a lower bound for E, larger than c. Similarly,

there is some y ∈ E with z < y 6 C. By the interval property, [x, y] ⊆ E. But

z ∈ [x, y], and so z ∈ E. This concludes the proof.

To finish this section, let us remark that the intermediate value theorem is an

almost immediate consequence of Theorem 7.2.1 and Lemma 7.1.6. Indeed, suppose

f : [a, b] → R is continuous. Then, since [a, b] is connected, f([a, b]) is connected.

Therefore this latter set is an interval and in particular it contains every c with

between f(a) and f(b).

7.3. Path-connectedness

We now turn to a different, but equally intuitive, notion of what it means for

a set to be connected: that one should be able to “continuously move” from any

point to another. Here is the precise definition.

Definition 7.3.1 (Path connectedness). Let X be a metric space. Then we

say that X is path-connected if the following is true: for any a, b ∈ X there is a

continuous map γ : [0, 1]→ X with γ(0) = a and γ(1) = b.
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A continuous map γ : [0, 1] → X is called a path. To develop the basic theory

of path-connectedness, we introduce a couple of simple operations on paths.

Given two paths γ1, γ2 in X such that γ1(1) = γ2(0) we can form the concate-

nation γ1 ? γ2 of the two paths to be the path

γ1 ? γ2(t) =

{
γ1(2t), 0 6 t 6 1/2

γ2(2t− 1), 1/2 6 t 6 1

We leave it as an easy exercise to show carefully that γ1 ? γ2 is continuous, and

hence really is a path.

If γ : [0, 1] → X is a path, then the opposite path γ− is defined by γ−(t) =

γ(1− t).

Lemma 7.3.2. Let X be a metric space. Define a relation ∼ on X as follows:

a ∼ b if and only if there is a path γ : [0, 1]→ X with γ(0) = a and γ(1) = b. Then

∼ is an equivalence relation.

Proof. To show that a ∼ a, use the path γ which takes the constant value a. To

show that a ∼ b implies b ∼ a, take a path γ from a to b and consider its opposite

path γ−. Finally, to show transitivity, use the join of two paths.

The equivalence classes into which this relation partitions X are called the path-

components of X.

7.4. Connectedness and path-connectedness

In the final part of this chapter, we explore the link between connectedness and

path-connectedness. The key points to be covered are as follows:

• Path-connectedness implies connectedness;

• Connectedness does not imply path-connectedness in general, but it does

in normed vector spaces.

Theorem 7.4.1. A path-connected metric space is connected.

Proof. Suppose that X is path-connected, and let f : X → {0, 1}. We claim that

f is constant, which is enough to establish connectedness of X by Lemma 7.1.2

(ii). Let a, b ∈ X, Since X is path-connected, there is a path γ : [0, 1] → X such

that γ(0) = a and γ(1) = b. Consider the composition f ◦ γ. This is a continuous

function from [0, 1] to {0, 1} and hence, since [0, 1] is connected, it is constant.

Therefore f(a) = (f ◦ γ)(0) = (f ◦ γ)(1) = f(b). Since a and b were arbitrary, this

implies that f is indeed constant.

Theorem 7.4.2. A connected open subset of a normed space is path-connected.
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Proof. Write X for the connected open set. The key observation is that any

path-component of X is open. To see this, suppose that P is a path-component of

X, and let a ∈ P . Since X is open, there is a ball B(a, ε) contained in X. Let b be

a point in this ball. We can now write down an explicit path γ between a and b,

namely γ(t) = (1 − t)a + tb. This is easily seen to be continuous, and its image is

contained in B(a, ε) since

‖γ(t)− a‖ = t‖a− b‖ 6 ‖a− b‖ = d(a, b) < ε

for all t. Therefore b lies in the same path-component P .

With this observation in place, the theorem follows easily. Indeed, the path-

components partition X, and so if there was more than one of them we could write

X as a disjoint union of non-empty open sets, contrary to the assumption that X

is connected.

Theorem 7.4.3. There is a connected subset of R2 which is not path-connected.

Proof. *There is a classic example, known as the Topologist’s sine-curve. This is

the set A ⊆ R2 given by

{(0, y) : −1 6 y 6 1} ∪ {(x, sin(1/x) : x ∈ (0, 1]}.

Why is A connected? It is quite easy to convince oneself that A = Ē, where

E = {(x, sin(1/x) : x ∈ (0, 1]}. However, E is connected, being the image of

the connected set (0, 1] under a continuous map, and so the connectedness of A is

immediate from Lemma 7.1.5.

