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0 Introduction

These notes accompany my lecture on Probability, Measure and Martingales (B8.1). The notes borrow heavily
from previous versions by Alison Etheridge, Oliver Riordan and James Martin as well as another set by Zhong-
min Qian. I am grateful for them for making their notes available to me. I also want to thank Benjamin Joseph
who, as my academic assistant, helped to improve these notes. Finally, in parts, I followed closely the exposition
in two wonderful books on the subjects and I want to acknowledge the influence their authors, David Williams
and Paul-André Meyer, had on this text. I do not reiterate it elsewhere but I stress it here. Naturally, all errors
are mine.

Not having the strict time-limit imposed on a lecture course, the notes tend to go into various (interesting!)
digressions and cover additional material which is meant to provide the reader with a “larger and clearer picture”.
Some parts of the material which are additional and are not covered in the lectures are clearly labeled (as deep
dives). However, this is not always possible so to know the examinable material you should attend the lectures.
I should stress the examinable material is summarised in the syllabus and covered in the lectures – nothing less
or more is examinable.

These notes are work in progress and are being constantly improved. I am very grateful to all who have
helped me to improve them. Your comments, corrections, but also questions during office hours, are precious.

Please send all your comments and corrections to jan.obloj@maths.ox.ac.uk. Thank you!

0.1 Background

In the last fifty years probability theory has emerged both as a core mathematical discipline, sitting alongside
geometry, algebra and analysis, and as a fundamental way of thinking about the world. It provides the rigor-
ous mathematical framework necessary for modelling and understanding the inherent randomness in the world
around us. It has become an indispensable tool in many disciplines – from physics to neuroscience, from genet-
ics to communication networks, and, of course, in mathematical finance. Equally, probabilistic approaches have
gained importance in mathematics itself, from number theory to partial differential equations.

Our aim in this course is to introduce some of the key tools that allow us to unlock this mathematical
framework. We build on the measure theory that we learned in Part A Integration and develop the mathematical
foundations essential for more advanced courses in analysis and probability. We’ll then introduce the powerful
concept of martingales and explore just a few of their remarkable properties.
The nearest thing to a course text is

• David Williams, Probability with Martingales, CUP.

Also highly recommended are:

• P.-A. Meyer, Probability and Potentials, Blaisdell Publishing Company, 1966.
This is more extensive than Williams, use for deep-dives.
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• M. Capiński and P. E. Kopp, Measure, integral and probability, Springer, 1999.
A gentle guided intro to measure theory. Use if you feel lost on our way.

• Z. Brzezniak, T. Zastawniak, Basic stochastic processes: a course through exercises, Springer, 1999.
More elementary than Williams, but a helpful complimentary first reading.

• R. Durrett, Probability: theory and examples, 5th Edition, CUP 2019 (online).
The new edition of this classic. Packed with insightful examples and problems.

• S.R.S. Varadhan, Probability Theory, Courant Lecture Notes Vol. 7.
A classic. Not for the faint-hearted.

• ... and more. Feel free to ask if you are missing a book, anything from a bedtime

read to a real challenge.

0.2 Notation

It is useful to record here some basic notation and conventions used throughout. We let R denote the real
numbers, R=R∪{−∞,+∞} the extended reals, Q the rational numbers, N= {1,2, . . .} denote strictly positive
integers and Z all integers. Unless specified, we mean non-strict inequalities, i.e., we say “positive” for non-
negative, increasing for “non-decreasing” etc. We shall use | · | to denote the natural norm on the usual spaces.
In particular, |A| denotes the number of elements for A ⊂ N and |x| denotes the Euclidean norm of x ∈ Rd .

For a set A ⊂ Ω we let Ac denote its complement, i.e., Ac = {x ∈ Ω : x /∈ A}. Note that for the notion of
complement to make sense, we have to specify the larger space of which A is a subset. This should always
be clear from the context and will most often be Ω. For two sets A,B ∈ Ω we denote their set difference with
A \B = A∩Bc and their symmetric difference with A△B = (A∩Bc)∪ (B∩Ac). We shall often work with a
subset of points ω ∈ Ω for which a certain property Γ holds and will denote this {ω ∈ Ω : Γ(ω)} or simply {Γ}.
The most prominent example is ‘X(ω) ∈ E’, for a given function X and a set E, so that {ω ∈ Ω : X(ω) ∈ E}
will simply be denoted {X ∈ E}.

We will often work with collections of subsets, or of functions, and denote these with calligraphic letters
F ,G ,A etc. We will often consider collections closed under certain operations. For example, we say that a
collection of sets F is closed under countable unions if

⋃
∞
n=1 An ∈ F for any sequence of sets An ∈ F , n ⩾ 1.

Similarly, we would say that a collection of functions A is closed under pointwise multiplication if the function
f g ∈ A (defined via f g(ω) = f (ω)g(ω) ) for any f ,g ∈ A .

We will often consider monotone sequences of sets or functions. For a sequence (Fn)n⩾1 of sets, Fn ↑ F
means Fn ⊆ Fn+1 for all n and

⋃
∞
n=1 Fn = F . Similarly, Gn ↓ G means Gn ⊇ Gn+1 for all n and

⋂
∞
n=1 Gn = G.

Likewise, fn ↑ f , for functions on some set Ω, is understood pointwise and means that fn(ω)⩽ fn+1(ω), n ⩾ 1,
and fn(ω)→ f (ω) for all ω ∈ Ω.

We will denote the operations of min/max with ∧/∨, i.e., f ∧g = min{ f ,g} and f ∨g = max{ f ,g}. We also
write f+ = f ∨0 for the positive part of a function f and f− = (− f )∨0 for its negative part.

We use 1 to denote the indicator function: 1E(ω) is equal to 1 for ω ∈ E and 0 elsewhere. If E is defined
through the properties of ω we drop the argument, e.g., 1⌊2nω⌋ is even is one on the set of ω ∈ [0,1] for which the
integer part of 2nω is even and 0 otherwise.

For probability and expectation, the type of brackets used has no significance – some people use one, some
the other, and some whichever is clearest in a given case. So E[X ], E(X) and EX all mean the same thing.

What is here called a σ -algebra is sometimes called a σ -field. Our default notation (Ω,F ,µ) for a measure
space differs from that of Williams, who writes (S,Σ,µ).
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Anything marked as a Deep Dive covers material outside of the syllabus. It is only intended for those who are
interested and eager to understand things in more depth. It is non-examinable and not necessary for the course.
It goes above and beyond the material, often indicating links with other courses and parts of mathematics.
Even the eager readers should skip those parts on the first reading. More deep dives may appear as I revise
the notes. The depth of deep dives may vary considerably from one dive to another.

Deep Dive
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0.3 The Galton–Watson branching process

We begin with an example that illustrates some of the concepts that lie ahead. This example was already
introduced in Part A Probability so we don’t go into excessive detail.

In spite of earlier work by Bienaymé, the Galton–Watson branching process is attributed to the great poly-
math Sir Francis Galton and the Revd Henry Watson. Like many Victorians, Galton was worried about the
demise of English family names. He posed a question in the Educational Times of 1873. He wrote

The decay of the families of men who have occupied conspicuous positions in past times has been
a subject of frequent remark, and has given rise to various conjectures. The instances are very
numerous in which surnames that were once common have become scarce or wholly disappeared.
The tendency is universal, and, in explanation of it, the conclusion has hastily been drawn that a
rise in physical comfort and intellectual capacity is necessarily accompanied by a diminution in
‘fertility’. . .

He went on to ask “What is the probability that a name dies out by the ‘ordinary law of chances’?”
Watson sent a solution which they published jointly the following year. The first step was to distill the

problem into a workable mathematical model; that model, formulated by Watson, is what we now call the
Galton–Watson branching process. Let’s state it formally:

Definition 0.1 (Galton–Watson branching process). Let (Xn,r)n,r⩾1 be an infinite array of independent identically
distributed random variables, each with the same distribution as X , where

P[X = k] = pk, k = 0,1,2, . . .

The sequence (Zn)n⩾0 of random variables defined by

1. Z0 = 1,

2. Zn = Xn,1 + · · ·+Xn,Zn−1 for n ⩾ 1

is the Galton–Watson branching process (started from a single ancestor) with offspring distribution X .

In the original setting, the random variable Zn models the number of male descendants of a single male
ancestor after n generations. However this model is applicable to a much wider set of scenarios. You could, for
example, see it as a very rudimentary model for spreading a virus, such as Covid-19. Here, each ‘generation’
lasts maybe 2 weeks and Zn is the current number of infected individuals. Each of them, independently of the
others and in the same manner, then infects further individuals.

In analyzing this process, key roles are played by the expectation m = E[X ] = ∑
∞
k=0 kpk, which we shall as-

sume to be finite, and by the probability generating function f = fX of X , defined by f (θ) =E[θ X ] =∑
∞
k=0 pkθ k.

Claim 0.2. Let fn(θ) = E[θ Zn ]. Then fn is the n-fold composition of f with itself (where by convention a 0-fold
composition is the identity).

‘Proof’
We proceed by induction. First note that f0(θ) = θ , so f0 is the identity. Assume that n ⩾ 1 and fn−1 =

f ◦ · · · ◦ f is the (n−1)-fold composition of f with itself. To compute fn, first note that

E
[

θ
Zn
∣∣Zn−1 = k

]
= E

[
θ

Xn,1+···+Xn,k
]

= E
[
θ

Xn,1
]
· · ·E

[
θ

Xn,k
]

(independence)

= f (θ)k,
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(since each Xn,i has the same distribution as X). Hence

E
[

θ
Zn
∣∣Zn−1

]
= f (θ)Zn−1 . (1)

This is our first example of a conditional expectation, studied in section 6. Notice that the right hand side of (1)
is a random variable. Now

fn(θ) = E
[
θ

Zn
]

= E
[
E
[

θ
Zn
∣∣Zn−1

]]
(2)

= E
[

f (θ)Zn−1
]

= fn−1 ( f (θ)) ,

and the claim follows by induction. 2

In (2) we have used what is called the tower property of conditional expectations. In this example you can
make all this work with the Partition Theorem of Prelims (because the events {Zn = k} form a countable partition
of the sample space). In the general theory that follows, we’ll see how to replace the Partition Theorem when
the sample space is more complicated, for example when considering continuous random variables.

Watson wanted to establish the extinction probability of the branching process, i.e., the probability that
Zn = 0 for some n.

Claim 0.3. Let q = P[Zn = 0 for some n]. Then q is the smallest root in [0,1] of the equation θ = f (θ). In
particular, assuming p1 = P[X = 1]< 1,

• if m = E[X ]⩽ 1, then q = 1,

• if m = E[X ]> 1, then q < 1.

‘Proof’
Let qn = P[Zn = 0] = fn(0). Since {Zn = 0} ⊆ {Zn+1 = 0} we see that qn is an increasing function of n and,

intuitively,
q = lim

n→∞
qn = lim

n→∞
fn(0). (3)

Since fn+1(0) = f ( fn(0)) and f is continuous, (3) implies that q satisfies q = f (q).
Now observe that f is convex (i.e., f ′′ ⩾ 0) and f (1) = 1, so only two things can happen, depending upon

the value of m = f ′(1):

1

f (θ)

θ00
µ ⩽ 1 1

θ θ

1
µ > 10

0

1

0

f (θ)

In the case m > 1, to see that q must be the smaller root θ0, note that f is increasing, and 0 = q0 ⩽ θ0. It follows
by induction that qn ⩽ θ0 for all n, so q ⩽ θ0. 2

It’s not hard to guess the result above for m > 1 and m < 1, but the case m = 1 is far from obvious.
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The extinction probability is only one statistic that we might care about. For example, we might ask whether
we can say anything about the way in which the population grows or declines. Consider

E [Zn+1 | Zn = k] = E [Xn+1,1 + · · ·+Xn+1,k] = km (linearity of expectation). (4)

In other words E[Zn+1 | Zn] = mZn (another conditional expectation). Now write

Mn =
Zn

mn .

Then
E [Mn+1 | Mn] = Mn.

In fact, more is true:
E [Mn+1 | M0,M1, . . . ,Mn] = Mn.

A process (Mn)n⩾0 with this property is called a martingale. We introduce and study martingales in section 8.
It is natural to ask whether Mn has a limit as n → ∞ and, if so, can we say anything about that limit? We’re

going to develop the tools to answer these questions, but for now, notice that for m ⩽ 1 we have ‘proved’ that
M∞ = limn→∞ Mn = 0 with probability one, so

0 = E[M∞] ̸= lim
n→∞

E[Mn] = 1. (5)

We’re going to have to be careful in passing to limits, just as we discovered in Part A Integration. Indeed (5)
may remind you of Fatou’s Lemma from Part A.

One of the main aims of this course is to provide the tools needed to make arguments such as that presented
above precise. Other key aims are to make sense of, and study, martingales in more general contexts. This
involves defining conditional expectation when conditioning on a continuous random variable.

Before we go into theory, let us study the limiting behaviour of processes on one more, more familiar,
example.
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0.4 Simple Symmetric Random Walk

Consider a sequence of independent random variables (Xn)n⩾1, all with the same distribution

P(Xn =−1) = P(Xn = 1) = 1
2 .

Note that E[Xn] = 0 and Var(Xn) = E[X2
n ] = 1. Let S0 = 0,

Sn =
n

∑
k=1

Xk, n ⩾ 1,

denote their cumulative sums. This process is known as the simple symmetric random walk. Again, it should be
intuitively clear that our best prediction of the state at time n, given the history, is Sn−1 itself as the increment
has mean 0:

E[Sn|Sn−1] = E[Sn|Sn−1, . . . ,S0] = Sn−1 +E[Xn] = Sn−1.

From the weak law of large numbers we know that

Sn

n
−→ 0

in probability. In Theorem 9.3, we will show that this convergence actually takes place almost surely. This is a
non-trivial extension: it took mathematicians over 300 years to prove it!

You also have seen that the speed of this convergence can be described using the Gaussian distribution,
namely

Sn√
n

d−→ N (0,1).

Put differently, if I run 100 simulations of my SSRW then, for a large n, and I plot Sn/
√

n then I expect only 2
paths or so to breach the interval (−2.326,2.326).

So, can we say something more about those two paths? Those rare paths, how do they behave? This is
governed by the law of the iterated logarithm. It turns out, see section 9.4, that

limsup
n→∞

Sn√
n log logn

=
√

2 and liminf
n→∞

Sn√
n log logn

=−
√

2, a.s.

0.5 Mathematical Finance

Suppose (Sn)n⩾0 is sequence of random variables modelling the price process of some risky asset, i.e., Sn is the
share price at time n. A trader is buying and selling the stock. At time n, they have wealth Vn and decide to
buy/sell Hn = Hn(S0,S1, . . . ,Sn) shares. At time n+ 1, they will have HnSn+1 in shares while their remaining
capital/debt grew at rate r:

Vn+1 = HnSn+1 +(Vn −HnSn)(1+ r) = Hn(Sn+1 − (1+ r)Sn)+Vn(1+ r).

If we introduce discounted quantities

Ṽn := (1+ r)−nVn, and S̃n := (1+ r)−nSn

then the above is re-written as

Ṽn+1 = Hn(S̃n+1 − S̃n)+Ṽn = . . .=V0 +
n

∑
t=1

Ht(S̃t+1 − S̃t),
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SSRW paths Sn
n

Sn√
n on the (−2.326,2.326) interval Sn√

n log logn on the interval (−
√

2,
√

2)

Figure 1: Limiting behaviour of a SSRW
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an object we will study under the name of discrete stochastic integral or a martingale transform, see Theorem
8.12.

Suppose at time t = 0 someone wants to purchase from the trader a financial product which, at time t = N,
will have payoff f (S0,S1, . . . ,SN). What price should the trader set for this product? If they can find a trading
strategy H such that f = VN above, then clearly V0 is the fair price as it allows the trader to reproduce (hedge)
the associated risk fully. But when is this possible and how to find V0? One example is given by the binomial
model.

Proposition 0.4 (Binomial Model pricing). Suppose there exist two constants u,d such that 0 < 1− d < 1 <
1+ r < 1+u and Sn+1 ∈ {(1+u)Sn,(1−d)Sn} a.s., for all n ⩾ 0. Then for any f , there exists V0,H such that
f = VN a.s. In addition, there exists a unique probability measure Q such that (S̃n)n⩾0 is a Q-martingale and
V0 = (1+ r)−NEQ[ f (S0, . . . ,SN)].
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1 Measurable sets and functions, a.k.a. events and random variables

Whereof one cannot speak, thereof one must be silent.
The limits of my language mean the limits of my world.

Ludwig Wittgenstein

Our fundamental interest in this course is in endowing a space of outcomes with a measure which describes
the relative likelihood of these outcomes and in understanding how this translates into (random) behaviour of
functions depending on these outcomes. To achieve this abstract goal we have to invest some time and effort in
developing suitable language to speak of sets and functions. This section will appear somewhat arid at the first
reading. It may please some readers, those are invited to study it, and its appendix, in detail. Others might be
bored by it, those are invited to skim through and then come back when a given notion is needed. You can then
study the particular notion knowing that it is actually useful and has its deeper purpose. Nevertheless, an initial
reading will equip you with a basic vocabulary without which it is difficult to proceed.

1.1 Events and σ -algebras

For a set Ω, we let P(Ω) be the power set of Ω, i.e., the set of all subsets of Ω.

Definition 1.1 (Algebras and σ -algebras). Let Ω be a set and let A ⊆ P(Ω) be a collection of subsets of Ω.

1. We say that A is an algebra if /0 ∈ A and for all A,B ∈ A , Ac = Ω\A ∈ A and A∪B ∈ A .

2. We say that A is a σ -algebra (or a σ -field) if /0 ∈ A , A ∈ A implies Ac ∈ A , and for all sequences
(An)n⩾1 of elements of A ,

⋃
∞
n=1 An ∈ A .

Since intersections can be built up from complements and unions, an algebra is a collections of sets which
is closed under finite set operations. A σ -algebra is a collection of sets which is closed under countable set
operations. Note that the notions of algebra and σ -algebra are relative to Ω since Ac makes sense only if we
specify the “parent” set Ω we have in mind. A σ -algebra will be most often denoted by F .