Why is A not path-connected? It is “intuitively clear” that there is no path

γ : [0, 1] → A with γ(0) = (0, 0) and γ(1) = (1, sin(1)), but we must prove this.

Suppose we have such a path γ. Write ` for the vertical line {0} × [−1, 1], thus

A = E ∪ `. Since ` is closed in A, γ−1(`) is closed, and in particular contains its

supremum t. Thus γ(t) ∈ `, whilst γ(u) ∈ E for all u > t.

Let pY : R2 → R be projection onto the y-coordinate, i.e. pY (x, y) = y. Since

pY is continuous, so is the composition pY ◦ γ : [0, 1] → R. Thus there is some

δ > 0 such that

(7.2) |pY (γ(u1))− pY (γ(u2))| 6 1 for all u1, u2 ∈ [t, t+ δ].

Now let pX be projection onto the x-coordinate, i.e. pX(x, y) = x. The compo-

sition pX ◦ γ is continuous, and so by the intermediate value theorem and the fact

that pX(γ(t+ δ)) > 0, (pX ◦ γ)[t, t+ δ] contains some interval [0, c], c > 0.

However, as x ranges over (0, c], sin(1/x) takes all values in [−1, 1] (infinitely

often), so there are u1, u2 ∈ [t, t + δ] such that pY (γ(u1)) = 1, pY (γ(u2)) = −1.

This contradicts (7.2).





CHAPTER 8

Sequential compactness

In this chapter (and in Chapter 8) we will be talking a lot about sequences and

subsequences, so let us be clear about what these concepts are. If X is some space,

let σ = (xn)∞n=1 = (x1, x2, . . . ) be a sequence of elements of X. Any sequence of

the form σ′ = (xnk
)∞k=1, where n1 < n2 < n3 < . . . , is called a subsequence of σ.

For instance, (x1, x4, x9, x16, . . . ) is a subsequence of (x1, x2, x3, x4, . . . ).

8.1. Definitions

In this chapter we study metric spaces which satisfy the metric-space analogue

of the Bolzano-Weierstrass property. Recall what the Bolzano-Weierstrass property

of R is: any bounded sequence has a convergent subsequence. More precisely, if

(xn)∞n=1 is a sequence of elements in some closed bounded interval [a, b], there is a

subsequence of the xn which converges to some c ∈ [a, b].

There is an obvious way to generalise this notion to subsets of metric spaces,

and the resulting notion is called sequential compactness.

Definition 8.1.1 (Sequential compactness). Let X be a metric space. Then X

is said to be sequentially compact if any sequence of elements in X has a convergent

subsequence.

Important remark. Sometimes, you will see the notion of sequential compactness

called simply “compactness”. Indeed, the schedules for the course seem slightly

confused on this point. To me, compactness is defined in terms of open covers,

as in Chapter 9. It is then a nontrivial theorem that the notions of sequential

compactness and compactness are the same. In my view it is very important to

make the distinction, since both notions have obvious extensions to the context of

topological spaces, but in this generality they are not the same and in fact neither

notion implies the other. Examples showing this are beyond the scope of this course,

but if you are interested, see here for discussion and further references.

Example 8.1.2. The closed interval [0, 1] is sequentially compact, by the Bolzano-

Weierstrass theorem.

The open interval (0, 1) is not sequentially compact. For instance, the sequence

xn = 1/n has no convergent subsequence in this space.
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The set of rational numbers in [0, 1] is not sequentially compact – for instance,

the sequence 0.1, 0.14, 0.141, 0.1415, . . . consisting of decimal approximations to π−
3 has no convergent subsequence.

Finally, the real line R is not sequentially compact. For instance, the sequence

xn = n has no convergent subsequence in this space.

8.2. Closure and boundedness properties

In this section we prove a couple of basic lemmas about sequentially compact

spaces.

Lemma 8.2.1. A sequentially compact subspace of a metric space is closed and

bounded.

Proof. Let X be the space and Y the sequentially compact subspace.

Suppose first that Y is not closed. Then Ȳ \ Y is nonempty. Let a be a point

in this set. By Lemma 5.1.5, there is a sequence (yn)∞n=1 of elements of Y with

limn→∞ yn = a. Then any subsequence of (yn)∞n=1 converges to a and hence, by

the uniqueness of limits, does not converge to an element of Y . Therefore Y cannot

be sequentially compact.

Suppose next that Y is not bounded. Pick an arbitrary point y0 ∈ Y , and pick a

sequence (yn)∞n=1 such that d(y0, yn) > n for all n. Suppose there is a subsequence

(ynk
)∞k=1 converging to b. Then for k sufficiently large we have d(ynk

, b) < 1, which

implies that

d(y0, b) > d(y0, ynk
)− d(ynk

, b) > nk − 1.

Since nk →∞ as k →∞, whilst d(y0, b) is a fixed finite quantity, this is a contra-

diction.

The converse is not true – for instance, take X = Y = (0, 1) (noting that Y is

closed as a subset of X).

Lemma 8.2.2. A closed subset of a sequentially compact metric space is sequen-

tially compact.

Proof. Let X be the space and Y the closed subspace. Consider a sequence (yn)∞n=1

of elements of Y . It is also a sequence of elements of X and so, by sequential

compactness of X, has a subsequence converging to a. However, Y is closed, so the

limit of any convergent sequence of elements of Y lies in Y . In particular, a ∈ Y .

The following is perhaps not quite so basic (though it is not hard). We include

it because it will be needed later on, in the complex analysis part of the course.
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Lemma 8.2.3. Let X be a metric space. Suppose that K is a sequentially compact

subset of X, and that U is an open subset of X containing K. Then there is some

ε > 0 such that the “ε-thickening”
⋃
z∈K B(z, ε) of K is contained in U .

Proof. Suppose this is not true for ε = 1/n. Then there is xn ∈ K such that

B(xn, 1/n) is not contained in U , so there is yn ∈ U c with d(xn, yn) < 1/n. Since K

is sequentially compact, there is a subsequence (xnk
)∞k=1 which converges to some

point p ∈ K.

But then it follows (ynk
) also converges to p. Since U c is closed and all the ynk

lie in U c, it follows that p ∈ U c. But this is a contradiction, since K ⊆ U .

8.3. Continuous functions on sequentially compact spaces

Sequential compactness has some nice properties with respect to continuous

maps.

Lemma 8.3.1. The image of a sequentially compact metric space under a con-

tinuous map is sequentially compact.

Proof. Let X be sequentially compact, and suppose that f : X → Y is continuous.

Let σ = (f(xn))∞n=1 be a sequence of elements of f(X). The sequence (xn) contains

a convergent subsequence (xnk
) say, with xnk

→ a as k →∞ for some a ∈ X. But

then, since f is continuous, we have f(xnk
) → f(a), and so σ′ = (f(xnk

))∞k=1 is a

convergent subsequence of σ.

As a consequence of Lemma 8.2.1, we see that continuous function f from a

sequentially compact metric space X to R has closed and bounded image, so in

particular f is bounded and attains its bounds.

Another consequence of Lemma 8.3.1 is the if X and Y are homeomorphic metric

spaces and if X is sequentially compact, then so is Y .

Proposition 8.3.2. A continuous function from a sequentially compact metric

space to R is uniformly continuous.

Proof. Let X be a sequentially compact metric space, and suppose that f : X → R

is continuous but not uniformly continuous. Then there exists some ε > 0 such

that for each n ∈ N we may find an, bn ∈ X such that d(an, bn) < 1/n but

d(f(an), f(bn)) > ε. Since X is sequentially compact, (an)∞n=1 has a subsequence,

(ank
)∞k=1 converging to some point `. Consider the corresponding sequence (bnk

)∞k=1.

Since d(ank
, bnk

) 6 1/nk → 0, it follows that bnk
also converges to ` as k →∞.

Relabelling (to avoid double subscripts) we may now assume we have sequences

(an)∞n=1, (bn)∞n=1 with limn→∞ an = limn→∞ bn = ` and d(f(an), f(bn)) > ε for all

n.
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Now f is continuous at `, so there is a δ > 0 such that for all x ∈ X with d(`, x) <

δ, we have d(f(`), f(x)) < ε/2. If n is sufficiently large, we have d(`, an), d(`, bn) < δ

and hence

ε 6 d(f(an), f(bn)) 6 d(f(an), f(`)) + d(f(`), f(bn)) < ε/2 + ε/2 < ε,

which is a contradiction.

We were therefore wrong to assume that f is not uniformly continuous.

8.4. Product spaces

Recall that if (X, dX) and (Y, dY ) are metric spaces then their Cartesian product

X × Y can be equipped with a metric dX×Y by setting

dX×Y ((x1, y1), (x2, y2)) =
√
dX(x1, x2)2 + dY (y1, y2)2.