The couple (Ω,F ), a set with a σ -algebra of its subsets, is called a measurable space. We may refer to Ω

as the space, or set, of elementary outcomes. The subsets of Ω in F are called events. We may say that an event
A occurs to simply indicate A and that two events A and B occur simultaneously to indicate A∩B = {ω ∈ Ω :
ω ∈ A and ω ∈ B}. The collection F is made up of those sets which are regular enough that we will be able to
measure their likelihood, i.e., assign them a probability of happening. While it is helpful to think of Ω as the set
of elementary outcomes of some experiments, you should be cautious as many arguments may not be carried
out “ω by ω”.

Example 1.2. Here are some examples of σ -algebras:

(i) { /0,Ω} is a σ -algebra. It is often referred to as the trivial σ -algebra and it is the smallest possible σ -algebra
since, by definition, { /0,Ω} ⊆ F for any σ -algebra F .

(ii) The power set P(Ω) is a σ -algebra but is usually too large to work with.

(iii) Let E ⊂ Ω be any set and F be a σ -algebra. Then {E ∩A : A ∈ F} is a σ -algebra. It is sometimes called
the trace σ -algebra.

(iv) The collection of all sets A ∈ P(Ω) such that either A or Ac is countable is a σ -algebra.

(v) For a nontrivial set A ⊆ Ω, i.e., A is neither empty nor the full space, σ(A) := { /0,Ω,A,Ac} is a σ -algebra.
It just allows us to say if the event A happened or not but nothing else.
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The last example above hints at the crucial property, or interpretation, of σ -algebras: they are conveyors
of information. They capture the richness, or poorness, of our ability to distinguish between events, to classify
elementary outcomes into events. The richer the σ -algebra the better our ability to classify the elements of Ω.
To generalise the above example, we need the following property.

Lemma 1.3. Let I be an index set and {Fi : i ∈ I} a collection of σ -algebras. Then

F :=
⋂
i∈I

Fi = {A ⊆ Ω : A ∈ Fi for all i ∈ I}

is a σ -algebra.

Proof. Exercise.

Definition 1.4. Let A be a collection of subsets of Ω. The smallest σ -algebra containing all the sets in A is
denoted σ(A ) and is called the σ -algebra generated by A .

Note that Lemma 1.3 ensures that σ(A ) is well defined and is simply given by the intersection of all the
σ -algebras F such that A ⊆ F , a non-empty collection since A ⊆ P(Ω). This result allows us instantly to
generate many more interesting σ -algebras. We give now two important examples.

Definition 1.5 (Borel σ -algebra). Let E be a topological space with topology (i.e., collection of open sets) T .
The σ -algebra generated by the open sets in E is called the Borel σ -algebra on E and is denoted B(E) = σ(T ).

Example 1.6 (Borel σ -algebra on R). The following collections of sets

• open sets in R,

• open intervals in R,

• {(−∞,a] : a ∈ R},

• {(−∞,a) : a ∈ R}

all generate the same σ -algebra, namely B(R).

Definition 1.7 (Product space). Let I be an index set and (Ωi,Fi)i∈I a collection of measurable spaces. Let
Ω = ∏i∈I Ωi and F be the σ -algebra generated by cylinder sets A = ∏i∈I Ai, where Ai ∈ Fi for all i ∈ I and
Ai = Ωi except for finitely many i ∈ I. The measurable space (Ω,F ) is called the product space. The σ -algebra
F is called the product σ -algebra and is sometimes denoted ×i∈IFi.

When I = {1,2}, we simply write Ω = Ω1 ×Ω2 and F = F1 ×F2. Note that ‘×‘ has a different meaning
for these ‘products‘: Ω is the Cartesian product of Ω1 and Ω2 but F is not the Cartesian product of F1 and F2.

It is often the case that the same σ(A ) may be generated by many different classes of sets A . For example,
the product σ -algebra is already generated by sets where Ai ̸= Ωi for only one coordinate i ∈ I. This is obvious
since σ -algebras are closed under finite intersections so we may get the more general cylinder sets from these
simple ones. Example 1.6 was also an instance of this phenomena. This example in fact extends to higher
dimensions, i.e., to products of R. Indeed, each open subset of Rn is a countable union of open hypercubes
(products of open intervals) and hence B(Rd) is generated by d-fold products of open intervals. It follows that
×d

i=1B(R) = B(Rd) and properties of product spaces will allow us to just focus on real-valued objects. While
this will carry over to countable product spaces, it may fail for more general index sets.

Here is a familiar example of a product space, already encountered in Part A Probability.
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Example 1.8 (Repeated coin tossing). Consider the experiment consisting in repeated coin tossing. Each toss is
naturally represented by (Ωtoss,Ftoss) with Ωtoss = {H,T} and

Ftoss = σ({H}) = σ({T}) = { /0,Ωtoss,{H},{T}}= P(Ωtoss).

Repeated coin tossing is then captured by the product space (Ω,F )= (∏∞
n=1 Ωn,×∞

n=1Fn) where each (Ωn,Fn)=
(Ωtoss,Ftoss). Put differently, Ω = {H,T}N and ω = (ω1,ω2, . . .) ∈ Ω encodes the outcomes of successive
tosses. The product σ -algebra F on Ω is generated by events which only depend on the outcomes of finitely
many tosses. As observed above, it is in fact generated by the events An = {ω ∈ Ω : ωn = H}, i.e., by events
which allows us to encode the result of the nth toss, n ∈ N. It is clear that for our measurable space to describe
our experiment we have to have these in F . It turns out we can not have much more: F is strictly smaller than
P(Ω) and it may be impossible to understand and codify the likelihood of evens from outside of F . However,
F proves already to be (perhaps surprisingly) rich. In particular the event A that the asymptotic frequency of
heads is equal to 1

2 , or more formally

A =

{
ω ∈ Ω :

|{k ⩽ n : ωk = H}|
n

→ 1
2

}
is an element in F , see the problem sheet.

Time and again, we will need to establish that a certain property holds for all sets in a given σ -algebra. This
might often be tedious and/or difficult to do directly. The following notions and results offer an alternative.

Definition 1.9 (π- and λ - systems).

• A collection of sets A is called a π-system if it is stable under intersections, i.e., A,B ∈ A implies
A∩B ∈ A .

• A collection of sets M is called a λ -system if

– Ω ∈ M ,

– if A,B ∈ M with A ⊆ B then B\A ∈ M ,

– if {An}n⩾1 ⊆ M with An ⊆ An+1 for all n ⩾ 1 then
⋃

n⩾1 An ∈ M .

Example 1.10. The collection
π(R) = {(−∞,x] : x ∈ R}

forms a π-system and σ(π(R)) = B(R) by Example 1.6 above.

In some sense, the notions of π- and λ - systems split the properties of a σ -algebra into two, as the following
lemma demonstrates.

Lemma 1.11. A collection of sets F is a σ -algebra if and only if F is both a π-system and a λ -system.

Proof. Clearly a σ -algebra is both a π-system and a λ -system so it remains to establish the converse. Let F be
both a π-system and a λ -system. Let A,B ∈ F . Then, since Ω ∈ F , we also have Ac = Ω\A ∈ F and further

A∪B = Ω\ (Ac ∩Bc) ∈ F .

Finally, let {An}n⩾1 ⊆ F be a sequence of sets in F . Then

⋃
n⩾1

An =
⋃
n⩾1

n⋃
k=1

Ak ∈ F

by the properties of λ -sets as the sequence Bn =
⋃n

k=1 Ak is increasing.
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While π-system is a universally adopted terminology, λ -systems are also called d-systems, Dynkin classes
or monotone classes. The notions of π- and λ - systems may appear rather artificial at first. In fact, they are very
useful. So useful that at some point you may start using them implicitly without thinking much about it. This is
because quite often the (abstract) collection of sets which satisfy a certain property Γ is a λ -system. At the same
time, it is often easy to verify that Γ holds for all sets in a given π-system A . The following (fundemental!)
lemma then says that Γ holds on F = σ(A ). We shall use it time and again.

Lemma 1.12 (π −λ systems Lemma). Let M be a λ -system and A be a π-system. Then,

A ⊆ M =⇒ σ(A )⊆ M .

Proof. Let λ (A ) denote the intersection of all λ -systems containing A . Then, in analogy to Lemma 1.3, λ (A )
itself is a λ -system, it is the smallest λ -system containing A . In particular, λ (A )⊆ M . Naturally, a σ -algebra
is by definition a λ -system. If we show that λ (A ) is itself a σ -algebra it will imply that λ (A ) = σ(A ) and the
proof will be complete. By Lemma 1.11, it suffices to show that λ (A ) is a π-system.

Let C = {A ∈ λ (A ) : A∩C ∈ λ (A ) ∀C ∈ A }. We first show that C is a λ -system. Clearly, Ω ∈ C . Let
A,B ∈ C with A ⊆ B. Then (B\A)∩C = B∩C \A∩C ∈ λ (A ) for all C ∈ A so that B\A ∈ C . Finally, if An

is an increasing sequence in C and A =
⋃

n⩾1 An then A∩C =
⋃

n⩾1 An ∩C ∈ λ (A ) for all C ∈ A and hence
A ∈ C . By definition, C ⊆ λ (A ) and, since A is a π-system, also A ⊆ C . It follows that C = λ (A ).

Now let D = {A ∈ λ (A ) : A∩C ∈ λ (A ) ∀C ∈ λ (A )}. As above, we can easily show that D inherits the
λ -system structure from λ (A ). Further, C = λ (A ) above implies that A ⊆ D . Minimality of λ (A ) again
implies that D = λ (A ) and hence λ (A ) is a π-system.

One of the most important application of the above result will be to assert that if two measures coincide
on a π-system then they coincide on the σ -algebra it generates. In particular, a measure on B(R) is uniquely
specified by its distribution function, i.e., its values on π(R) in Example 1.10, see 2.16. The π-λ systems lemma
will be used in many other contexts, starting from simple exercises like the following one.

Exercise 1.13. Let Ω = Ω1 ×Ω2 and F = F1 ×F2 be a product space. Fix D ∈ F and denote D(ω1) := {ω2 :
(ω1,ω2) ∈ D} be its section for a fixed ω1 ∈ Ω1. Show that D(ω1) ∈ F2.

1.2 Random variables

So far, we have developed the basic language to speak of sets and collections of sets. We now want to do the
same for functions.

Definition 1.14 (Measurable function). Let (Ω,F ) and (E,E ) be measurable spaces. A function f : Ω → E is
said to be measurable, or a random variable, if

f−1(A) = {ω ∈ Ω : f (ω) ∈ A} ∈ F ∀A ∈ E .

If this is not clear from the context, we shall say more precisely that f is an E-valued random variable and
we may specify the σ -algebras F ,E with respect to which the measurability is taken. The terms measurable
function and random variable are used interchangeably. Similarly, we will use both f and X as our generic
notation for a function (one being canonical in analysis and the other in probability) and switch between the two
at will. The following is clear:

Proposition 1.15. Let (Ω,F ), (E,E ) and (H,H ) be three measurable spaces. Let f : Ω → E and g : E → H
be two random variables. Then g◦ f is a random variable from (Ω,F ) to (H,H ).

Proof. For A ∈ H , g−1(A) ∈ E by measurability of g and (g ◦ f )−1(A) = f−1(g−1(A)) ∈ F by measurability
of f .
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Example 1.16. Let E = {0,1} and E = P(E). A subset A ⊂ Ω is an event if and only if its characteristic
function 1A (equal to 1 for ω ∈ A and 0 otherwise) is a random variable.

In this way, random variables generalise events. Several notions developed for events can be transcribed to
the context of random variables in a straightforward fashion.

Definition 1.17. Let Ω be a set and ( fi)i∈I a collection of functions from Ω to measurable spaces (Ei,Ei)i∈I . The
σ -algebra generated by functions ( fi)i∈I , denoted σ( fi : i ∈ I), is the smallest σ -algebra on Ω with respect to
which all fi, i ∈ I, are measurable.

The above is well-posed thanks to Lemma 1.3. Further, it extends Definition 1.4. Indeed, if A = {Ai : i ∈ I}
is a collection of subsets of Ω then σ(A ) = σ(1Ai : i ∈ I). As a way of example, let us specify a bit more the
σ -algebra generated by a single random variable.

Lemma 1.18. Let X be a random variable from (Ω,F ) to (E,E ) and suppose E = σ(A ). Then

σ(X) = {X−1(A) : A ∈ E }= σ(X−1(A) : A ∈ A ).

Proof. It is easy to verify that the inverse A → X−1(A) preserves all the set operations. In particular, {X−1(A) :
A ∈ E } is a σ -algebra. By definition, it is contained in σ(X) and by the minimality of the latter, the two are
equal. Denote σ(X ;A ) = σ(X−1(A) : A ∈ A ). The inclusion σ(X ;A ) ⊆ σ(X) is clear. For the reverse, let
G = {A ⊆ E : X−1(A) ∈ σ(X ;A )}. We verify easily that G is a σ -algebra and since A ⊆ G we conclude that
E ⊆ G . It follows that σ(X)⊆ σ(X ;A ) and hence we have an equality.

From Lemma 1.18 and Example 1.6 we have the following simple property.

Corollary 1.19. A function f : Ω → R or f : Ω → R is measurable with respect to F (and B(R) or B(R)) if
and only if {x : f (x)⩽ t} ∈ F for every t ∈ R.

Example 1.20. Consider the product space notation from Definition 1.7. Let Xi denote the coordinate mappings,
i.e., Xi : Ω → Ωi is given by Xi(ω) = ωi. Then the product σ -algebra is generated by these coordinate mappings,
F = ×i∈IFi = σ(Xi : i ∈ I). In particular, all Xi are measurable. On the other hand, if (E,E ) is a measurable
space and Yi : (E,E ) → (Ωi,Fi) are measurable then the mapping Y : E → Ω given by Y = (Yi : i ∈ I) is
measurable (with respect to F ).

We give one more simple example of an abstract random variable.

Example 1.21. Let G ⊆ F . Then the identity mapping of (Ω,F ) onto (Ω,G ) is a random variable.

Example 1.22. Recall the model for repetitive coin tossing described in Example 1.8. It involved a careful
choice of Ω which, in an intuitive sense, was minimal for our purposes. If we wanted to expand our experiment
and toss a coin and a dice simultaneously we would not be able to do so using Ω. For this reason, it is usually a
much better practice to work with a fixed large (Ω,F ) and to encode our experiments using random variables
on Ω. For example, we could take ([0,1],B([0,1])) and let Xn(ω) = 1⌊2nω⌋ is even, n ⩾ 1, where 0 is even. It is
easy to check that Xn is a random variable and Xn ∈ {0,1}. We shall see these are just as good a way to express
the coin tossing experiment.

Remark. The above example makes it clear that σ -algebra may be thought of as a representation of our infor-
mation, as already mentioned in the discussion following Example 1.2. Think of a probability space (Ω,F ,P)
as an abstract carrier for randomness. Random variables on Ω represent outcomes of experiments, random things
happening. In Example 1.22, (Xn)n⩾1 represented successive coin tosses. Then Gn = σ(Xk : 1 ⩽ k ⩽ n) is the
σ -algebra corresponding to the information about the first n tosses. It is the smallest σ -algebra which allows us
to recognise the outcomes of these tosses. G = σ(Xn : n ⩾ 1) is the σ -algebra generated by all the sequence of
tosses but it will typically be much smaller than F , which represents “the ultimate knowledge”.
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From now on, unless explicitly stated otherwise, we shall consider random variables with values in E = R
or R= [−∞,∞]. In this case we always consider measurability relative to the Borel sets: E = B(R) or B(R).

Example 1.23. Let (E,d) be a metric space and let B(E) be the Borel σ -algebra generated by its open sets.
Then the Borel σ -algebra on E is equal to the Baire σ -algebra on E:

B(E) = σ( f : E → R| f continuous).

As in Corollary 1.19, for f to be measurable it is enough to check that f−1(O)∈B(E) for an open interval O and
this follows from continuity. In particular, the “⊇” inclusion follows. For a closed set F ⊆ E, let fF(x) = d(x,F)
be the distance of x to F . Then f is continuous and F = f−1

F ({0}) is an element of the right hand side. This
gives the reverse inclusion “⊆” and hence the equality.

Recall that
limsup

n→∞

xn = lim
n→∞

sup
m⩾n

xm and liminf
n→∞

xn = lim
n→∞

inf
m⩾n

xm.

The following result was proved in Part A (in some cases only for functions taking finite values, but the extension
is no problem).

Proposition 1.24. Let ( fn) be a sequence of measurable functions on (Ω,F ) taking values in R, and let h :
R→ R be Borel measurable. Then, whenever they make sense1, the following are also measurable functions on
(Ω,F ):

f1 + f2, f1 f2, max{ f1, f2}, min{ f1, f2}, f1/ f2, h◦ f

sup
n

fn, inf
n

fn, limsup
n→∞

fn, liminf
n→∞

fn.

Definition 1.25. A measurable function f on (Ω,F ) is called a simple function if

f =
n

∑
k=1

ak1Ek (6)

for some n ⩾ 1 and where each Ek ∈ F and each ak ∈ R. The canonical form of f is the unique decomposition
as in (6) where the numbers ak are distinct and non-zero and the sets Ek are disjoint and non-empty.

Clearly, a simple function is measurable. Conversely, any measurable function can be obtained as a limit of
simple functions. This gives us:

Lemma 1.26. Let (Ω,F ) be a measurable space. A function X : Ω →R is measurable if and only if it is a limit
of simple functions. Further, if f is bounded from below (resp. bounded), the limit can be taken to be increasing
(resp. uniform).

Proof. That a limit of simple functions is a measurable function follows from Proposition 1.24. Now let X be a
random variable and define

Xn =−2n1X⩽−4n+1
2n

+ ∑
k∈Z∩[−4n+1,4n−1]

k
2n 1 k

2n <X⩽ k+1
2n

+2n12n<X , n ⩾ 1. (7)

Let Ω+
n := {ω ∈ Ω : X(ω) ⩽ 2n}, Ω−

n := {ω ∈ Ω : X(ω) > −2n} and Ωn = Ω−
n ∩Ω+

n . The result follows by
noting that supω∈Ωn

|Xn(ω)−X(ω)|⩽ 2−n and Xn ⩽ Xn+1 on Ω−
n .