The main result of this section, Proposition 8.4.2 below, is that the product

of two sequentially compact spaces is compact. Before proving this, we note an

important lemma.

Lemma 8.4.1. Let X and Y be metric spaces. A sequence ((xn, yn))
∞
n=1 in X×Y

converges if and only if (xn)∞n=1 converges in X and (yn)∞n=1 converges in Y .

Proof. The projection maps pX : X×Y → X and pY : X×Y → Y are continuous.

In fact it is easy to see that they are Lipschitz continuous with Lipschitz constant

1. It follows that if limn→∞(xn, yn) = (a, b) then

lim
n→∞

xn = lim
n→∞

pX(xn, yn) = pX(a, b) = a,

and similarly limn→∞ yn = b.

Conversely, if xn → a and yn → b then

dX×Y ((xn, yn), (a, b)) =
√
dX(xn, a)2 + dY (yn, b)2 → 0

as n→∞ and so (xn, yn)→ (a, b) as n→∞, as required.

Now we prove that the product of two sequentially compact spaces is compact,

with apologies for using a rather unpleasant triple subscript notation in the argu-

ment.

Proposition 8.4.2. The product of two sequentially compact metric spaces is

sequentially compact.

Proof. Let ((xn, yn))∞n=1 be a sequence in X × Y . As X is sequentially compact,

the sequence σ = (xn)∞n=1 in X has a convergent subsequence σ′ = (xnk
)∞k=1,

with xnk
→ a as k → ∞. Now consider the sequence (ynk

)∞k=1 in Y . Since Y
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is sequentially compact this in turn has a convergent subsequence (ynkr
)∞r=1, say

ynkr
→ b as r →∞. Let σ′′ be the corresponding subsequence of xs, that is to say

σ′′ = (xnkr
)∞r=1. Then σ′′ is a subsequence of σ′, and so it converges to a.

By the previous Lemma it follows that (xnkr
, ynkr

) → (a, b) as r → ∞, and so

we have exhibited a convergent subsequence of ((xn, yn))∞n=1 . Therefore X × Y is

sequentially compact.

A corollary of this is the following result, which is often called the Bolzano-

Weierstrass theorem (being a generalisation of the version on R).

Corollary 8.4.3 (Bolzano-Weierstrass). Any closed and bounded subset of Rn

is sequentially compact.

Proof. Let X ⊆ Rn be the set. Since X is bounded, it is contained in some

cube [−M,M ]n. The Bolzano-Weierstrass theorem on R implies that [−M,M ] is

sequentially compact, and therefore by Proposition 8.4.2, [−M,M ]n is sequentially

compact. Since X is closed, it is sequentially compact by Lemma 8.2.2.

8.5. Sequentially compact equals complete and totally bounded

As a warm-up to the main business of this section, we prove the following.

Proposition 8.5.1. A sequentially compact metric space is complete and bounded.

The converse is not true in general.

Proof. Suppose that X is sequentially compact. We have already shown that X

is bounded in Lemma 8.2.1. Let us now show that X is complete. Suppose that

(xn)∞n=1 is a Cauchy sequence in X. Since X is sequentially compact, (xn)∞n=1 has

a convergent subsequence (xnk
)∞k=1. Suppose that limk→∞ xnk

= a. We claim that

in fact limn→∞ xn = a.

Let ε > 0. Then, since (xn)∞n=1 is Cauchy, there is some N such that for all

n,m > N we have d(xn, xm) < ε/2. Since limk→∞ xnk
= a, we may find a k such

that nk > N and d(xnk
, a) < ε/2. But then if n > N we have

d(xn, a) 6 d(xn, xnK
) + d(xnK

, a) < ε/2 + ε/2 = ε,

as required.

To show that the converse is not true in general, consider the following example.

Take Cb(R) to be the normed space of continuous bounded functions on the real

line equipped as usual with the ‖ · ‖∞-norm and the associated metric. Define a

function φ : R→ R by

φ(t) =

{
2t+ 1, −1/2 6 t 6 0;

1− 2t, 0 6 t 6 1/2
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and φ(t) = 0 for t /∈ [−1/2, 1/2]. For each n ∈ N set fn(t) = φ(t + n) (we might

call this sequence of functions a “moving bump”). All of the functions fn lie in

B̄(0, 1) (that is, have sup norm bounded by 1). However, if n 6= m then fn(n) = 1,

whilst fm(n) = 0, so ‖fn − fm‖∞ = 1. Thus the sequence (fn)∞n=1 has no Cauchy

subsequence, and hence certainly no convergent subsequence.