1For example, ∞−∞ is not defined.
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Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

We give a simple example of a result where approximating a general random variable with simple ones is
used in the proof. This result also highlights further the information interpretation of a σ -algebra and shows that
the abstract measurability definition agrees with a more intuitive one of ‘being a function of’.

Theorem 1.27. Let X be a random variable on (Ω,F ) with values in a measurable space (E,E ) and let g
be a real-valued random variable on (Ω,F ). Then g is σ(X)-measurable if and only if g = h ◦X for some
real-valued random variable on (E,E ).

Proof. One direction is clear: g = h◦X is a real-valued random variable. For the other direction, start with g
and suppose it takes at most countably many distinct values (an)n⩾1. The sets An = g−1({an}) are pairwise
disjoint and each is an element of σ(X) and hence, by Lemma 1.18, An = X−1(Bn) for some Bn ∈ E . Note that
we might have Bn∩Bm ̸= /0 but the points in the intersection are not in the range of values of X . Consequently,
if we set Cn := Bn \

⋃n−1
k=1 Bk then Cn ∈ E are pairwise disjoint and X−1(Cn) = An \

⋃n−1
k=1 Ak = An. If we put

h = ∑n⩾1 an1Cn then g = h◦X as required.
For a general g, let gn ↑ g be the sequence of simple random variables converging to g given by Lemma

1.26. By the above, we can write each gn = hn ◦X . Let H = {e ∈ E : hn(e) converges}. Recall that both
limsuphn and liminfhn are measurable and so H = {limsuphn = liminfhn} is measurable. Further, X(Ω)⊆H
since gn ↑ g. It follows that h(ω) := (limn→∞ hn(ω))1H(ω) is measurable and satisfies g = h◦X .

Deep Dive

A lot of results, e.g., when developing the integration theory, can be shown using a “bare hands method”
powered by Lemma 1.18. The schematic is as follows: to establish a “linear” result for all functions in a given
class, say for all bounded measurable functions, we proceed in steps:

• first establish the result for indicators of a measurable set, where it usually holds by definition;

• by linearity extend this to all simple functions or all positive simple functions;

• take limits, using a suitable convergence theorem, extend the result to all functions, or all positive func-
tions;

• if needed, write X = X+−X− and use the above to pass from positive to all functions.

Such an approach allows one to see the theory “grow” and demystifies it. It is useful to go through the steps
above once in detail but later one can apply these semi-automatically. However, sometimes it is very difficult to
use the above bare-hands approach and it becomes necessary to turn to a functional equivalent of Lemma 1.12.
This is known as the Monotone Class Theorem. It comes in many variants and flavours and we state just one. It
usually gives a quick and elegant proof but may at first appear to be a magic trick of sorts.

Theorem 1.28 (Monotone Class Theorem). Let H be a class of bounded functions from Ω to R satisfying the
following conditions:

(i) H is a vector space over R,

(ii) the constant function 1 is in H ,

(iii) if ( fn)n⩾1 ⊆ H such that fn ↗ f for a bounded function f , then f ∈ H .

If C ⊆ H is stable under pointwise multiplication then H contains all bounded σ(C )-measurable functions.
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We outline now the proof of the above important result. First, we make the following simple observation.

Lemma. In the setup of Theorem 1.28, H is closed under uniform limits.

Proof. Let fn be a sequence of functions in H converging uniformly to some f . Passing to a subsequence,
we can assume that ∥ fn − f∥sup ⩽ 2−n, where ∥ f∥sup = supω∈Ω | f (ω)|. Now we can modify the sequence so
that it is increasing. Set gn = fn −21−n. Then gn −gn−1 = fn − fn−1 +21−n ⩾ 2−n ⩾ 0. Also,

∥gn∥sup = ∥ f1 +
n

∑
k=2

fk − fk−1 −21−n∥sup ⩽ ∥ f1∥sup +3

the sequence is uniformly bounded so that its limit is also bounded and hence H ∋ limgn = lim fn = f .

Proof of Theorem 1.28 – special case. Consider first the case when C = {1A : A ∈ A } for a π-system A .
Here Theorem 1.28 is a functional equivalent of Lemma 1.12. To see this, simply check that the properties of
H mean that the family of sets E ⊆ Ω for which 1E ∈ H forms a λ -system. Lemma 1.12 now shows that
1E ∈ H for all E ∈ σ(A ) and Lemma 1.26 tells us that any bounded measurable function is a uniform limit
of simple functions and hence, by the above lemma, is also in H , as required.

Proof of Theorem 1.28 – reduction to the special case. We prove the general statement by reducing it to the
special case treated above. Note that without any loss of generality we can assume that 1 ∈ C . Let A0 be the
algebra of functions generated by C . Given that C is already closed under multiplication, A0 is simply the
linear span of C . Let A be the closure of A0 under uniform convergence. By the above lemma, A ⊂ H
and we check that A is still an algebra of functions. Take f ∈ A and since it is a bounded function we can
take a closed interval R ⊆R with f (ω) ∈ R, ω ∈ Ω. On R, by the Weierstrass approximation theorem, we can
approximate the function x → |x| uniformly using a sequence of polynomials pn. Note that pn ◦ f ∈ A and
hence also its uniform limit | f |. It then follows that A is closed under ∧ and ∨ (observe that f+ = (| f |+ f )/2
and f ∨g = f +(g− f )+ etc.). Now, for any f ∈ A and any a ∈ R we have

A ∋ n( f −a)+∧1 ↑ 1 f−1((a,∞))

and hence the limit is in H , i.e., {1D : D ∈ D} ⊆ H , where D = { f−1((a,∞)) : f ∈ A ,a ∈ R}. Note that
{ f > a}∩{g > b} = {( f − a)+(g− b)+ > 0} so that D is a π-system and by Lemma 1.18, σ(D) = σ( f :
f ∈ A ). This reduces the general result to the special case previously considered.

Remark. Following the ideas of the proof, one can devise other statements and variants of the Monotone
Class Theorem. For example, instead of supposing that C is stable under multiplication, one can consider
cones of non-negative functions stable under taking minimum: f ,g ∈C then a f ∧bg ∈C for a,b ∈R+. Then
the uniform closure of A = { f −g : f ,g ∈ C } is a vector space stable under ∧,∨ and one can show it is also
stable under multiplication, first approximating x → x2 and hence showing that f 2 ∈ A for f ∈ A .

Deep Dive

An important common example is the special case of C = {1A : A ∈ A } for a π-system A . In this case,
Theorem 1.28 can be deduced from Lemma 1.12 and Lemma 1.26. Let us give now one application of the above
result and use it to highlight this relationship with the π-λ systems lemma.

Lemma 1.29. Let (Ω,F ) be the product space of two measurable spaces (Ωi,Fi), i = 1,2. If f : Ω → R is
measurable then

• for each ω1 ∈ Ω1, Ω2 ∋ ω2 → f (ω1,ω2) is F2-measurable and
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• for each ω2 ∈ Ω2, Ω1 ∋ ω1 → f (ω1,ω2) is F1-measurable.

The first proof: using the Monotone Class Theorem. Let H be the class of bounded functions h : Ω →R which
satisfy the assertion of the lemma. Clearly H satisfies the assumptions of the Monotone Class Theorem (The-
orem 1.28) and contains the functions h = 1A1×A2 for Ai ∈ Fi, i = 1,2. These rectangles generate F and
we conclude that H contains all bounded measurable functions. For an unbounded f , we use the result for
fn = ( f ∨−n)∧n, which is bounded, and use that limits of measurable functions are measurable.

The second proof: using π-λ systems lemma. An application of π-λ systems lemma shows that the statement
holds for f = 1D for D ∈ F , see Exercise 1.13. It thus also holds for simple functions. It remains to apply
Lemma 1.26 and note that limits of measurable functions are measurable.

The third (and the simplest) proof. Fix ω1 ∈ Ω2. Let ι : Ω2 → Ω be given by ι(ω2) = (ω1,ω2). For Ai ∈ Fi,
i = 1,2, we have ι−1(A1 ×A2) = A2 if ω1 ∈ A1 and /0 otherwise. It follows by Lemma 1.18 that ι is measurable.
The map Ω2 ∋ ω2 → f (ω1,ω2) is a composition of measurable functions, namely f ◦ ι , and is hence F2-
measurable by Proposition 1.15.
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2 Measures

Now that we have the basic ingredients, we shall start to measure them! In Part A Integration we conceptualised
the idea of length (or volume) and saw that there is a good way to construct a measure of length, the Lebesgue
measure Leb, which can be assigned in a consistent way to any set in B(R), or in MLeb more generally. We
want to now take a more abstract view and develop an abstract theory of measuring sets. We formalise the idea
of assigning a likelihood or a probability to a set and of doing this in a consistent manner.

2.1 Measures and Measurable spaces

Definition 2.1 (Set functions). Let A be a collection of subsets of Ω containing the empty set /0. A set function
on A is a function µ : A → [0,∞] with µ( /0) = 0. We say that µ is countably additive, or σ -additive, if for all
sequences (An) of disjoint sets in A with

⋃
∞
n=1 An ∈ A

µ

(
∞⋃

n=1

An

)
=

∞

∑
n=1

µ(An).

Recall that a measurable space is a pair (Ω,F ) where F is a σ -algebra on Ω.

Definition 2.2 (Measure space). A measure space is a triple (Ω,F ,µ) where Ω is a set, F is a σ -algebra on Ω

and µ : F → [0,∞] is a countably additive set function. Then µ is a measure on (Ω,F ).

In short, a measure space is a set Ω equipped with a σ -algebra F and a countably additive set function µ

on F . Note that any measure µ is also additive and increasing. Being a measure is relative to the context of the
given measurable space hence we say, as above, that µ is a measure on (Ω,F ). However, for simplicity, when
the choice of (Ω,F ) is unambiguous, we will often just say that µ is a measure on F or on Ω. We summarise
now some easy properties of measures.

Proposition 2.3. Let (Ω,F ,µ) be a measure space and A,B,An,Bn ∈ F , n ⩾ 1. Then

(i) A∩B = /0 =⇒ µ(A∪B) = µ(A)+µ(B) (additive)

(ii) A ⊆ B =⇒ µ(A)⩽ µ(B) (increasing)

(iii) µ(A∪B)+µ(A∩B) = µ(A)+µ(B)

(iv) An ↑ A, then µ(An) ↑ µ(A) as n → ∞ (continuous from below)

(v) Bn ↓ B, µ(Bk)< ∞ for some k ∈ N, then µ(Bn) ↓ µ(B) as n → ∞ (continuous from above)

(vi) µ
(⋃

n⩾1 An
)
⩽ ∑n⩾1 µ(An) (σ -subadditive)

Proof. The proof is mostly a direct consequence of the defining properties of a measure and is left as an exercise.
We just show (iv). Define sets D1 := A1 and Dn := An \An−1 for n ⩾ 1 and note these are pairwise disjoint since
An−1 ⊆ An. Further, An =

⋃
k⩽n Dk. It follows that

µ(A) = µ

(⋃
n⩾1

An

)
= µ

(⋃
n⩾1

Dn

)
= ∑

n⩾1
µ(Dn) = lim

n→∞

n

∑
k=1

µ(Dk) = lim
n→∞

µ(An),

where the third equality is by countable additivity of µ and the last equality is by finite additivity of µ .
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Note that µ(Bk)< ∞ is essential in (v): for a counter-example take Bn = (n,∞)⊆R and Lebesgue measure.
The following lemma adds a converse to (iv) above and asserts that an additive set function is countably additive
if and only if it is continuous from above.

Lemma 2.4. Let µ : A → [0,∞) be an additive set function on an algebra A taking only finite values. Then µ

is countably additive iff for every sequence (An) of sets in A with An ↓ /0 we have µ(An)→ 0.

Proof. One implication follows (essentially) from Proposition 2.3; the other is an exercise.

Definition 2.5 (Types of measure space). Let (Ω,F ,µ) be a measure space.

1. We say that µ is finite if µ(Ω)< ∞.

2. If there is a sequence (Kn)n⩾1 of sets from F with µ(Kn) < ∞ for all n and
⋃

∞
n=1 Kn = Ω, then µ is said

to be σ -finite.

3. In the special case when µ(Ω) = 1, we say that µ is a probability measure and (Ω,F ,µ) is a probability
space; we often use the notation (Ω,F ,P) to emphasize this.

Definition 2.6 (Null sets, a.e.). Let (Ω,F ,µ) be a measure space. We say that a set A is null if µ(A) = 0. We
say that a property holds almost everywhere (a.e.), or for almost every ω ∈ Ω, if it holds outside of a null set.

If P is a probability measure we typically say that a property holds almost surely (a.s.) instead of almost
everywhere. For instance, we will say that two events are a.s. equal, A = B a.s., if P(A△B) = 0. Similarly, for
two random variables X ,Y we say that X = Y a.s., if P(X ̸= Y ) = 0. If the reference measure is not obvious we
shall indicate it explicitly, e.g., by saying µ-null or P-a.s.

The structure of its null sets tells us a lot about a given measure. Intuitively speaking, if two measures have
the same null sets, then one is a re-weighted version of the other. If their null sets differ then one can not go
from one measure to another – no re-weighting will resurrect zero into a positive number. This intuition will be
made precise in Theorem 4.9 but we can already define the relevant concept.

Definition 2.7. Let µ,ν be two measures on a measurable space (Ω,F ). We say that ν is absolutely continuous
with respect to µ , and write ν ≪ µ , if µ(A) = 0 for some A ∈ F implies ν(A) = 0.
We say that µ and ν are equivalent, and write µ ∼ ν , if ν ≪ µ and µ ≪ ν .

Let us now specify some easy examples of measures.

Example 2.8. (i) Let (Ω,F ) be a measurable space. The zero function, µ(A) = 0 for all A ∈ F , defines a
measure. Likewise, ν given by ν( /0) = 0, ν(A) = +∞ for all /0 ̸= A ∈ F also defines a measure. Clearly
both are trivial examples and are well defined for any σ -algebra F .

(ii) Let (Ω,F ) be a measurable space and fix ω ∈ Ω. Then δω defined via δω(A) = 1ω∈A defines a measure.
It is called the Dirac measure in ω or the point mass in ω .

(iii) On R consider the σ -algebra A of sets which are either countable or have a countable complement, see
Example 1.2 (iv). Then µ(A) = 0 for countable A and µ(A) = 1 otherwise, A ∈ A , defines a probability
measure on A .

(iv) Let (Ω,F ) be a measurable space. For A ∈ F , set µ(A) = |A|, the number of elements in A, if A is finite
and µ(A) = +∞ if A is infinite. Then µ is the counting measure on Ω.

It is difficult to construct explicitly, in a manner similar to the above, less trivial examples. We shall develop
more systematic ways to build measures later. Here, we give one more example which connects our abstract
notions with the intuitive counting notions.
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Example 2.9 (Discrete measure theory). Let Ω be a countable set. A mass function on Ω is any function
p : Ω → [0,∞]. Given such a p we can define a measure on (Ω,P(Ω)) by setting µ(A) = ∑x∈A p(x). In the
notation of Example 2.8 (ii), µ = ∑x∈Ω p(x)δx.

Conversely, given a measure µ on (Ω,P(Ω)) we can define the corresponding mass function by p(x) =
µ({x}). Consequently, for a countable Ω, there is a one-to-one correspondence between measures on (Ω,P(Ω))
and mass functions on Ω.

Note also, that if µ,ν are two measures with their respective mass functions p,r then ν ≪ µ if and only if
p(x) = 0 implies r(x) = 0.

These discrete measure spaces provide a ‘toy’ version of the general theory, but in general they are not enough.
Discrete measure theory is essentially the only context in which one can define the measure explicitly and work
“ω by ω”. This is because σ -algebras are not in general amenable to an explicit presentation, and it is not in
general the case that for an arbitrary set Ω all subsets of Ω can be assigned a measure – recall from Part A
Integration the construction of a non-Lebesgue measurable subset of R. Instead one shows the existence of a
measure defined on a ‘large enough’ collection of sets, with the properties we want. To do this, we follow a
variant of the approach you saw in Part A; the idea is to specify the values to be taken by the measure on a
smaller class of subsets of Ω that ‘generate’ the σ -algebra (as the singletons did in Example 2.9). This leads
to two problems. First we need to know that it is possible to extend the measure that we specify to the whole
σ -algebra. This construction problem is often handled with Carathéodory’s Extension Theorem (Theorem 2.11
below). The second problem is to know that there is only one measure on the σ -algebra that is consistent with
our specification. This uniqueness problem is resolved using the π-λ systems Lemma (Lemma 1.12).

Theorem 2.10 (Uniqueness of extension). Let µ1 and µ2 be measures on a measurable space (Ω,F ) and let
A ⊆ F be a π-system with σ(A ) = F . If µ1(Ω) = µ2(Ω)< ∞ and µ1 = µ2 on A , then µ1 = µ2.

Proof. In view of Lemma 1.12 it suffices to verify that {A ∈ F : µ1(A) = µ2(A)} is a λ -system, which is left as
an exercise.

Note that the assumption µ1(Ω) = µ2(Ω) < ∞ is an important one. The result, as usual, extends to σ -finite
measures with a common sequence of sets Kn with µ1(Kn) = µ2(Kn) < ∞. However, it may fail for infinite
measures. Consider, for example, µ1(A) is zero or infinity according to whether the set A has no rational
points or at least one rational point, and let µ2(A) = ∞ for all A ̸= /0. Taking A the family of open intervals,
we have µ1(A) = µ2(A) for A ∈ A but the two measures are not equal.

Deep Dive

We can rephrase Theorem 2.10 simply saying that two probability measures which coincide on a π-system also
agree on the σ -algebra generated by that π-system. That deals with uniqueness, but what about existence?

Theorem 2.11 (Carathéodory Extension Theorem). Let Ω be a set and A an algebra on Ω, and let F = σ(A ).
Let µ0 : A → [0,∞] be a countably additive set function. Then there exists a measure µ on (Ω,F ) such that
µ = µ0 on A .

Remark 2.12. If µ0(Ω) < ∞, then Theorem 2.10 tells us that µ is unique, since an algebra is certainly a π-
system. This extends to the σ -finite case if we can take Kn ∈ A in Definition 2.5. Indeed, we then obtain
uniqueness of extension of µ0 to a measure on {A∩Kn : A ∈ F}, for n ⩾ 1, and hence also on F .