Remark. The Bolzano-Weierstass theorem (Corollary 8.4.3) asserts that the

converse is true for subsets of Rn.

It turns out that there is a stronger notion of boundedness called total bounded-

ness which – together with completeness - implies sequential compactness and in

fact is equivalent to it.

Definition 8.5.2. A metric space is said to be totally bounded if, for any ε > 0,

it may be covered by finitely many open balls of radius ε.

Here is one of the more substantial theorems of the course.

Theorem 8.5.3. A metric space is sequentially compact if and only if it is

complete and totally bounded.

Proof. Suppose first that we have a space X which is sequentially compact. We

have already shown in Proposition 8.5.1 that X is complete. Let us now show that

it is totally bounded. Suppose X is not totally bounded, and let ε be such that

there is no way to cover X by finitely many open balls of radius ε.

Using a greedy algorithm, we select an infinite sequence (xn)∞n=1 of elements of

X which are separated by at least ε, that is to say d(xi, xj) > ε whenever i 6= j.

To do this, suppose that x1, . . . , xn have already been selected. By assumption,

the balls B(xi, ε) do not cover X, and so we may select a point xn+1 ∈ X which

does not lie in any of these balls, and therefore d(xi, xn+1) > ε for i = 1, . . . , n.

It is clear that such a sequence has no convergent subsequence, and so we were

wrong to assume that X is not totally bounded.

We turn now to the more substantial direction of the theorem, which is to show

that a complete and totally bounded metric space X is sequentially compact. Let

σ be a sequence of elements of X. We will use the total boundedness assumption

for balls of radii 1, 1
2 ,

1
4 , . . . . Thus, for each nonnegative integer m there is a finite

collection of open balls B
(m)
1 , . . . , B

(m)
km

of radius 2−m which cover X.

Start with the balls B
(0)
1 , · · · , B(0)

k0
of radius 1. One of these balls contains

infinitely many elements of the sequence σ. Write B0 for the ball with this property,

and let σ(0) be the infinite subsequence of σ of elements contained in this ball.

Now look at the balls B
(1)
1 , . . . , B

(1)
k1

of radius 1
2 . One of these balls contains

infinitely many elements of the new subsequence σ(0). Write B1 for such a ball,

and let σ(1) be the finite subsequence of σ(0) of elements contained in it.
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Continue in the obvious fashion, producing new subsequences σ(2), σ(3), . . . with

σ(r) contained in Br and a subsequence of σ(r−1).

Now consider the sequence σ∗ obtained by a diagonal argument: the ith element

of σ∗ is taken to be the ith element of σ(i). Clearly σ∗ is a subsequence of σ and,

if we write σ∗ = (xn)∞n=1, we have xn ∈ Br for all n > r.

It is now clear that σ∗ is a Cauchy sequence. Indeed, given ε > 0, let N be such

that 2−N < ε/2. If n,m > N then xn, xm both lie in BN , which is a ball of radius

2−N , and hence d(xn, xm) < ε/2 + ε/2 = ε.

Finally, since X is complete the sequence σ∗ converges. We have shown that σ,

which was an arbitrary sequence in X, has a convergent subsequence, and therefore

X is sequentially compact.

Remark. Observe that the argument in fact shows that any sequence in a to-

tally bounded metric space has a subsequence which is Cauchy. We only used

completeness right at the end.

8.6. The Arzelà-Ascoli theorem

Let X be a sequentially compact metric space. We have shown (Lemma 8.3.1)

that any continuous function f : X → R is bounded, and so the space Cb(X) of

bounded, real-valued continuous functions on X is equal to C(X), the space of

continuous real-valued functions on X. We have seen that this is a normed space,

with the sup norm ‖f‖∞ := supx∈X |f(x)|, and moreover it is complete (Theorem

6.3.2).

The space C(X) is never sequentially compact itself. To see this, consider the

sequence (fn)∞n=1 in which fn is the constant function n; this sequence clearly has

no convergent subsequence.