The Carathéodory Extension Theorem doesn’t quite solve the problem of constructing measures on σ -
algebras – it reduces it to constructing countably additive set functions on algebras; we shall see several ex-
amples. The idea of proof of the Carathéodory Extension Theorem is rather simple, even if the details are
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tedious. First one defines the outer measure µ∗(B) of any B ⊆ Ω by

µ
∗(B) = inf

{ ∞

∑
j=1

µ0(A j) : A j ∈ A ,
∞⋃

j=1

A j ⊇ B
}
.

Then define a set B to be measurable if for all sets E,

µ
∗(E) = µ

∗(E ∩B)+µ
∗(E ∩Bc).

[Alternatively, if µ0(Ω) is finite, then one can define B to be measurable if µ∗(B)+µ∗(Bc) = µ0(Ω); this more
intuitive definition expresses that it is possible to cover B and Bc ‘efficiently’ with sets from A .] One must check
that µ∗ defines a countably additive set function on the collection of measurable sets extending µ0, and that the
measurable sets form a σ -algebra that contains A . For details see Appendix A.1 of Williams, or Varadhan and
the references therein.

We comment now on two generic ways to construct measures: through restrictions and by finite sums. Sub-
sequent sections will develop in detail other methods. First, the following is immediate and allows to construct
measure spaces by restricting the σ -algebra.

Lemma 2.13. Let (Ω,F ,µ) be a measure space and G ⊆ F a σ -algebra. Then (Ω,G ,µ|G ), where µ|G is the
restriction of µ to G , is a measure space.

The reverse direction however is unclear and often untrue: given a measure space (Ω,F ,µ) and a larger
σ -algebra H ⊇ F it may be possible or impossible to extend µ to H and, if possible, such an extension does
not have to be unique. Clearly, Carathéodory Extension Theorem is not useful here since σ(F ) = F . Second,
sums of measures are measures.

Lemma 2.14. Let (Ω,F ) be a measurable space and (µn)n⩾1 a sequence of probability measures on F . Fix
a sequence of positive numbers (an)n⩾0 with ∑n⩾1 an = 1. Then µ , defined by µ(A) = ∑n⩾1 anµn(A) is also a
probability measure on F .

The above lemma follows once we know we can exchange the order of summation in a double (countable)
sum of positive numbers. This will in particular follow from (generalised) Fubini’s theorem (Theorem 4.24)
which we will see later in these lectures.

If µ is a finite measure then P(A) := µ(A)/µ(Ω) is a probability measure. It is therefore with no loss
of generality that in the remainder of this course, we shall mostly work with probability measures. We will
comment when these results extend to the σ -finite case.

2.2 Conditional probability

Let (Ω,F ,P) be a probability space and B ∈ F a set with P(B) > 0. Define a new measure µ , also denoted
P(·|B) on F by

µ(A) = P(A|B) = P(A∩B)
P(B)

, A ∈ F . (8)

Then it is an easy exercise to check that µ is a probability measure on F . Alternatively, we could define µ as a
probability measure on (B,G ) with G = {A∩B : A ∈ F} by simply putting µ(A) = P(A)/P(B) for A ∈ G .

The above definition agrees with what you have seen in Prelims and Part A probability courses. Here we
will want to get more serious about conditioning. Conditioning should be relative to information one has and
we saw earlier that σ -algebra were the natural carriers or descriptions for information content. We would thus
like to condition on a σ -algebra. In the example above, we could replace B by its complement Bc and obtain a
new measure P(A|Bc). Now, for any ω ∈ Ω, we have either ω ∈ B or ω ∈ Bc so it is natural to define

P(A|σ(B))(ω) := P(A|B)1B(ω)+P(A|Bc)1Bc(ω). (9)
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In this way, for a fixed ω ∈ Ω, P(·|σ(B))(ω) is a probability measure but for a fixed A ∈ F , P(A|σ(B))(·) is a
random variable (taking two values). It is the latter point of view which will prove very powerful and will set
probability alive (and apart from analysis) as we will see in §6.

2.3 Measures on (R,B(R))

Recall that in our ‘toy example’ of discrete measure theory there was a one-to-one correspondence between
measures and mass functions. Can we say anything similar for Borel measures on R?

Definition 2.15. Let µ be a probability measure on B(R). The distribution function of µ is the function
Fµ : R→ R defined by Fµ(x) = µ((−∞,x]).

The function Fµ has the following properties:

(i) Fµ is increasing, i.e., x < y implies Fµ(x)⩽ Fµ(y),

(ii) Fµ(x)→ 0 as x →−∞ and Fµ(x)→ 1 as x → ∞, and

(iii) Fµ is right continuous: y ↓ x implies Fµ(y)→ Fµ(x).

To see the last, suppose that yn ↓ x and let An = (−∞,yn]. Then An ↓ A = (−∞,x]. Thus, by Proposition 2.3,
Fµ(yn) = µ(An) ↓ µ(A) = Fµ(x). We often write Fµ(−∞) = 0 and Fµ(∞) = 1 as shorthand for the second
property.

Any function F : R→ R which satisfies the same three properties as Fµ above will be called a distribution
function on R. Using the Carathéodory Extension Theorem, we can construct all Borel probability measures on
R (i.e., probability measures on (R,B(R))): there is one for each distribution function. Since finite measures can
all be obtained from probability measures (by multiplying by a constant), this characterizes all finite measures
on B(R).

Theorem 2.16 (Lebesgue). Let F : R→ R be a distribution function, i.e., F is an increasing, right continuous
function with F(−∞) = 0 and F(∞) = 1. Then there is a unique Borel probability measure µ = µF on R such
that µ((−∞,x]) = F(x) for every x. Every Borel probability measure µ on R arises in this way.

In other words, there is a 1-1 correspondence between distribution functions and Borel probability measures
on R. Before proving this result let us state an immediate corollary.

Corollary 2.17. There exists a unique Borel measure Leb on R such that for all a,b∈R with a< b, Leb((a,b])=
b−a. The measure Leb is the Lebesgue measure on B(R).

Proof. The statement with R replaced by (0,1] follows from Theorem 2.16 with F(x) = 0 on (−∞,0], F(x) = x
on [0,1] and F(x) = 1 on [1,∞). This gives us the Lebesgue measure Lebk on any (k,k+1]. We set Leb(A) =
∑k∈ZLebk(A∩ (k,k+1]) and easily check it defines a measure on B(R) with the right properties. Uniqueness
follows from Remark 2.12.

Remark. In Part A Integration, the Lebesgue measure was defined on a σ -algebra MLeb that contains, but is
strictly larger than, B(R). It turns out (exercise) that MLeb consists of all sets that differ from a Borel set on a
null set. In this course we shall work with B(R) rather than MLeb: the Borel σ -algebra will be ‘large enough’
for us. (This changes later when studying continuous-time martingales.) An advantage of B(R) is that it has a
simple definition independent of the measure; recall that which sets are null depends on which measure is being
considered.
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Proof of Theorem 2.16. Suppose for the moment that the existence statement holds. Since π(R) = {(−∞,x] :
x ∈ R} is a π-system which generates the σ -algebra B(R), uniqueness follows by Theorem 2.10. Also, to see
the final part, let µ be any Borel probability measure on R, and let F be its distribution function. Then F has
the properties required for the first part of the theorem, and we obtain a measure µF which by uniqueness is the
measure µ we started with.

For existence we shall apply Theorem 2.11, so first we need a suitable algebra. For −∞ ⩽ a ⩽ b < ∞, let
Ia,b = (a,b], and set Ia,∞ = (a,∞). Let I = {Ia,b : −∞ ⩽ a ⩽ b ⩽ ∞} be the collection of intervals that are open
on the left and closed on the right. Let A be the set of finite disjoint unions of elements of I ; then A is an
algebra, and σ(A ) = σ(I ) = B(R).

We can define a set function µ0 on A by setting

µ0(Ia,b) = F(b)−F(a)

for intervals and then extending it to A by defining it as the sum for disjoint unions from I . It is an easy
exercise to show that µ0 is well defined and finitely additive. Carathéodory’s Extension Theorem tells us that µ0
extends to a probability measure on B(R) provided that µ0 is countably additive on A . Proving this is slightly
tricky. Note that we will have to use right continuity at some point.

First note that by Lemma 2.4, since µ0 is finite and additive on A , it is countably additive if and only if, for
any sequence (An) of sets from A with An ↓ /0, µ0(An) ↓ 0.

Suppose that F has the stated properties but, for a contradiction, that there exist A1,A2, . . . ∈ A with An ↓ /0
but µ0(An) ̸→ 0. Since µ0(An) is a decreasing sequence, there is some δ > 0 (namely, lim µ0(An)) such that
µ0(An)⩾ δ for all n. We look for a descending sequence of compact sets; since if all the sets in such a sequence
are non-empty, so is their intersection.

Step 1: Replace An by Bn = An ∩ (−l, l]. Since

µ0(An \Bn)⩽ µ0
(
(−∞, l]∪ (l,∞)

)
= F(−l)+1−F(l),

if we take l large enough then we have µ0(Bn)⩾ δ/2 for all n.
Step 2: Suppose that Bn =

⋃kn
i=1 Ian,i,bn,i . Let Cn =

⋃kn
i=1 Iãn,i,bn,i where an,i < ãn,i < bn,i and we use right

continuity of F to do this in such a way that

µ0(Bn\Cn)<
δ

2n+2 for each n.

Let Cn be the closure of Cn (obtained by adding the points ãn,i to Cn).
Step 3: The sequence (Cn) need not be decreasing, so set Dn =

⋂n
i=1Ci, and En =

⋂n
i=1Ci. Since

µ0(Dn)⩾ µ0(Bn)−
n

∑
i=1

µ0(Bi\Ci)⩾
δ

2
−

n

∑
i=1

δ

2i+2 ⩾
δ

4
,

Dn is non-empty. Thus En ⊇ Dn is non-empty.
Each En is closed and bounded, and so compact. Also, each En is non-empty, and En ⊇ En+1. Hence, by a

basic result from topology, there is some x such that x ∈ En for all n. Since En ⊆Cn ⊆ Bn ⊆ An, we have x ∈ An

for all n, contradicting An ↓ /0.

We now have a very rich class of measures to work with. The measures µ described in Theorem 2.16 are
sometimes called Lebesgue–Stieltjes measures. The function F(x) is the distribution function corresponding to
the probability measure µ . In the case when F is continuously differentiable, say, it is precisely the cumulative
distribution function of a continuous random variable with probability density function f (x) = F ′(x) that we
encountered in Prelims.
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More generally, if f (x)⩾ 0 is measurable and (Lebesgue) integrable – as defined in the next section – with∫
∞

−∞
f (x)dx = 1, then we can use f as a density function to construct a measure µ on (R,B(R)) by setting

µ(A) =
∫

A
f (x)dx.

This measure has distribution function F(x) =
∫ x
−∞

f (y)dy. (It is not necessarily true that F ′(x) = f (x) for all x,
but this will hold for almost all x.) For example, taking f (x) = 1 on (0,1), or on [0,1], and f (x) = 0 otherwise,
we obtain the distribution function F with F(x) = 0, x < 0, F(x) = x, 0 ⩽ x ⩽ 1 and F(x) = 1 for x > 1,
corresponding to the uniform distribution on [0,1].

For a very different example, if x1,x2, . . . is a sequence of points (for example the non-negative integers),
and we have probabilities pn > 0 at these points with ∑n pn = 1, then for the discrete probability measure

µ(A) = ∑
n :xn∈A

pn,

we have the distribution function
F(x) = ∑

n :xn⩽x
pn,

which increases by jumps, the jump at xn being of height pn. (The picture can be complicated though, for
example if there is a jump at every rational.)

There are examples of continuous distribution functions F that don’t come from any density f , e.g., the
Devil’s staircase, corresponding (roughly speaking) to the uniform distribution on the Cantor set.

2.4 Pushforward (image) measure

So far we saw how to construct measures by specifying their action on a generating algebra of sets. This works
in general, as Theorem 2.11 shows, and led to a complete description of probability measures on R. We now
introduce a second fundamental way measures can be built: they are transported between spaces via functions.

Definition 2.18. Let (Ω,F ,P) be a probability space and let X be a random variable from (Ω,F ) to (E,E ).
Then

Q(A) = P(X−1(A)), A ∈ E ,

defines a measure on (E,E ), the image measure of µ via X , or the pushforward measure. We write Q= P◦X−1

and also call it the law or the distribution of X .

Put differently, to measure a set in E, we transport it back into Ω via X−1 and then measure it there using P.
It is a matter of a simple exercise to verify that Q is a measure. This follows since X−1 preserves set operations.

Example 2.19. Let X be a real-valued random variable on a probability space (Ω,F ,P). Then P ◦X−1 is a
probability measure on R, the distribution or the law of the variable X , and we often denote it by µX . We have
µX((−∞,a]) = P(X ⩽ a) =: FX(a) is the distribution function of X , or of the measure P◦X−1. Note that µX is
the Lebesgue-Stieltjes measure associated to FX through Theorem 2.16.

Let F be a distribution function on R and µF the Lebesgue-Stieltjes measure associated to F through The-
orem 2.16. Then the identity mapping on (R,B(R),µF), i.e., X(ω) = ω , is a random variable distributed
according to µF . The following example gives another, more canonical, way for such a construction.

Example 2.20. Let F be a distribution function on R. Define its right-continuous inverse F−1(z) = inf{y :
F(y) > z}, which is also known as the quantile function. Then a random variable X on ([0,1],B([0,1]),Leb),
given by X(ω) = F−1(ω) is distributed according to µF , µX = µF .
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To show this, first note that F−1 is increasing and hence measurable. Then note that

{ω : ω < F(x)} ⊆ {ω : F−1(ω)⩽ x} ⊆ {ω : ω ⩽ F(x)}

and the outer sets both have the same Leb measure F(x). It thus follows that

FX(x) = Leb(X ⩽ x) = Leb(F−1 ⩽ x) = Leb({ω : F−1(ω)⩽ x}) = Leb({ω : ω < F(x)}) = F(x).

This tells us that we can always construct random variables with a given distribution. For two random
variables X ,Y , defined possibly on different probability spaces, we shall often write X ∼ Y to denote µX = µY ,
i.e., that X and Y have the same distribution. A lot of properties of random variables will in fact just functions
of their distribution and not their particular definition.

Example 2.21 (Marginal measure). Consider a probability measure P on a product space from Definition 1.7,
(Ω,F ) = (∏i∈I Ωi,×i∈IFi). Let Xi(ω) = ωi, 1 ⩽ i ⩽ d, be random variables given by coordinate projections,
see Example 1.20. Then µi := µXi is called the ith marginal measure of µ . Note that µi is a probability measure
on (Ωi,Fi) and

µi(A) = µ (Ω1 × . . .Ωi−1 ×A×Ωi+1 × . . .Ωn) , A ∈ Fi. (10)

Note that µ determines its marginals but that the marginal distributions do not determine µ . Indeed, it is easy
to construct examples of µ ̸= ν with the same marginals. One way to do this is to use the method of the next
example.

Example 2.22 (Joint distribution). Let X ,Y be real-valued random variables on a probability space (Ω,F ,P).
Then, by Example 1.20, (X ,Y ) is an R2-valued random variable. Its distribution, µ(X ,Y ) is called the the joint law
of X and Y . It is easy to verify (and follows instantly from Lemma 2.23 below) that its marginals are given by
µX and µY , the distributions of X and Y respectively. However the joint law encodes also how the two variables
behave jointly, i.e., their (in)dependence.

Let us finally note that the operation of taking the image law is transitive.

Lemma 2.23. Let (Ω,F ,P) be a probability space, (E,E ) and (G,G ) two measurable spaces and X : Ω → E,
Y : E → G random variables. Then the image measure of µX via Y is the image measure of µ via Y ◦X.

Proof. This is instantly seen with a simple drawing. More formally, we have

µX ◦Y−1(A) = µX(Y−1(A)) = µX({e ∈ E : Y (e) ∈ A}) = µ(X−1({e ∈ E : Y (e) ∈ A}))
= µ({ω ∈ Ω : Y (X(ω)) ∈ A}) = µ((Y ◦X)−1(A)) = µY◦X(A)

as required.

Let us comment on some anomalies which may happen when you work with general spaces in relation to
Example 2.22 above. Suppose X1,X2 are two random variables on a probability space (Ω,F ,P) with values in
measurable spaces (E1,E1) and (E2,E2) respectively. Then X =(X1,X1) is a random variable on Ω with values
in the product space (E1×E2,E1×E2) (exercise). However, in general, we can not make sense of P(X1 = X2)
as the diagonal does not need to be in the product σ -algebra and hence the set {ω : X1(ω) = X2(ω)} does not
have to measurable.

Suppose now that E1,E2 are metrisable topological space endowed with their Borel σ -algebras. We can
consider the product topology on E1 ×E2 and take the Borel σ -algebra it generates, denoted B(E1 ×E2). If
further both E1,E2 are separable (i.e., have a countable dense subset) then B(E1×E2) =B(E1)×B(E2) and
everything works as in the real-valued case. Otherwise however, B(E1 ×E2) (which includes the diagonal)
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may be strictly larger than B(E1)×B(E2) and the joint law of (X1,X2) on (E1 ×E2,B(E1 ×E2)) may not
exist. Note that our argument for B(Rd) = ×d

i=1B(R) relied on the fact that an open subset of Rn is a
countable union of open hypercubes which uses separability of R.

2.5 Product measure

We saw above how to define new measures via restrictions, summation and images. We now come to taking
products of measure. Recall the product space and the product σ -algebra from Definition 1.7.

Theorem 2.24. Let (Ωi,Fi,Pi), i = 1, . . . ,N, be probability measures. Then there exists a unique measure P on
the product space (Ω,F ) = (∏N

i=1 Ωi,×N
i=1Fi) such that

P(E1 × . . .×EN) = P1(E1) · . . . ·PN(EN), Ei ∈ Fi,1 ⩽ i ⩽ N. (11)

P is called the product measure and is also denoted
⊗

i⩽N Pi or P1 ⊗ . . .⊗PN .

Proof. We show the statement for N = 2. The general case then follows by induction since a general N product
can be see as product of two spaces: Ω1 and Ω2 × . . .×ΩN .