There are other, less trivial, examples, for instance when X = [0, 1]. Consider

the sequence (fn)∞n=1 of continuous functions on [0, 1] defined as follows: fn(x)

is zero outside of the interval ( 1
n+1 ,

1
n ), but takes the value 1 at the midpoint

tn := 1
2 ( 1
n + 1

n+1 ) of this interval, and is piecewise linear elsewhere. The fn are all

continuous, but clearly d(fm, fn) = 1 whenever m 6= n, since fm(tm) = 1 whilst

fn(tm) = 0. Thus this sequence has no convergent subsequence.

The issue here is that the functions fn, whilst continuous, become “less and

less continuous” as n→∞; the gradient of the piecewise linear sequences tends to

infinity.

Whilst the whole space C(X) is not sequentially compact, interesting subsets

of it may be. Roughly speaking, the two types of example we have just mentioned

are the only obstruction to sequential compactness, an idea made precise by the

Arzelà-Ascoli theorem.
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The property of uniform boundedness rules out trivial examples like the sequence

fn = n.

Definition 8.6.1 (Uniformly bounded). LetX be a sequentially compact metric

space. Let F ⊆ C(X). Then we say that F is uniformly bounded if it is bounded

as a subset of C(X) with the ‖ · ‖∞ norm. That is, there is some M such that

|f(x)| 6M for all x ∈ X and for all f ∈ F .

The property of equicontinuity rules out “less and less continuous examples”

like the one we described.

Definition 8.6.2 (Equicontinuity). Let X be a sequentially compact metric

space. Let F ⊆ C(X). Suppose that, in the ε-δ definition of continuity, δ can be

chosen independently of f ∈ F . That is, for every ε > 0 there is δ > 0 such that

whenever d(x, y) < δ we have d(f(x), f(y)) < ε for all f ∈ F . Then we say that

the family F is equicontinuous.

Theorem 8.6.3 (Arzelà-Ascoli). Let X be a sequentially compact metric space.

Let F ⊆ C(X) be an equicontinuous and uniformly bounded set of functions. Then

any sequence of elements of F has a convergent subsequence. In particular, if F is

closed then it is sequentially compact.

Proof. (Non-examinable). F̄ , being a closed subset of the complete metric space

C(X), is complete. Therefore, by Theorem 8.5.3, it is enough to show that F̄ is

totally bounded.

Claim. It is enough to show that F is totally bounded. Proof. Let ε > 0,

and suppose there is some collection of balls B(fi, ε/2), which cover F . If g ∈ F ,

there is some f ∈ F with d(f, g) < ε/2. Suppose that f ∈ B(fi, ε/2). Then

d(g, fi) 6 d(g, f) + d(f, fi) < ε. Therefore the balls B(fi, ε) cover F̄ . (Note that

the same argument works in any metric space.) This proves the claim.

It remains to show that F is totally bounded. Let ε > 0. Since F is uniformly

bounded, there is some M such that |f(x)| 6M for all x ∈ X and f ∈ F .

Since F is equicontinuous we know that there is a δ > 0 such that if x, y ∈ X
are such that d(x, y) < δ then |f(x)− f(y)| < ε/4.

Since X is sequentially compact, it is totally bounded, so there is some finite

collection of balls B(xi, δ), i = 1, 2, . . . , k, which covers X.

Divide [−M,M ] into K intervals, all of length less than ε/4, and label these

intervals I1, . . . , IK . For each function α : {1, . . . , k} → {1, . . . ,K}, there may or

may not be a function f ∈ F such that f(xi) ∈ Iα(i) for i = 1, . . . , k. If there is,

pick one and call it fα; otherwise, choose fα arbitrarily.
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We claim that the balls B(fα, ε) cover F . Since there are only finitely many (in

fact, Kk) functions α, this establishes the total boundedness of F .

It remains to prove this claim. Let f ∈ F be arbitrary, and let α : {1, . . . , k} →
{1, . . . ,K} be the function such that f(xi) ∈ Iα(i) for all i. Consider the function

fα, which has the same property by definition: fα(xi) ∈ Iα(i) for all i. In particular,

(8.1) |f(xi)− fα(xi)| < ε/2 for all i.

Now let x ∈ X be arbitrary. By the choice of the xi, there is some i such that

d(x, xi) < δ. From the definition of δ, it follows that

(8.2) |f(x)− f(xi)| < ε/4,

and also that

(8.3) |fα(x)− fα(xi)| < ε/4

Combining (8.1), (8.2) and (8.3) using the triangle inequality gives

|f(x)− fα(x)| < ε.

Since x was arbitrary, it follows that ‖f − fα‖∞ < ε, or in other words that

f ∈ B(fα, ε). This confirms the claim, and completes the proof of the Arzelà-

Ascoli theorem.





CHAPTER 9

Compactness

9.1. Open covers and the definition of compactness

In this final chapter of the metric spaces part of the course, we come to one of

the most powerful and important notions in all of mathematics: compactness.

Let us start by giving the definition.

Definition 9.1.1. Let X be a metric space and U = {Ui : i ∈ I} a collection of

open subsets of X. We say that U is an open cover of X if X =
⋃
i∈I Ui. If J ⊆ I

is a subset such that X =
⋃
i∈J Ui then we say that {Ui : i ∈ J} is a subcover of U

and if |J | <∞ then we say that it is a finite subcover.

Definition 9.1.2 (Compactness). A metric space is said to be compact if every

open cover has a finite subcover.

Example 9.1.3. The real line R is not compact. For instance, the open cover⋃
n∈N(−n, n) has no finite subcover.

Motivation. It is quite hard to motivate the definition of compactness when one

first sees it. Indeed, von Neumann’s famous quote “... in mathematics you don’t

understand things. You just get used to them” is quite apposite. Nonetheless, a

couple of comments are in order. First of all, it turns out that compactness and

sequential compactness are the same concept in metric spaces. We prove this in

Sections 9.2 and 9.4 below (with the second of these being non-examinable). Second,

the notion of compactness looks rather natural in the context of topological spaces,

since it talks about open sets in a very basic way. Whilst the notion of sequential

compactness can also be formulated in topological spaces, it is somehow less basic

and, in this more general situation, not equivalent to compactness. We already

remarked on this point and suggested further reading in the last chapter.

Subspaces. Sometimes, we will have a metric space X and a subspace Y ⊆ X,

and we wish to talk about whether Y is compact. In this context, by convention

an open cover U of Y is a collection {Ui : i ∈ I} of open subsets of X, such that

Y ⊆
⋃
i∈I Ui. A subcollection {Ui : i ∈ J} is called a subcover if Y ⊆

⋃
i∈J Ui.

Then Y is compact if and only if every open cover has a finite subcover. The

reason this notion is the same as the previous one (which was “internal to Y ”,

61
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making no reference to open sets in X) is Lemma 4.5.1, which says that open sets

in Y are the same thing as open sets in X intersected with Y .

It should be said that this abuse of nomenclature of using the phrase “open

cover” in two slightly different ways can be a touch confusing when you first see it.

I recall being confused about this point myself when I was an undergraduate.

9.2. Compactness implies sequential compactness

Proposition 9.2.1. A compact metric space is sequentially compact.

We isolate a lemma from the proof.

Lemma 9.2.2. Suppose that X is a compact metric space and that we have a

nested sequence S1 ⊇ S2 ⊇ S3 ⊇ · · · of nonempty, closed subsets of X. Then the

intersection
⋂∞
n=1 Sn is nonempty.

Remark. You might be interested in comparing this with Lemma 6.2.2, where the

same conclusion was reached assuming that X is complete and that the diameters

of Si tend to 0.

Proof. Suppose the intersection is empty. Then the complements Sci (which are

open sets) are an open cover of X. By compactness, there is a finite subcover. In

particular, for some n the sets Sc1, . . . , S
c
n cover X. However, we have Sc1 ⊆ Sc2 ⊆

· · · ⊆ Scn, and therefore Scn covers (is equal to) X. But this is a contradiction, since

Sn is nonempty.

Proof. (Proof of Proposition 9.2.1.) Let X be the space in question, and sup-

pose that (xn)∞n=1 is a sequence of elements of X. We wish to find a convergent

subsequence of this sequence.

For each natural number n, set An := {xn, xn+1, xn+2, . . . }. Obviously, A1 ⊇
A2 ⊇ A3 ⊇ · · · , and so Ā1 ⊇ Ā2 ⊇ Ā3 ⊇ · · · . Applying Lemma 9.2.2, we see that⋂∞
n=1 Ān is nonempty.

Let a be a point in this intersection. We inductively construct a subsequence

(xnk
)∞k=1 such that d(xnk

, a) < 1/k for all k; it is then clear that this subsequence

converges (to a) and the proof will be complete. Suppose that n1, . . . , nk have

already been constructed. Now a lies in Ānk+1, that is to say the closure of the

set {xnk+1, xnk+2, . . . }. In particular, there is some element of this sequence at

distance less than 1/(k + 1) from a, and we can take this to be our xnk+1
.
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9.3. The Heine-Borel theorem

In Section 9.4, we will prove that any sequentially compact metric space is

compact. However, that section is not examinable. The special case of a closed

interval [a, b] is examinable, and this is called the Heine-Borel theorem.