Suppose N = 2. A set in F of the form A×B for A ∈ F1,B ∈ F2 is called a measurable rectangle. These
sets form a π-system which, by Definition 1.7, generates F . Let A denote the collection of finite unions of
mutually disjoint measurable rectangles. Then A is an algebra and we can define a set function P on A by

P(A1×B1∪ . . .∪An×Bn) :=
n

∑
i=1

P1(Ai)P2(Bi), Ai ∈F1,Bi ∈F2, Ai×Bi∩A j ×B j = /0, 1 ⩽ i, j ⩽ n, i ̸= j,

for n ⩾ 1. Clearly P( /0) = 0 and, by Theorem 2.11, it remains to check that P is countably additive on A . Let
(Dn)n⩾1 be a sequence of sets in A with Dn ↓ /0. By Lemma 2.4, it suffices to show that limn→∞P(Dn) = 0.

Each Dn is a finite union of measurable rectangles An,k ×Bn,k, 1 ⩽ k ⩽ mn. If An,i∩An, j ̸= /0, we may replace
these two rectangles by three other rectangles with disjoint first sets, so that with no loss of generality we assume
An· are mutually disjoint. For ω1 ∈ Ω1, let Dn(ω1) = {ω2 ∈ Ω2 : (ω1,ω2) ∈ Dn} so that Dn(ω1) = Bn,k if ω1 ∈
An,k, for some (and hence only one) 1 ⩽ k ⩽ mn and Dn(ω2) = /0 otherwise. In particular, Dn(ω1)∈F2 (this also
follows more generally, see Exercise 1.13). Properties of (Dn)n⩾1 imply that Dn(ω1) ↓ /0 for all ω1 ∈ Ω1. Since
P2 is a probability measure, it follows that if we define a sequence of functions on Ω1 by Xn(ω1) = P2(Dn(ω1)),
n ⩾ 1, then Xn ↓ 0 pointwise on Ω1. Note also that Xn is a simple function, constant on any of the sets An,k, and
zero otherwise. In particular, for ε > 0,

X−1
n ((ε,∞)) = {ω1 : Xn(ω1)> ε}=

⋃
k∈In

An,i,

for some subset In ⊆ {1, . . . ,mn}. Again, by properties of (Dn)n⩾1, we have X−1
n ((ε,∞)) ↓ /0 and hence the

P1-probability of these sets decreases to zero. This yields

P(Dn) =
mn

∑
k=1

P1(An,k)P2(Bn,k)⩽ P1(Xn > ε)P2(Ω2)+ εP1(Ω1),

where we kept Pi(Ωi) = 1 terms to make it clear how the inequalities were obtained. Taking limit as n → ∞,
gives limn→∞P(Dn)⩽ ε for any ε > 0 and hence limn→∞P(Dn) = 0 as required.

Remark. Clearly, we could take any finite measures and not only probability measures in the statement of
the theorem. Further, through the usual arguments of restricting to subsets, the result also extends to σ -finite
measures.
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Remark. Note that the marginals, in the sense of Example 2.21, of the product measures P are given by Pi and
that P is uniquely specified by its marginals via (11). This is a special property of the product measure and is
not true for a general measure µ on the product space, as discussed in Examples 2.21 and 2.22.

Theorem 2.24 extends to countable products and (11) then reads

P

(
E1 × . . .×EN × ∏

n>N
Ωn

)
= P1(E1) · . . . ·PN(EN), ∀N ⩾ 1 and Ei ∈ Fi,1 ⩽ i ⩽ N. (12)

Recall Example 1.8 and its notation. We can then assert that there exists P on F which is the product measure
P=⊗k⩾1Pk, where Pk({H}) = 1

2 = Pk({T}). We use this opportunity also to give a concrete construction of
a non-measurable set to show F ⊊P(Ω). The construction is analogous to the construction of the Vitali set.
We define a relation ∼ on Ω by x ∼ y if and only if x and y differ in finitely many flips, i.e. |{k : xk ̸= yk}|< ∞.
It is direct to verify ∼ is reflexive, symmetric, and transitive. Assuming the axiom of choice (AC), we are
able to find a set A ⊂ Ω such that A contains exactly one element from each equivalence class. We prove A
is not measurable by contradiction. Let P∗ be the outer measure associated to P. As P∗ = P on F , we see
that sets in F are P∗-measurable. Note also that if for x1:n = (x1, . . . ,xn) ∈ ∏

n
k=1 Ωk, we write the cylinder set

[x1:n] as
[x1:n] = {ω ∈ Ω : ωk = xk for 1 ⩽ k ⩽ n}

then P([x1:n]) = P∗([x1:n]) = 2−n for all such cylinder sets [x1:n]. By definition, P∗ is invariant under any finite
flips. Denote the collection of finite flips (including the identity) by T , and {τ(A) : τ ∈ T} gives a countable
partition of Ω. If we suppose A is P∗-measurable, then τ(A) is P∗-measurable and, in particular,

1 = P∗(Ω) = ∑
τ∈T

P∗(τ(A)).

This leads to a contradiction since T is countably infinite and P∗(A) = P∗(τ(A)) for any τ ∈ T .
The construction of non-measurable set is closely related to set theory. In the above example and the Vitali

set, we both use the axiom of choice (AC). It has been shown that under some weaker version of AC, we still
can construct non-measurable set, for example, under Zermelo–Fraenkel set theory (ZF) + Hahn-Banach
theorem. On the other hand, assuming ZF only is not enough to show the existence of non-measurable set.
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3 Independence

There are two notions which really set probability apart and alive: independence and conditional expectation.
Both relate to (degrees of) co-dependence and ways to measure it. We saw a baby example of conditional
expectation, namely P(A|σ(B))(·), in §2.2 above. To develop it properly, we will need the theory of integration
which is still ahead of us. However, we already have all the tools to talk about independence.

3.1 Definitions and characterisations

Independence, or dependence, is all about information. A given piece of information is relevant if it potentially
changes the way we see things. If we do not care about it, then we would say this information is independent
of what we have in mind. As σ -algebras describe the information content for us, the notion of independence is
best phrased in terms of them.

Definition 3.1. Let (Ω,F ,P) be a probability space and (Gi)i⩽n a finite collection of σ -algebras, Gi ⊆ F for
i ⩽ n. We say that the σ -algebras (Gi)i⩽n are independent if and only if

P(A1 ∩ . . .∩An) = P(A1) · . . . ·P(An), for any Ai ∈ Gi, i ⩽ n. (13)

For an arbitrary collection (Gi)i∈I of sub-σ -algebras of F , we say that these σ -algebras are independent if any
finite sub-collection of them is. Note that in (13) we could have Ai = Ω for some indices i and, in particular, a
sub-collection of independent σ -algebras are also independent. Equally clearly, if (Gi)i∈I are independent and
Hi ⊆ Gi, i ∈ I, are further sub-σ -algebras, then (Hi)i∈I are also independent.

Example 3.2. The trivial σ -algebra {Ω, /0} is independent of any other σ -algebra. Its information content is
null. More generally, observe that G is independent of itself if and only if P(A) ∈ {0,1} for all A ∈ G .

Exercise 3.3. Let (Gn)n⩾1 be a sequence of independent σ -algebras. Use continuity of measure from above to
show that for any An ∈ Gn, n ⩾ 1,

P

(⋂
n⩾1

An

)
= ∏

n⩾1
P(An).

Lemma 3.4. Let (Ω,F ,P) be a probability space and A1, . . . ,An some events in F . Then, their generated
σ -algebras are independent if and only if

P

(⋂
i∈J

Ai

)
= ∏

i∈J
P(Ai), for any J ⊆ {1, . . . ,n}.

Proof. The results follows from Theorem 3.5 below since Ai = {Ai} is a π-system. But it can also be shown by
hand, which we do for n = 2. One direction is obvious. For the other recall that σ(A) = {Ω, /0,A,Ac} and note
that if P(A∩B) = P(A)P(B) then

P(A∩Bc) = P(A)−P(A∩B) = P(A)(1−P(B)) = P(A)P(Bc)

and the result follows by symmetry.

The above simple result also follows from the following much more general one: one does not need to verify
(13) for all sets in the σ -algebras but it is enough to verify it for sets in generating π-systems.
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Theorem 3.5. Let (Ω,F ,P) be a probability space, (Gi)i∈I an arbitrary collection of σ -algebras, each gener-
ated by a π-system Ai ⊆ F , i.e., Gi = σ(Ai), i ∈ I. Then (Gi)i∈I are independent if and only if

P

(⋂
i∈J

Ai

)
= ∏

i∈J
P(Ai) for any Ai ∈ Ai, i ∈ J, for any finite subset J ⊆ I. (14)

Proof. If (Gi)i∈I are independent then, by definition, (14) holds. The reverse implication is a simple application
of Lemma 1.12 but we give the details nevertheless. Fix a finite subset J ⊂ I and number its elements J =
{i1, . . . , in}. Let M1 be the set of A ∈ F for which

P(A∩A2 ∩ . . .∩An) = P(A) ·P(A2) · . . . ·P(An) for any Al ∈ Ail , l = 2, . . . ,n.

By assumption, Ai1 ⊆ M1 and also Ω ∈ M1 by the assumption applied to J1 = J \{i1}. For A ⊆ B both in M1,
we have

P((B\A)∩A2 ∩ . . .∩An) = P(B∩A2 ∩ . . .∩An)−P(A∩A2 ∩ . . .∩An)

= (P(B)−P(A))P(A2) . . .P(An) = P(B\A)P(A2) . . .P(An)

so that B \A ∈ M1. Finally, for an increasing sequence Bk ∈ M1, Bk ↑ B, continuity from below of P, see
Proposition 2.3, implies that B ∈ M1. We conclude that M1 is a λ -system and hence, by the π-λ systems
Lemma (Lemma 1.12), Gi1 = σ(Ai1)⊆ M1. We then proceed by induction. We let Mk be the A ∈ F for which

P(A1 ∩ . . .Ak−1 ∩A∩Ak+1 . . .∩An) = P(A1) · . . . ·P(Ak−1) ·P(A) ·P(Ak+1) · . . . ·P(An),

for any Al ∈ Gil , 1 ⩽ l < k and Al ∈ Ail , k < l ⩽ n. Then, by induction step, Aik ⊆ Mk and, as above, π-λ
systems lemma gives Gik ⊆ Mk.

An immediate corollary of the above is that if we have many independent channels of information, then
merging disjoint sub-groups of them, still gives us independent channels of information.

Corollary 3.6. Let (Ω,F ,P) be a probability space and (Gi)i∈I a collection of independent σ -algebras. Suppose
that I j ⊆ I, j ∈ J are all pairwise disjoint. Then (σ(Gi : i ∈ I j) : j ∈ J) are independent σ -algebras.

Proof. Let H j = σ(Gi : i ∈ I j) and

A j =

{⋂
i∈K

Ai : Ai ∈ Gi, i ∈ K, for some K a finite subset of I j

}

be the collection of finite intersection of sets from Gi, i ∈ I j. Note that A j is a π-system and σ(A j) = H j.
Note also that a finite subset of I j is, in particular, a finite subset of I and hence, by the assumed independence,
probability of a set in A j factorises as in (13). Now let L be a finite subset of J and consider sets Bl ∈ Al , l ∈ L.
Each of these sets is itself an intersection of sets, i.e., Bl =

⋂
i∈Kl Al

i , where Kl is a finite subset of Il and Al
i ∈ Gi.

As all Kl , l ∈ L, are disjoint, we obtain

P

(⋂
l∈L

Bl

)
= P

 ⋂
l∈L,i∈Kl

Al
i

= ∏
l∈L,i∈Kl

P(Al
i) = ∏

l∈L
∏
i∈Kl

P(Al
i) = ∏

l∈L
P

(⋂
i∈Kl

Al
i

)
= ∏

l∈L
P(Bl) ,

where we used independence of Gi, i ∈ I and (13) for the second equality, and we used independence of Gi, i ∈ Il
separately for each l ∈ L to obtain the fourth equality. The claim now follows by Theorem 3.5.
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Definition 3.7. Let (Ω,F ,P) be a probability space and (Xi)i∈I a family of random variables with values in some
measurable spaces (Ei,Ei)i∈I . We say that these random variables are independent if their generated σ -algebras
(σ(Xi))i∈I are.

It follows by the definition that (Xi)i∈I are independent if and only if for any finite subset J ⊆ I

P(Xi ∈ Ai for all i ∈ J) = ∏
i∈J

P(Xi ∈ Ai), for any Ai ∈ Ei, i ∈ J.

This can be further rephrased using the nomenclature of product measures.

Theorem 3.8. Let (Ω,F ,P) be a probability space and (Xi)i⩽n a finite family of random variables with values
in some measurable spaces (Ei,Ei)i⩽n. These random variables are independent in and only if their joint dis-
tribution µ(X1,...,Xn) on the product space (∏i⩽n Ei,×i⩽nEi) is the product measure of the marginal distributions
µXi .

The above statement extends to an arbitrary family of random variables as independence is defined by con-
sidering finite subsets of variables. Note that this theorem generalises the results you learned in Prelims and
Part A for discrete/continuous random variables – two continuous random variables X and Y are independent if
and only if their joint density function can be written as the product of the density function of X and the density
function of Y . The existence of product spaces in Theorem 2.24 tells us that, given Borel probability measures
µ1,µ2, . . . ,µn on R, there is a probability space on which there are independent random variables X1,X2, . . . ,Xn

with µXi = µi. In particular, the notion of independence is non-vacuous.
Checking independence of random variables from Definition 3.7 or Theorem 3.8 might be difficult. However,

when combined with Theorem 3.5, it becomes more manageable! We have the following immediate corollary.

Corollary 3.9. A sequence (Xn)n⩾1 of real-valued random variables on (Ω,F ,P) is independent iff for all n⩾ 1
and all x1, . . .xn ∈ R (or R),

P(X1 ⩽ x1, . . . ,Xn ⩽ xn) = P(X1 ⩽ x1) . . .P(Xn ⩽ xn).

Example 3.10. Recall our coin tossing representation in Example 1.22, namely on ([0,1],B([0,1])) we let
Xn(ω) = 1⌊2nω⌋ is even, n ⩾ 1, where 0 is even. We can now check that (Xn)n⩾1 are independent (exercise!). This
shows that we built a good model, as different coin tosses ought to be independent, and also that the notion of
independence is interesting (and non-vacuous as already observed).

As independence is about information, the following Proposition is obvious from Definition 3.7 and since if
Y = f (X) then σ(Y )⊆ σ(X).

Proposition 3.11. Let (Ω,F ,P) be a probability space and (Xi)i∈I a family of independent random variables
with values in some measurable spaces (Ei,Ei)i∈I and fi : Ei → R be measurable, i ∈ I. Then (Yi := fi(Xi))i∈I

are independent random variables.

As note before, Theorem 2.24 extends to countable products and (11) then changes to (12). This is important
as it offers a canonical way to build a sequence of independent random variables with given distributions.
Indeed, consider (Ωi,Fi,Pi) = ([0,1],B([0,1]),Leb). On the product space define Xi(ω) = ωi, where Ω ∋
ω = (ωi)i⩾1. Then (Xi)i⩾1 is a sequence of independent identically distributed random variables on the
product probability space, each Xi is uniform on [0,1]. Given any sequence (µi)i⩾1 of probability measures
on R we let (Fi)i⩾1 be their respective distribution functions and, as in Example 2.20, we set Yi = F−1

i (Xi).
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Then each Yi ∼ µi and, by Proposition 3.11, all (Yi)i⩾1 are independent.

3.2 Kolmogorov’s 0-1 Law

We have now the tools to present a beautiful classical result in probability theory concerning ‘tail events’ asso-
ciated to sequences of independent random variables.

Definition 3.12 (Tail σ -algebra). For a sequence of random variables (Xn)n⩾1 define

Tn = σ(Xn+1,Xn+2 . . .)

and

T =
∞⋂

n=1

Tn.

Then T is called the tail σ -algebra of the sequence (Xn)n⩾1.

Exercise 3.13. Check that T is a σ -algebra.

Roughly speaking, any event A such that (a) whether A holds is determined by the sequence (Xn) but (b)
changing finitely many of these values does not affect whether A holds is in the tail σ -algebra. These conditions
may sound impossible at first, but in fact many events involving limits have these properties. For example, it is
easy to check that A = {(Xn) converges} is a tail event: just check that A ∈ Tn for each n.

Theorem 3.14 (Kolmogorov’s 0-1 Law). Let (Xn)n⩾1 be a sequence of independent random variables. Then the
tail σ -algebra T of (Xn)n⩾1 contains only events of probability 0 or 1. Moreover, any T -measurable random
variable is almost surely constant.

Proof. Fix n ⩾ 1 and let Fn = σ(X1, . . . ,Xn). Note that Fn is generated by the π-system of events

A =
{
{X1 ⩽ x1, . . . ,Xn ⩽ xn} : x1, . . . ,xn ∈ R

}
and Tn is generated by the π-system of events

B =
{
{Xn+1 ⩽ xn+1, . . . ,Xn+k ⩽ xn+k} : k ⩾ 1,xn+1, . . . ,xn+k ∈ R

}
.

For any A ∈ A , B ∈ B, by the independence of the random variables (Xn), we have

P(A∩B) = P(A)P(B)

and so by Theorem 3.5 the σ -algebras σ(A ) = Fn and σ(B) = Tn are also independent. Note also that this
statement follows directly from Corollary 3.6. Since T ⊆Tn we conclude that Fn and T are also independent.

The above was true for all n ⩾ 1 and hence
⋃

n⩾1 Fn and T are also independent. Now
⋃

n⩾1 Fn is a
π-system (although not in general a σ -algebra) generating the σ -algebra F∞ = σ((Xn)n⩾1). So applying Theo-
rem 3.5 again we see that F∞ and T are independent. But T ⊆ F∞ so that if A ∈ T

P(A) = P(A∩A) = P(A)2

and so P(A) = 0 or P(A) = 1.
Now suppose that Y is any (real-valued) T -measurable random variable. Then its distribution function

FY (y) = P(Y ⩽ y) is increasing, right continuous and takes only values in {0,1} since {Y ⩽ y} ∈ T . So P(Y =
c) = 1 where c = inf{y : FY (y) = 1}. This extends easily to the extended-real-valued case.