Proposition 9.3.1 (Heine-Borel). The interval [a, b] is compact.

Proof. Let U = {Ui : i ∈ I} be an open cover of [a, b] (the Ui are open in R).

Define S to be the set of all x ∈ [a, b] for which [a, x] is covered by some finite

subcollection of the Ui.

Certainly S 6= ∅, since a ∈ S. S is bounded above by b. Therefore it has a

supremum c = sup(S), and c ∈ [a, b]. In fact c > a: if a ∈ Uj then Uj contains

some interval [a− η, a+ η], η > 0, so a+ η ∈ S.

Assume that c < b. Since U is an open cover of [a, b], c lies in some set Uj . Since

Uj is open, some open interval [c− ε, c+ ε], ε > 0, is contained in Uj . Assume ε is

chosen so small that c− ε > a and c+ ε < b.

Now c− ε is contained in S, or else it would be an upper bound for S, smaller

than c. Therefore [a, c − ε] is covered by finitely many sets from U . These sets,

together with Uj , then give a covering of [a, c + ε] by a finite subcollection of U .

This contradicts the fact that c is an upper bound for S.

We are forced to conclude that c = b. Now if b ∈ Ui then Ui contains some

interval [b − κ, b + κ], κ > 0. Since c = sup(S) = b, b − κ ∈ S, and so [a, b − κ] is

covered by a finite subcollection of U . This subcollection, together with Ui, gives a

finite subcover of [a, b].

9.4. Sequential compactness implies compactness

The converse of Proposition 9.2.1 is also true.

Proposition 9.4.1. A sequentially compact metric space is compact.

As a consequence of this, Proposition 9.2.1 and Theorem 8.5.3, we have the

following substantial and important theorem.

Theorem 9.4.2. Let X be a metric space. Then the following are equivalent:

(i) X is compact;

(ii) X is sequentially compact;

(iii) X is complete and totally bounded.

We turn now to the proof of Proposition 9.4.1, which is nonexaminable.

Proof. (Proof of Proposition 9.4.1, non-examinable.) Let X be a sequentially

compact metric space. By (the easy direction of) Proposition 8.5.3, X is complete
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and totally bounded. For m = 1, 2, 3, . . . , fix some collection of balls B
(m)
1 , . . . , B

(m)
km

of radius 2−m which cover X.

Suppose we have an open cover of X by sets Ui, i ∈ I, which has no finite

subcover. Then one of the balls B
(1)
j is not covered by finitely many of the Ui; let

us write B1 for this ball.

Now consider the balls B
(2)
j which intersect B1. One of these is not covered by

finitely many of the Ui (otherwise B1 would be). Write B2 for this ball.

Now consider the balls B
(3)
j which intersect B2, and so on.

Continuing in this fashion, we obtain a sequence B1, B2, . . . of open balls, with

Bm having radius 2−m, Bm ∩Bm+1 6= ∅ for all m, and with none of the Bj covered

by finitely many of the Ui. Let xm be the centre of Bm. Then, since Bm and Bm+1

intersect in some point t, we have

d(xm, xm+1) 6 d(xm, t) + d(xm+1, t) < 2−m + 2−(m+1) < 2 · 2−m.

By the triangle inequality and summing the geometric series, it follows that for any

n > m we have

d(xm, xn) 6 d(xm, xm+1) + · · ·+ d(xn−1, xn)

< 2(2−m + 2−(m+1) + · · · ) = 4 · 2−m.

Therefore (xn)∞n=1 is a Cauchy sequence. SinceX is complete, we have limn→∞ xn =

x for some x ∈ X. Since the sets Ui cover X, one of them must contain x. Let us

suppose U1 contains x. Then, since U1 is open, some ball B(x, ε) is contained in

U1.

Choose n large enough that d(xn, x) < ε/2, and also that 2−n < ε/2. Recalling

that Bn is the ball of radius 2−n centred on xn, it follows that Bn ⊆ B(x, ε). But

then Bn ⊆ U1, contrary to the assumption that Bn is not covered by finitely many

of the Ui.

We were wrong to assume the existence of an open cover of X with no finite

subcover, and so X is indeed compact.
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