Example 3.15. Let (Xn)n⩾1 be a sequence of independent, identically distributed (i.i.d.) random variables and let
Sn = ∑

n
k=1 Xk. Consider U = limsupn→∞ Sn/n and L = liminfn→∞ Sn/n. Then U and L are tail random variables

and so almost surely constant. We’ll prove later in the course that, L =U is the expectation of X1, a result known
as the Strong Law of Large Numbers.
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3.3 The Borel–Cantelli Lemmas

We turn now to second fundamental set of results which assert that certain events have probability one or zero.
We work on a fixed probability space (Ω,F ,P).

Definition 3.16. Let (An)n⩾1 be a sequence of sets from F . We define

limsup
n→∞

An =
∞⋂

n=1

⋃
m⩾n

Am

= {ω ∈ Ω : ω ∈ Am for infinitely many m}
= {An occurs infinitely often}
= {An i.o.}

and

liminf
n→∞

An =
∞⋃

n=1

⋂
m⩾n

Am

= {ω ∈ Ω : ∃m0(ω) such that ω ∈ Am for all m ⩾ m0(ω)}
= {An eventually}
= {Ac

n infinitely often}c.

Lemma 3.17.
1limsupn→∞ An = limsup

n→∞

1An , 1liminfn→∞ An = liminf
n→∞

1An .

Proof. Note that 1⋃
n An = supn 1An and 1⋂

n An = infn 1An , and apply these twice.

Lemma 3.18 (Fatou and Reverse Fatou for sets). Let (An)n⩾1 be a sequence of sets from F . Then

P(liminf
n→∞

An)⩽ liminf
n→∞

P(An) and P(limsup
n→∞

An)⩾ limsup
n→∞

P(An).

Proof. Using continuity of P from above and below, see Proposition 2.3, we have

P(An eventually) = lim
n→∞

P

(⋂
m⩾n

Am

)
⩽ lim

n→∞
inf
m⩾n

P(Am) = liminf
n→∞

P(An)

and hence (taking complements)
P(An i.o.)⩾ limsup

n→∞

P(An).

In fact we can say more about the probabilities of these events.

Lemma 3.19 (The First Borel–Cantelli Lemma, BC1). If ∑
∞
n=1P(An)< ∞ then P(An i.o.) = 0.

Remark. Notice that we are making no assumptions about independence here. This is a very powerful result
which we will use time and again.
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Proof. Let Gn =
⋃

m⩾n Am. Then

P(Gn)⩽
∞

∑
m=n

P(Am)

and Gn ↓ G = limsupn→∞ An, so by Proposition 2.3, P(Gn) ↓ P(G).
Since ∑

∞
n=1P(An)< ∞, we have that

∞

∑
m=n

P(Am)→ 0 as n → ∞,

and so

P
(

limsup
n→∞

An

)
= lim

n→∞
P(Gn) = 0

as required.

A partial converse to BC1 is provided by the second Borel–Cantelli Lemma, but note that we must now
assume that the events are independent.

Lemma 3.20 (The Second Borel–Cantelli Lemma, BC2). Let (An) be a sequence of independent events. If
∑

∞
n=1P(An) = ∞ then P(An i.o.) = 1.

Proof. Set am = P(Am) and note that 1−a ⩽ e−a. We consider the complementary event {Ac
n eventually}.

P

[⋂
m⩾n

Ac
m

]
= ∏

m⩾n
(1−am) (by independence, recall Exercise 3.3)

⩽ exp
(
− ∑

m⩾n
am

)
= 0.

Hence

P(Ac
n eventually) = P

(⋃
n⩾1

⋂
m⩾n

Ac
m

)
= lim

n→∞
P

(⋂
m⩾n

Ac
m

)
= 0,

and
P(An i.o.) = 1−P(Ac

n eventually) = 1.

Exercise 3.21. A monkey is provided with a typewriter. At each time step it has probability 1/26 of typing any
of the 26 letters independently of other times. What is the probability that it will type ABRACADABRA at least
once? infinitely often?
Solution. We can consider the events

Ak = {ABRACADABRA is typed between times 11k+1 and 11(k+1)}

for each k. The events are independent and P[Ak] = (1/26)11 > 0. So ∑
∞
k=1P[Ak] = ∞. Thus BC2 says that with

probability 1, Ak happens infinitely often.

Later in the course, with the help of a suitable martingale, we’ll be able to work out how long we must wait,
on average, before we see patterns appearing in the outcomes of a series of independent experiments.

We’ll see many applications of BC1 and BC2 in what follows. Before developing more machinery, here is
one more.
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Exercise 3.22. Let (Xn)n⩾1 be independent exponentially distributed random variables with parameter 1 and let
Mn = max{X1, . . . ,Xn}. Then

P
(

lim
n→∞

Mn

logn
= 1
)
= 1.

Solution. First recall that if X is an exponential random variable with parameter 1 then

P(X ⩽ x) =
{

0 x < 0,
1− e−x x ⩾ 0.

Fix 0 < ε < 1. Then

P(Mn ⩽ (1− ε) logn) = P

(
n⋂

i=1

{Xi ⩽ (1− ε) logn}

)

=
n

∏
i=1

P(Xi ⩽ (1− ε) logn) (independence)

=

(
1− 1

n1−ε

)n

⩽ exp(−nε).

Thus
∞

∑
n=1

P(Mn ⩽ (1− ε) logn)< ∞

and so by BC1
P(Mn ⩽ (1− ε) logn i.o.) = 0.

Since ε was arbitrary, taking a suitable countable union gives

P
(

liminf
n→∞

Mn

logn
< 1
)
= 0.

The reverse bound is similar: use BC1 to show that

P(Mn ⩾ (1+ ε) logn i.o.) = P(Xn ⩾ (1+ ε) logn i.o.) = 0.

At first sight, it might look as though BC1 and BC2 are not very powerful - they tell us when certain events
have probability zero or one. But for many applications, in particular when the events are independent, many
interesting events can only have probability zero or one, because they are tail events.
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4 Integration

In Part A Integration, you saw a theory of integration based on Lebesgue measure. It is natural to ask whether
we can develop an analogous theory for other measures. The answer is ‘yes’, and in fact almost all the work was
done in Part A; the proofs used there carry over to any measure. It is left as a (useful) exercise to check that.
Here we just state the key definitions and results.

4.1 Definition and first properties

Let (Ω,F ,µ) be a measure space. Given a measurable function f : Ω → R, we want to define, where possible,
the integral of f with respect to µ . There are many variants of the notation, such as:∫

f dµ =
∫

Ω

f dµ = µ( f ) =
∫

ω∈Ω

f (ω)dµ(ω) =
∫

f (ω)µ(dω)

and so on. The dummy variable (here ω) is sometimes needed when, for example, we have a function f (ω,x)
of two variables, and with x fixed are integrating the function f (·,x) given by ω 7→ f (ω,x).

Definition 4.1. If f is a non-negative simple function with canonical form (6), then we define the integral of f
with respect to µ as ∫

f dµ =
n

∑
k=1

akµ(Ek).

This formula then also applies (exercise) whenever f is as in (6), even if this is not the canonical form, as
long as we avoid ∞−∞ (for example by taking ak ⩾ 0).

Definition 4.2. For a non-negative measurable function f on (Ω,F ,µ) we define the integral∫
f dµ = sup

{∫
gdµ : g simple, 0 ⩽ g ⩽ f

}
.

Note that the supremum may be equal to +∞. Recall from Lemma 1.26 that measurability of f is equivalent
with f being an increasing limit of simple function. The above definition and this notion of integral can not
be extended to non-measurable functions in any meaningful way. Indeed, we know well by now that we can
not measure - that is integrate the indicator function - some non-measurable sets! We recall also that one can
use a canonical construction to approximate f , see the proof of Lemma 1.26, and the above supremum may be
replaced with a limit along such an approximating sequence of simple functions – this is easy to check directly
(exercise!) but it will also follow from the more general Theorem 4.6. Finally, note that if µ({ f = +∞}) > 0
then

∫
f dµ =+∞.

One obvious consequence of the above definition is worth pointing out: if 0 ⩽ f ⩽ g are two measurable
functions then

∫
f dµ ⩽

∫
gdµ . We sometimes refer to this as the comparison test or comparison principle.

Definition 4.3. We say that a function f on (Ω,F ,µ) is integrable, and write f ∈ L 1(Ω,F ,µ), if f is mea-
surable and

∫
| f |dµ < ∞. If f is integrable, its integral is defined to be∫

f dµ =
∫

f+dµ −
∫

f−dµ,

where f+ = max( f ,0) and f− = max(− f ,0) are the positive and negative parts of f .

A very important point is that if f is measurable, then
∫

f dµ is defined either if f is non-negative (when
∞ is a possible value) or if f is integrable. Clearly, by comparison, if f is measurable and | f | ⩽ g for some
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g ∈ L 1(Ω,F ,µ) then f ∈ L 1(Ω,F ,µ). Note that f = f+− f− and | f |= f++ f− so that another important
consequence of the above definition is the familiar inequality:∣∣∣∣∫ f dµ

∣∣∣∣⩽ ∫ | f |dµ. (15)

We have defined integrals only over the whole space. This is all we need – if f is a measurable function on
(Ω,F ,µ) and A ∈ F then we define ∫

A
f dµ =

∫
f 1A dµ,

i.e., we integrate (over the whole space) the function that agrees with f on A and is 0 outside A.

Example 4.4. If µ is the Lebesgue measure on (R,B(R)), then we have just redefined the Lebesgue integral as
in Part A.

Example 4.5. Suppose that µ is a discrete measure with mass pi at point xi ∈ R, for a (finite or countably
infinite) sequence x1,x2, . . .. Then you can check that∫

f dµ = ∑
i

f (xi)pi,

whenever f ⩾ 0 (where +∞ is allowed as the answer) or the sum converges absolutely. This example is very
different in nature to the Lebesgue integral above – here integrals are just sums. It is rather pleasing to see that
the toolbox we developed covers both cases with a unified language.

Our construction of the integral followed the steps seen in Part A Integration course. Importantly for us, our
generalised integral still has all the good properties.

Theorem 4.6 (Monotone Convergence Theorem (MCT)). Let ( fn) be a sequence of non-negative measurable
functions on (Ω,F ,µ). Then

fn ↑ f =⇒
∫

fn dµ ↑
∫

f dµ.

Note that we are not excluding
∫

f dµ = ∞ here. Also, it is easy to see that it is enough to suppose that fn ↑ f
µ-almost everywhere. An equivalent formulation of the Monotone Convergence Theorem (MCT) considers
partial sums: if ( fn) is a sequence of non-negative measurable functions, then∫ ∞

∑
n=1

fn dµ =
∞

∑
n=1

∫
fn dµ.

Proof. Note that the MCT for fn = 1An is simply the continuity of µ from below, Proposition 2.3 (iv). The
general case is deduced from this, see Part A Integration.

The MCT is a key result from which the rest of the integration theory essentially follows using the ‘bare
hands method’ outlined in the comments following Lemma 1.26: start by considering indicator functions f = 1E ,
then simple functions f , then non-negative measurable f via Lemma 1.26 and the MCT, and finally general
measurable f via f = f+− f−. For this reason, MCT is stated here and not in the subsequent section, even if it
would also fit there by the virtue of its name.

Exercise 4.7. As a simple warmup exercise, show that if f and g are measurable functions on (Ω,F ,µ) that are
either both non-negative or both integrable, and c ∈ R, then∫

( f +g)dµ =
∫

f dµ +
∫

gdµ,
∫

c f dµ = c
∫

f dµ.
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Exercise 4.8. Use MCT to prove Lemma 3.19.

Solution. Consider Nn := ∑
n
k=1 1Ak , the (random) number of events Ak that hold for k ⩽ n. Then

∫
Nn dP =

∑
n
k=1P(Ak). Since Nn ↑ N = N∞, by MCT, we have

∫
N dP = ∑k⩾1P[Ak] < ∞. But

∫
N dP < ∞ implies P(N =

∞) = 0, as required.

4.2 Radon-Nikodym Theorem

The just defined integral offers a canonical way to construct new measures on a given measure space. This was
first presented below Theorem 2.16 but can now be made rigorous.

Suppose that (Ω,F ,µ) is a measure space and f a positive integrable function. Then

F ∋ A −→ ν(A) :=
∫

A
f dµ =

∫
f (ω)1A(ω)µ(dω)

defines a measure. This is easy to verify for a simple function f and follows in general by the MCT (exercise).
Note that by definition if A is µ-null then it is also ν-null. We recall the terminology and notation of Definition
2.7 and write ν ≪ µ .

A particularly important special case is when
∫

f dµ = 1 so that ν is a probability measure. This is well
known to you under the heading of continuous random variables for Prelims or Part A probability. Take
(Ω,F ,µ) = (R,B(R),Leb) and let F(x) =

∫ x
−∞

f (y)dy. Then ν((−∞,x]) = F(x) so that, by Theorem 2.10,
ν = µF is the Lebesgue-Stieltjes measure associated to F by Theorem 2.16. The function F(x) is the distribu-
tion function corresponding to the probability measure ν .

The following fundamental result tells us that the above construction describes all measures ν absolutely
continuous w.r.t. µ , ν ≪ µ . We state it for probability measures. An extension to finite measures is immediate
and extension to σ -finite measures follows via the usual steps.

Theorem 4.9 (Radon-Nikodym Theorem). Let µ,ν be two probability measures on a measurable space (Ω,F ).
Then ν ≪ µ if and only if there exists a non-negative random variable f such that

ν(A) =
∫

A
f dµ, A ∈ F .

The function f is often denoted dν

dµ
and is called the Radon-Nikodym derivative of ν w.r.t. µ .

Further, ν ∼ µ if and only if f > 0 µ-a.s. (and then also ν-a.s.) in which case dµ

dν
= 1

f .

Exercise 4.10. Recall discrete measure theory on a countable Ω as presented in Example 2.9. Prove Theorem
4.9 in this setting.

The general proof of the Radon-Nikodym theorem is no joking matter. We will prove this result but only
much later in the course once we have established a good understanding of martingale convergence. The
Radon-Nikodym Theorem is often used to show existence of the conditional expectation so that the whole
enterprise may then appear circular. Here, we follow a different path and do not use Theorem 4.9 to establish
the existence of conditional expectations so there is no appearance of circularity. However, one could also
abstain from showing existence of the conditional expectation. Instead, one could use its defining properties
to define when a family of random variables is a martingale and carry out the whole enterprise this way.
Culminate with proving Theorem 4.9 and go back to existence of the basic objects on their own. A motivated

Deep Dive
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reader is invited to follow through the different logical pathwise to a complete theory.

4.3 Convergence Theorems

The following theorems were proved in Part A for the Lebesgue integral. The proofs essentially rely on the
MCT and carry over to the more general integral defined here. We start with the functional versions of Lemma
3.18.

Theorem 4.11 (Fatou’s Lemma). Let ( fn) be a sequence of non-negative measurable functions on (Ω,F ,µ).
Then ∫

liminf
n→∞

fn dµ ⩽ liminf
n→∞

∫
fn dµ.

Proof. We write liminf fn for liminfn→∞ fn. Recall that

liminf fn = lim
k→∞

gk, gk = inf
n⩾k

fn.

In particular, for n ⩾ k, fn ⩾ gk and hence also
∫

fn dµ ⩾
∫

gk dµ . As this holds for all n ⩾ k, we have∫
gk dµ ⩽ inf

n⩾k

∫
fn dµ.

Since gk ↑ liminf fn, as k → ∞, we apply MCT to obtain the desired inequality:∫
liminf fn dµ = lim

k→∞

∫
gk dµ ⩽ lim

k→∞

inf
n⩾k

∫
fn dµ = liminf

n→∞

∫
fn dµ.

Lemma 4.12 (Reverse Fatou’s Lemma). Let ( fn) be a sequence of non-negative measurable functions on
(Ω,F ,µ). Assume that there exists a function g ∈ L 1(Ω,F ,µ) such that fn ⩽ g for all n. Then∫

limsup
n→∞

fn dµ ⩾ limsup
n→∞

∫
fn dµ.

Proof. Apply Fatou to hn = g− fn. (Note that
∫

gdµ < ∞ is needed.)

The above lemmas gave us inequalities between limits of integrals and the integral of the limit. In most
cases however, we are interested in having an equality. This is the subject of the following results. They are all
well known and very useful. At the same time however, from a probabilistic point of view, they are not fully
satisfactory. We will develop in §5.4 below a finer tool to deal with the issue of convergence of integrals, namely
the notion of uniform integrability.

We recall that ( fn) converges pointwise to f if, for every x ∈ Ω, we have fn(x)→ f (x) as n → ∞.

Theorem 4.13 (Dominated Convergence Theorem (DCT)). Let ( fn) be a sequence of measurable functions on
(Ω,F ,µ) with fn → f pointwise. Suppose that for some integrable function g, | fn| ⩽ g for all n. Then f is
integrable and ∫

fn dµ →
∫

f dµ as n → ∞.

Proof. Taking limits we have 0 ⩽ | f | ⩽ g so that f ∈ L 1(Ω,F ,µ) by comparison. Using (15) and applying
Lemma 4.12 to hn = | fn − f |⩽ 2g, we obtain

0 ⩽ limsup
n→∞

∣∣∣∣∫ fn dµ −
∫

f dµ

∣∣∣∣⩽ limsup
n→∞

∫
| fn − f |dµ ⩽

∫
limsup

n→∞

| fn − f |dµ =
∫

0dµ = 0.
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Lemma 4.14 (Scheffé). Suppose that fn, f ∈ L 1(Ω,F ,µ) converge pointwise, fn → f as n → ∞. Then∫
| fn − f |dµ → 0 ⇐⇒

∫
| fn|dµ →

∫
| f |dµ.

Proof. The “=⇒” implication is trivial since −| fn− f |⩽ | fn|−| f |⩽ | fn− f | so we show the reverse. Suppose
first that fn, f are positive and

∫
fn dµ →

∫
f dµ . Since ( fn − f )− ⩽ f , DCT gives

∫
( fn − f )−dµ → 0. For

the positive part, we have∫
( fn − f )+dµ =

∫
fn⩾ f

( fn − f )dµ =
∫

fn dµ −
∫

f dµ −
∫

fn< f
( fn − f )dµ.

The first term converges to the second by assumption and the last one coverges to zero by the previous
argument. Together, we obtain the desired convergence

∫
| fn − f |dµ → 0.

In the general case, we have
∫

f±dµ ⩽ liminf
∫

f±n dµ by Fatou. By assumption,∫
( f++ f−)dµ = lim

∫
( f+n + f−n )dµ

so that necessarily the sequences f+n → f+ and f−n → f− satisfy the assumption of the Lemma and are positive
so the proof above applies and we conclude using | fn − f |⩽ | f+n − f+|+ | f−n − f−|.

Deep Dive

4.4 Expectation

The notion of image measure developed in §2.4 allows us to see the integral of a function against a measure on
one space simply as the integral against the image measure on the image space. We phrase this as a theorem
since it is a key result for a lot of computations one has to do.

Theorem 4.15. Let (Ω,F ,P) be a probability measure, X a random variable with values in a measurable space
(E,E ) and g a real-valued random variable on (E,E ). Let Q = P ◦X−1 be the image of P via X. Then g is
Q-integrable if and only if g◦X is P-integrable and then∫

E
g(x)Q(dx) =

∫
Ω

g(X(ω))P(dω). (16)

Proof. (16) holds by definition for g = 1A an indicator of an event A ∈ E . By linearity it then holds for any
simple function g. For a measurable g ⩾ 0, let gn ↑ g be a sequence of simple functions increasing to g, say
gn = ∑k⩽mn ak1Ak and note that

gn(X(ω)) = ∑
k⩽mn

ak1X(ω)∈Ak
= ∑

k⩽mn

ak1X−1(Ak)(ω)

are simple functions on Ω, gn ◦X ↑ g ◦X . MCT then gives the required equality for g with one integral being
finite if and only if the other is. The general case follows with g = g+−g− and in particular g is Q-integrable if
and only if g◦X is P-integrable.

In the reminder of this section, X denotes a random variable defined on a probability space (Ω,F ,P). We
often refer to the integral on Ω with respect to P as the expectation.
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Definition 4.16 (Expectation). We say that X admits a first moment, if X is integrable, i.e., X ∈ L 1(Ω,F ,P)
or

E[|X |] =
∫

Ω

|X(ω)|P(dω)< ∞.

The expectation of a random variable X defined on a probability space (Ω,F ,P) is

E[X ] =
∫

X dP=
∫

Ω

X(ω)P(dω).

Note that this is well defined and finite if E[|X |]< ∞ but otherwise may be either +∞ or undefined.

Recall that µX = P◦X−1 denotes the distribution of X . A simple application of Theorem 4.15, with g(x) = x,
gives

E[X ] =
∫

Ω

X(ω)P(dω) =
∫
R

xµX(dx).

In other words, the expectation of X is simply the barycentre of its distribution. As one expects from the
barycentre, it is the optimal prediction of X using a constant as the following makes precise.

Exercise 4.17. For X ∈ L 2(Ω,F ,P) show that

inf
c∈R

E[(X − c)2]

is attained by c = E[X ]. We say that E[X ] is the best constant mean square approximation of X .

Clearly, E[X ] is a property of the distribution of X in the sense that two random variables X ,Y , possi-
bly defined on different probability spaces, with X ∼ Y , have the same expectation. More generally, we have
E[g(X)] =

∫
g(x)µX(dx) which is thus determined by µX alone, which in turn is determined by its values on a

π-system: µX((−∞,x]) = µ(X ⩽ x), x ∈R. Very often in applications we suppress the sample space Ω and work
directly with µX .

Definition 4.18 (Variance). Suppose X admits a second moment, i.e., E[X2] < ∞. Then, the variance of X is
given by

Var(X) := E
[
(X −E[X ])2]= E[X2]− (E[X ])2

and is also called the the second centred moment. The square root of the variance,
√

Var(X), is called the
standard deviation of X .

Note that if we put

Y =
X −E[X ]√

Var(X)

then Y is a random variable with E[Y ] = 0 and Var(Y ) = E[Y 2] = 1. We say that Y is the standardised version
of X : its distribution is that of X but shifted and rescaled to have the first two moments equal to 0 and 1.

Definition 4.19. The nth standardised moment of X , if well defined, is given by

E[Y n] = E

[(
X −E[X ]√

Var(X)

)n]
.

The third standardised moment is known as skewness of X and the fourth one as kurtosis.

Note that all the moments defined above are, by Theorem 4.15, determined by the distribution of X .

Page 43



Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

4.5 Integration on a product space

Recall the definition of product space, Definition 1.7, and the construction of the product measure in Theorem
2.24. The canonical example of a product measure is given by the Lebesgue measure on R2, or, more generally,
on Rd .

Our integration theory was valid for any measure space (Ω,F ,µ) on which µ is a countably additive mea-
sure. But as we already know for R2, in order to calculate the integral of a function of two variables it is
convenient to be able to proceed in stages and calculate the repeated integral. So if f is integrable with respect
to Lebesgue measure on R2 then we know that∫

R2
f (x,y)d(x,y) =

∫ (∫
f (x,y)dx

)
dy =

∫ (∫
f (x,y)dy

)
dx.

We now extend this to a general setting.
We fix two probability spaces (Ωi,Fi,Pi), i = 1,2 and let (Ω,F ,P) denote their product space, i.e., P =

P1 ⊗P2. Recall from Lemma 1.29 that for a measurable f , the mappings with one coordinate fixed are also
measurable (w.r.t. to the appropriate σ -algebra).

Theorem 4.20 (Fubini/Tonelli). Let (Ω,F ,P) be the product of probability spaces (Ωi,Fi,Pi), i = 1,2, and let
f = f (x,y) be a bounded measurable function on (Ω,F ). The functions

x 7→
∫

Ω2

f (x,y)P2(dy), y 7→
∫

Ω1

f (x,y)dP1(dx)

are F1- and F2-measurable respectively.
Suppose either (i) that f is P-integrable on Ω or (ii) that f ⩾ 0. Then∫

Ω

f dP=
∫

Ω2

(∫
Ω1

f (x,y)P1(dx)
)
P2(dy) =

∫
Ω1

(∫
Ω2

f (x,y)P2(dy)
)
P1(dx),

where in case (ii) the common value may be ∞.

Remark (Warning). Just as we saw for functions on R2 in Part A Integration, for f to be integrable we require
that

∫
| f |dP< ∞. If we drop the assumption that f must be integrable or non-negative, then it is not hard to cook

up examples where both repeated integrals exist but their values are different.

You may recall from Part A Integration that statements about measurability of some functions, e.g., x →
f (x,y), were for a.e. x and not for all x as here. This is because in Part A Integration you worked on the
completed σ -algebra of all Lebesgue measurable sets and here we do not complete the σ -algebra by adding
the null sets.

Deep Dive

Proof. Both statements follow as immediate applications of the Monotone Class Theorem (Theorem 1.28) and
we only outline the proof. First we check that the class H of bounded functions which satisfy the statements
satisfies the assumptions in Theorem 1.28. Then we observe that f = 1A1×A2 ∈ H for all A1 ∈ F1,A2 ∈ F2.
The statements then hold for all F measurable bounded functions, including simple functions. The general case
follows via the MCT.
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Remark. Note that we used the fact that Pi are probability measures, or more generally finite measures, when
applying the Monotone Class Theorem: we need the integrals of a constant to be bounded! The above arguments
can then be extended, in the usual way, to σ -finite measures. But Fubini’s theorem may fail for arbitrary
measures!

Example 4.21. Let us consider an important example. Let X be a positive random variable on a generic proba-
bility space (Ω,F ,P). We consider the product space ([0,∞)×Ω,B([0,∞))×F ,Leb⊗P). Consider the area
under the graph of ω → X(ω), namely

A := {(x,ω) : 0 ⩽ x ⩽ X(ω)}; f = 1A.

The partial integrals are given by∫
Ω

f (x,ω)P(dω) = P(X ⩾ x) and
∫
[0,∞)

f (x,ω)dx = X(ω),

where dx denotes Leb(dx) in the usual fashion. Fubini gives us

(P×Leb)(A) =
∫
[0,∞)

P(X ⩾ x)dx = E[X ]. (17)

Remark. Building on the above example, consider the cornerstone results for functions, e.g., MCT, Fatou’s
Lemma, and see that they simply correspond to the analogues for sets applied to ’areas under graph’.

Here is a simple corollary of Fubini’s theorem which rephrases independence of random variables using expec-
tations.

Corollary 4.22. Let X ,Y be random variables on some probability space (Ω,F ,P). Then X and Y are inde-
pendent if and only if for any positive measurable functions f ,g

E[ f (X)g(Y )] = E[ f (X)]E[g(Y )].

Proof. For the “if” direction, take f = 1(−∞,r],g = 1(−∞,s], r,s ∈ R, and use Corollary 3.9. For the “only if”
direction, by Theorem 3.8, the joint distribution of (X ,Y ) is the product measure, µ(X ,Y ) = µX ⊗µY . The result
then follows from Fubini’s theorem since, by Theorem 4.15, E[ f (X)g(Y )] =

∫
R2 f (x,y)µ(X ,Y )(d(x,y)).

It is perhaps worth pausing and recalling that you saw the above in Prelims Probability for discrete random
variables. It is pleasing to see how much more elegant our language and proofs have become since!

The statement and applications of Fubini’s theorem above pertained only to product measures on Ω. This
is perhaps natural in analysis but much less in probability theory where we often consider measures on the
product space which are not product measures, i.e., joint distribution of couples of random variables which
are not independent. It is thus interesting to extend to this context.

Naturally, there are many other measures on Ω. Let us elaborate on other ways to construct such measures
and how to integrate against them. We keep the setup akin to Example 4.21 but it is clear things could be
written for any product of any two probability spaces.

Definition 4.23. A probability kernel on the product space (R×Ω,B(R)×F ) is a family of probability
measures (Px)x∈R on F such that R ∋ x → Px(A) is measurable for any A ∈ F .

In words, a probability kernel is a measurable function in one argument and a probability measure in the
other. A very special case is given by Px = P is independent of x. This is the case when constructing product
measures.

Deep Dive
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Theorem 4.24 (Generalised Fubini). Let (Px)x∈R be a probability kernel on (R×Ω,B(R)×F ) and let µ

be a probability measure on R. Then there exists a unique probability measure Q on B(R)×F such that

Q(E ×A) =
∫

E
Px(A)µ(dx), E ∈ B(R),A ∈ F . (18)

For a positive mesurable function f on R×Ω, the function x →
∫

Ω
f (x,ω)Px(dω) is measurable and∫

R×Ω

f dQ=
∫
R

µ(dx)
∫

Ω

f (x,ω)Px(dω).

The above equation remains true if f is assumed Q-integrable on R×Ω and then the function ω → f (x,ω)
is Px-integrable µ-a.s.

By definition, the first marginal of Q is µ:

Q(E ×Ω) =
∫

E
Px(Ω)µ(dx) =

∫
E

µ(dx) = µ(E), E ∈ B(R).

The second marginal, which we call P, results from µ-weighting of the measures Px, more precisely

P(A) :=Q(R×A) =
∫
R
Px(A)µ(dx), A ∈ F .

As we know, this marginal is simply the image law under the projection on the second coordinate. We thus
have the following corollary of Theorems 4.24 and 4.15.

Corollary 4.25. In the setup of Theorem 4.24, let P be the marginal of Q on Ω and X be a positive variable
on (Ω,F ). Then x →

∫
Ω

X(ω)Px(dω) is measurable and∫
Ω

X(ω)P(dω) =
∫
R

µ(dx)
∫

Ω

X(ω)Px(dω).

We saw above a rich way to construct measures on the product space and how to integrate against them.
In fact, this construction is exhaustive: under mild assumptions on Ω any measure Q on the product space
R×Ω can be disintegrated to be in the form (18). This naturally extends to general products Ω1 ×Ω2, again
under some assumptions.
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5 Complements and further results on integration

We stick to the setting of a probability space. All of what follows, with some care given to renormalisation, ex-
tends to finite measures. Most results extend to σ -finite measures. Some arguments extend to arbitrary measures.
An interested and motivated reader can explore such extensions.

Throughout this section we work on a fixed probability space (Ω,F ,P). We often drop it from the
conventional notation, e.g., the space L p(Ω,F ,P) is simply denoted L p.

5.1 Modes of convergence

If the Xn in Example 3.15 have mean zero and variance one, then setting

B =

{
limsup

n→∞

Sn√
2n log logn

= 1
}
, (19)

then by Kolmogorov’s 0/1-law we have P[B] = 0 or P[B] = 1. In fact P[B] = 1. This is called the law of the
iterated logarithm. Under the slightly stronger assumption that ∃α > 0 such that E[|Xn|2+α ] < ∞, Varadhan
proves this by a (delicate) application of Borel–Cantelli.

You may at this point be feeling a little confused. In Prelims Statistics or Part A Probability (or possibly
even at school) you learned that if (Xn) is a sequence of i.i.d. random variables with mean 0 and variance 1 then

P
[

X1 + · · ·+Xn√
n

⩽ a
]
= P

[
Sn√

n
⩽ a
]

n→∞−→
∫ a

−∞

1√
2π

exp
(
−x2

2

)
dx. (20)

This is the Central Limit Theorem without which statistics would be a very different subject. How does it fit
with (19)? The results (19) and (20) are giving quite different results about the behaviour of Sn for large n. They
correspond to different ‘modes of convergence’.

Definition 5.1. Let p ⩾ 0. The space of all random variables X such that E[|X |p] < ∞ is denoted L p. In
particular, L 0 is the space of all random variables. We also denote L ∞ the set of all random variables that are
bounded.

Definition 5.2 (Modes of convergence). Let X1,X2, . . . and X be random variables. We say that Xn converges to
X

• almost surely (written Xn
a.s.→ X or Xn → X a.s.) if

P[Xn → X ] = P
[{

ω : lim
n→∞

Xn(ω) = X(ω)
}]

= 1.

• in probability (written Xn
P→ X) if, for every ε > 0,

lim
n→∞

P(|Xn −X |> ε) = lim
n→∞

P
[{

ω : |Xn(ω)−X(ω)|> ε
}]

= 0.

• in L p (or in Lp, or in pth moment), written Xn
Lp

→ X , if all X ,Xn ∈L p, n ⩾ 1 and limn→∞E[|Xn−X |p] = 0.

• weakly in L 1 (or in the σ(L1,L∞) topology) if Xn,X ∈ L 1, n ⩾ 1 and

lim
n→∞

E[XnY ] = E[XY ], ∀ bounded r.v. Y.

• in distribution (or weakly) (written Xn
d→ X or Xn ⇒ X) if limn→∞ FXn(x) = FX(x) for every x ∈R at which

FX is continuous and where FY denotes the distribution function of Y .

Page 47
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These notions of convergence are all different. The notion of weak convergence in L 1 will not be used for
now. We will come back to it when we discuss uniform integrability in §5.4. Note also that the last notion,
that of convergence in distribution, is very different to the others: it only depends on the particular sequence of
random variables through their distributions. In particular, it makes sense even if all Xn are defined on different
probability spaces, unlike all the other notions.

For now we note the following easy relations.

Convergence a.s. =⇒ Convergence in Probability =⇒ Convergence in Distribution

⇑

Convergence in Lp

The notions of convergence almost surely and convergence in Lp were discussed (for Lebesgue measure,
rather than for arbitrary probability measures as here) in Part A Integration.

Example 5.3 (Convergence a.s. does not imply convergence in L1). On the probability space Ω = [0,1] with the
Borel σ -algebra and Lebesgue measure, consider the sequence of functions fn given by

fn(x) =
{

n(1−nx) 0 ⩽ x ⩽ 1/n,
0 otherwise.

f

10

n

n

1/n
Then fn → 0 almost everywhere on [0,1] but fn ̸→ 0 in L1. Thinking of each fn as a random variable, we have
fn → 0 almost surely but fn ̸→ 0 in L1.

Example 5.4 (Convergence in probability does not imply a.s. convergence). To understand what’s going on
in (19) and (20), let’s stick with [0,1] with the Borel sets and Lebesgue measure as our probability space. We
define (Xn)n⩾1 as follows:

for each n there is a unique pair of integers (m,k) such that n = 2m + k and 0 ⩽ k < 2m. We set

Xn(ω) = 1[k/2m,(k+1)/2m)(ω).

Pictorially we have a ‘moving blip’ which travels repeatedly across [0,1] getting narrower at each pass.

n=5n=2 n=3 n=4
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For fixed ω ∈ (0,1), Xn(ω) = 1 i.o., so Xn ̸→ 0 a.s., but

P[Xn ̸= 0] =
1

2m → 0 as n → ∞,

so Xn
P→ 0. (Also, E[|Xn −0|] = 1/2m → 0, so Xn

L1

→ 0).) On the other hand, if we look at the (X2n)n⩾1, we have

n=16n=2 n=4 n=8

and we see that X2n
a.s.→ 0.

It turns out that this is a general phenomenon.

Theorem 5.5 (Convergence in Probability and a.s. Convergence). Let X1,X2, . . . and X be random variables.

(i) If Xn
a.s.→ X then Xn

P→ X.

(ii) If Xn
P→ X, then there exists a subsequence (Xnk)k⩾1 such that Xnk

a.s.→ X as k → ∞.

Proof. For ε > 0 and n ∈ N let
An,ε = {|Xn −X |> ε}.

(i) Suppose Xn
a.s.→ X . Then for any ε > 0 we have P[An,ε i.o.] = 0. By Fatou’s Lemma for sets (Lemma 3.18,

we have
0 = P[An,ε i.o.] = P[limsup

n→∞

An,ε ]⩾ limsup
n→∞

P[An,ε ]

and in particular P[An,ε ]→ 0, so Xn
P→ X .

(ii) This is the more interesting direction. Suppose that Xn
P→ X . Then for each k ⩾ 1 we have P[An,1/k]→ 0,

so there is some nk such that P[Ank,1/k]< 1/k2 and nk > nk−1 for k ⩾ 2. Setting Bk = Ank,1/k, we have

∞

∑
k=1

P[Bk]⩽
∞

∑
k=1

k−2 < ∞.

Hence, by BC1, P[Bk i.o.] = 0. But if only finitely many Bk hold, then certainly Xnk → X , so Xnk

a.s.→ X .

The First Borel–Cantelli Lemma provides a very powerful tool for proving almost sure convergence of a
sequence of random variables. Its successful application often rests on being able to find good bounds on the
random variables Xn.

Remark. Note that if Xn
L1

→ X then, since −|Xn−X |⩽ Xn−X ⩽ |Xn−X | and −|Xn−X |⩽ |Xn|−|X |⩽ |Xn−X |,
we have both E[Xn]→E[X ] and E[|Xn|]→E[|X |]. Naturally, these convergences alone do not imply convergence
of Xn to X in L1, but the latter does if Xn → X a.s., recall Lemma 4.14 for more details.
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5.2 Some useful inequalities

We turn now to some inequalities which, in particular, often prove useful in the context discussed above. The
first is trivial, but has many applications.

Lemma 5.6 (Markov’s inequality). Let (Ω,F ,P) be a probability space and X a non-negative random variable.
Then, for each λ > 0

P[X ⩾ λ ]⩽
1
λ
E[X ].

Proof. Let λ > 0. Then, for each ω ∈ Ω we have X(ω)⩾ λ1{X⩾λ}(ω). Hence,

E[X ]⩾ E[λ1{X⩾λ}] = λP[X ⩾ λ ].

Corollary 5.7 (General Chebyshev’s Inequality). Let X be a random variable taking values in a (measurable)
set A ⊆ R, and let φ : A → [0,∞] be an increasing, measurable function. Then for any λ ∈ A with φ(λ )< ∞ we
have

P[X ⩾ λ ]⩽
E[φ(X)]

φ(λ )
.

Proof. We have

P[X ⩾ λ ] ⩽ P[φ(X)⩾ φ(λ )]

⩽
1

φ(λ )
E[φ(X)],

by Markov’s inequality.

The most familiar special case is given by taking φ(x) = x2 on [0,∞) and applying the result to Y = |X −
E[X ]|, giving

P
[
|X −E[X ]|⩾ t

]
⩽

E[(X −E[X ])2]

t2 =
Var[X ]

t2

for t > 0.
Corollary 5.7 is also often applied with φ(x) = eθx, θ ⩾ 0, to obtain

P[X ⩾ λ ]⩽ e−θλE[eθX ].

The next step is often to optimize over θ .

Corollary 5.8. For p > 0, convergence in Lp implies convergence in probability.

Proof. Recall that Xn → X in Lp if E[|Xn −X |p]→ 0 as n → ∞. Now

P[|Xn −X |> ε] = P[|Xn −X |p > ε
p]⩽

1
ε pE[|Xn −X |p]→ 0.

The next corollary is a reminder of a result you have seen in Prelims. It is called the ‘weak law’ because the
notion of convergence is a weak one.
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Corollary 5.9 (Weak law of large numbers). Let (Xn)n⩾1 be i.i.d. random variables with mean m and variance
σ2 < ∞. Set

X(n) =
1
n

n

∑
i=1

Xi.

Then X(n)→ m in probability as n → ∞.

Proof. We have E[X(n)] = n−1
∑

n
i=1E[Xi] = m and, since the Xn are independent,

Var[X(n)] = n−2Var

[
n

∑
i=1

Xi

]
= n−2

n

∑
i=1

Var[Xi] = σ
2/n.

Hence, by Chebyshev’s inequality,

P[|X(n)−m|> ε]⩽
Var[X(n)]

ε2 =
σ2

ε2n
→ 0.

Definition 5.10 (Convex function). Let I ⊆ R be a (bounded or unbouded) interval. A function f : I → R is
convex if for all x,y ∈ I and t ∈ [0,1],

f (tx+(1− t)y)⩽ t f (x)+(1− t) f (y).

Important examples of convex functions include x2, ex, e−x and |x| on R, and 1/x on (0,∞). Note that a
twice differentiable function f is convex if and only if f ′′(x)⩾ 0 for all x.

Theorem 5.11 (Jensen’s inequality). Let f : I → R be a convex function on an interval I ⊆ R. If X is an
integrable random variable taking values in I then

E[ f (X)]⩾ f (E[X ]).

Perhaps the nicest proof of Theorem 5.11 rests on the following geometric lemma.

Lemma 5.12. Suppose that f : I →R is convex and let m be an interior point of I. Then there exists a ∈R such
that f (x)⩾ f (m)+a(x−m) for all x ∈ I.

Proof. Let m be an interior point of I. For any x < m and y > m with x,y ∈ I, by convexity we have

f (m)⩽
y−m
y− x

f (x)+
m− x
y− x

f (y).

Rearranging (or, better, drawing a picture), this is equivalent to

f (m)− f (x)
m− x

⩽
f (y)− f (m)

y−m
.

It follows that

sup
x<m

f (m)− f (x)
m− x

⩽ inf
y>m

f (y)− f (m)

y−m
,

so choosing a so that

sup
x<m

f (m)− f (x)
m− x

⩽ a ⩽ inf
y>m

f (y)− f (m)

y−m

(if f is differentiable at m we can choose a = f ′(m)) we have that f (x)⩾ f (m)+a(x−m) for all x ∈ I.
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Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

Proof of Theorem 5.11. If E[X ] is not an interior point of I then it is an endpoint, and X must be almost surely
constant, so the inequality is trivial. Otherwise, setting m = E[X ] in the previous lemma we have

f (X)⩾ f (E[X ])+a(X −E[X ]).

Now take expectations to recover
E[ f (X)]⩾ f (E[X ])

as required.

As a byproduct of the proof, since a convex function is bounded from below by an affine function, E[ f (X)]
is well defined, possibly infinite.

Remark. Jensen’s inequality only works for probability measures, but often one can exploit it to prove results
for finite measures by first normalizing. For example, suppose that µ is a finite measure on (Ω,F ), and define
ν by ν(A) = µ(A)/µ(Ω). Then

∫
| f |3 dµ = µ(Ω)

∫
| f |3 dν ⩾ µ(Ω)

∣∣∣∣∫ f dν

∣∣∣∣3 = µ(Ω)−2
∣∣∣∣∫ f dµ

∣∣∣∣3 .
5.3 L p spaces

We comment a bit more on the structure and properties of L p spaces. Those of you who take the Banach spaces
course will see this done in a more systematic and general way. We will encounter Banach spaces, in particular
Hilbert spaces, time and again in probability. Those who continue to study martingales in continuous time will
use the Riesz representation theorem of elements in the dual space of a given Hilbert space.

For p > 0 the function x → xp is increasing on R+ so

(x+ y)p ⩽ (2 · x∨ y)p ⩽ 2p(xp + yp), ∀x,y ∈ R+.

It follows that X ,Y ∈ L p implies (X +Y ) ∈ L p. Obviously also αX ∈ L p for any α ∈ R so L p is a vector
space. For X ∈ L p let us put

∥X∥p := (E[|X |p])
1
p .

Lemma 5.13. Let 0 ⩽ r ⩽ p. Suppose X ∈ L p. Then X ∈ L r and

∥X∥r ⩽ ∥X∥p.

In particular, convergence in Lp implies convergence in Lr.

Proof. Let Xk = |X |∧k which is positive and bounded (and in particular integrable). Applying Jensen’s inequal-
ity with the convex function f (x) = xp/r on [0,∞) we get

∥Xk∥p
r = (E[|Xk|r])p/r ⩽ E[|Xk|p]⩽ E[|X |p] = ∥X∥p

p.

Taking limits and invoking the MCT gives the desired inequality. The implications for convergence in L p and
L r is immediate.

We now derive two crucial inequalities. The Hölder inequality is used in many proofs and Minkowski’s
inequality shows that ∥ · ∥p satisfies the triangular inequality.
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Theorem 5.14. Let p,q > 1 be such that 1
p +

1
q = 1. Suppose X ,Y ∈ L p and Z ∈ L q. Then

(Hölder’s inequality) E[|XZ|]⩽ ∥X∥p∥Z∥q,

(Minkowski’s inequality) ∥X +Y∥p ⩽ ∥X∥p +∥Y∥p.

Proof. Proofs of these inequalities on (R,B(R),Leb) were given in Part A Integration. Here we follow Williams
and derive these from Jensen’s inequality.

If X = 0 a.s. then there is nothing to show. Otherwise, define a new probability measure on (Ω,F ) by
Q(A) = E[|X |p1A]/∥X∥p

p, as we did in §4.2, and a random variable Z := |Y |/|X |p−11|X |>0. Applying Jensen’s
inequality with f (x) = xq, we have

(E[|XY |])q = (E [Z|X |p])q =

(∫
Z dQ · ∥X∥p

p

)q

⩽
∫

Zq dQ · ∥X∥pq
p = E[|Y |q]∥X∥q

p,

where we used p+q = pq. Hölder’s inequality follows raising the sides to 1/q.
For Minkowski’s inequality note that X +Y ∈ L p since it is a vector space and let c = E[|X +Y |p]1/q =

∥|X +Y |p−1∥q. Using first the triangular inequality on R, |x+ y| ⩽ |x|+ |y| and then Hölder’s inequality we
obtain

E[|X +Y |p]⩽ E[|X | · |X +Y |p−1]+E[|Y | · |X +Y |p−1]⩽ ∥X∥p · c+∥Y∥p · c.

Dividing by c gives the desired result since 1−1/q = 1/p.

Here is a useful application of Hölder’s inequality.

Lemma 5.15. Let X ,Y be two positive random variables such that

xP(X ⩾ x)⩽ E[Y 1{X⩾x}], ∀x > 0.

Then for p > 1 and q = p/(p−1), we have

∥X∥p ⩽ q∥Y∥p.

Proof. This is only non-trivial if Y ∈ L p so we suppose E[Y p] < ∞. First use Fubini, in analogy to Example
4.21, and the assumption, to show E[X p] ⩽ qE[X p−1Y ]. Then use Hölder’s inequality assuming X ∈ L p. In
general, use for Xn = X ∧n and invoke MCT. The details are left as an exercise.

The following result is of fundamental importance in functional analysis. We will exploit it for p = 2.

Theorem 5.16. Let p ⩾ 1. The vector space L p is complete, i.e., for any sequence (Xn)n⩾1 ⊆ L p such that

sup
r,s⩾n

∥Xs −Xr∥p
n→∞−→ 0

there exists X ∈ L p such that Xn → X in L p.

Proof. We proceed in analogy to the proof of (ii) in Theorem 5.5 above. Pick kn such that

sup
r,s⩾kn

∥Xs −Xr∥p ⩽ 2−n, and in particular E[|Xkn −Xkn+1 |]⩽ ∥Xkn −Xkn+1∥p ⩽ 2−n.

Put Y = ∑n⩾1 |Xkn −Xkn+1 |. By MCT we have E[Y ]< ∞ and in particular Y < ∞ a.s. The series being absolutely
convergent implies that limn→∞ Xkn exists a.s. We define

X(ω) := limsup
n→∞

Xkn(ω), ω ∈ Ω
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so that X is a random variable and Xkn → X a.s. For n ⩾ 1 and r > kn

E[|Xr −Xkm |p] = ∥Xr −Xkm∥p
p ⩽ 2−np, m ⩾ n.

Taking m ↑ ∞ and using Fatou’s lemma gives

E[|Xr −X |p]⩽ 2−np.

It follows that X ∈ L p and also Xr → X in L p, as required.

A Banach space is a normed vector space which is complete. The above shows that L p is almost a Banach
space, the only nuisance is that ∥X∥p = 0 implies X = 0 a.s. To get rid of this problem, we quotient by
the equivalence relation of a.s. equality. This gives us the space Lp – its elements are not random variables
anymore but rather equivalence classes relative to a.s. equality. From the function analytic point of view it is
a Banach space and a nicer object than L p. From the probabilistic point of view, we like to work with actual
functions. This is, in particular, since when we have a large family (Xt)t⩾0 of functions, changing each of
them on a null set may actually do a lot of harm!

Deep Dive

5.4 Uniform integrability

We come back now to the issue of passing from convergence of random variables to convergence of integrals.
Specifically, we are interested in passing from convergence in probability to convergence in L 1 (this will then
in particular also deal with a.s. convergence in one go). The right notion which provides an equivalence between
the two is given by:

Definition 5.17 (Uniform Integrability). A collection C of random variables is called uniformly integrable (UI)
if

lim
K→∞

sup
X∈C

E[|X |1{|X |>K}] = 0.

To put the above into words: for any ε > 0 there is a K large enough so that E[|X |1{|X |>K}]< ε for all X ∈C .

Remark. Note that UI property of C is not affected if we modify its elements on null sets. Consequently,
it makes sense to talk about UI of a family of random variables which are only defined a.s. We will use this
implicitly in Theorem 6.11 below.

Example 5.18. For X ∈ L 1 the decreasing function E[|X |1{|X |>K}] tends to 0 as K → ∞. Indeed, setting fn =
|X |1{|X |>n}, the functions fn converge to 0 a.s., and are dominated by the integrable function |X |. So by the DCT,
E[ fn]→ 0. It follows that the singleton family {X} is uniformly integrable if and only if X is integrable.

Example 5.19. If C is a family of random variables with |X |⩽Y for all X ∈C and Y ∈L 1 then C is uniformly
integrable (this is clear by the previous example). In particular, if we are in the setting of the DCT then UI holds.

From the definition, clearly if C contains a non-integrable random variable then C is not UI. But UI of C is
strictly more than just all X ∈ C being integrable: we require the convergence E[|X |1{|X |>K}]→ 0, K → ∞, to
hold uniformly across X ∈ C . As easy but very important example is provided by a sequence converging in L 1.

Exercise 5.20. Suppose X ,X1,X2, . . . ∈ L 1 and E[|Xn −X |]→ 0 as n → ∞. Show that {Xn : n ⩾ 1} is uniformly
integrable.
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Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

Remark 5.21. Note that in the definition of UI we can replace |X |1{|X |>K} by a ‘comparable’ expression such
as (|X |−K)+. Their equivalence for the definition follows since

0 ⩽ (|X |−2K)+ ⩽ |X |1{|X |>2K} ⩽ 2(|X |−K)+.

Proposition 5.22. Let C be a family of random variables. Then C is UI if and only if

sup
X∈C

E[|X |]< ∞ (i)

and
sup

A∈F :P(A)⩽δ

sup
X∈C

E[|X |1A]
δ→0−→ 0. (ii)

Proof. Suppose C is UI. By definition, there exists K such that E[|X |1{|X |>K}] ⩽ 1, for all X ∈ C . Thus (i)
holds:

E[|X |] = E
[
|X |1{|X |⩽K}+ |X |1{|X |>K}

]
⩽ K +E

[
|X |1{|X |>K}

]
⩽ K +1, ∀X ∈ C .

Fix ε > 0 and choose K such that
E[|X |1{|X |>K}]<

1
2ε, ∀X ∈ C .

Set δ = ε/(2K) and suppose that P(A)< δ . Then for any X ∈ C ,

E[|X |1A] = E[|X |1A1{|X |>K}]+E[|X |1A1{|X |⩽K}]

⩽ E[|X |1{|X |>K}]+E[K1A]

⩽ 1
2ε +KP(A)< ε,

so that (ii) holds.
For the converse, suppose (i) and (ii) hold. Let ε > 0 be given. By (ii) there exists δ > 0 such that P(A)< δ

implies E[|X |1A]< ε for all X ∈ C . Let M denote the value of the finite supremum in (i). For K large enough,
namely for K > M/δ , by Markov’s inequality we have

P(|X |> K)⩽
E[|X |]

K
⩽

M
K

< δ , ∀X ∈ C .

Putting the two together we get the desired result:

E
[
|X |1{|X |>K}

]
< ε for all X ∈ C .

Remark. If we impose a minor technical condition on our probability space, namely that it is atomless, P({ω})=
0 for all ω ∈Ω, then (ii) on its own implies uniform integrability. So ‘morally’ (ii) is really equivalent to uniform
integrability, and is often the best way of thinking about it.

We start with a variant of the Bounded Convergence Theorem, which is a warm up to the main result.

Lemma 5.23. Let (Xn) be a sequence of random variables with Xn → X in probability, and suppose that |X | and
all |Xn| are bounded by the same real number K. Then Xn → X in L1.

Proof. We use an idea which recurs again and again in this context: split by whether the relevant quantity is
‘small’ or ‘large’. Specifically, fix ε > 0. Let An be the event {|Xn −X |> ε}. Then

E[|Xn −X |] = E
[
|Xn −X |1An + |Xn −X |1Ac

n

]
⩽ E[|Xn|1An ]+E[|X |1An ]+ ε (21)

⩽ 2E[K1An ]+ ε = 2KP[An]+ ε.

Since Xn converges to X in probability, P[An]→ 0, so the bound above is at most 2ε if n is large enough, and
E[|Xn −X |]→ 0 as required.
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Naturally if Xn → X a.s. then the above is a simple corollary to the DCT. Note however that in Example 5.4
we saw a sequence of (Xn)n⩾1 which was uniformly bounded and converged in probability and in L1 but not
almost surely.

The next result extends the previous easy result to the situation when the (Xn)n⩾1 are uniformly integrable.
In this sense, it provides the converse to Exercise 5.20. It follows that UI is the right condition: Xn → X in L1 if
and only if Xn → X in probability and {Xn : n ⩾ 1} is uniformly integrable.

Theorem 5.24 (Vitali’s Convergence Theorem). Let (Xn) be a sequence of integrable random variables which
converges in probability to a random variable X. TFAE (The Following Are Equivalent):

(i) the family {Xn : n ⩾ 1} is uniformly integrable,

(ii) X ∈ L 1 and E[|Xn −X |]→ 0 as n → ∞,

(iii) X ∈ L 1 and E[|Xn|]→ E[|X |]< ∞ as n → ∞.

Proof. Suppose C = {Xn : n ⩾ 1} is UI. We try to repeat the proof of Lemma 5.23, using the bound (21). Since
|Xn| → |X | in probability, by Theorem 5.5 there exists a subsequence (Xnk)k⩾1 that converges to X a.s. Fatou’s
Lemma gives

E[|X |]⩽ liminf
k→∞

E[|Xnk |]⩽ sup
n
E[|Xn|],

which is finite by Proposition 5.22, i.e., X is integrable. Now fix ε > 0, and let An = {|Xn −X |> ε}. As before,

E[|Xn −X |] = E
[
|Xn −X |1An

]
+E

[
|Xn −X |1Ac

n

]
⩽ E

[
|Xn|1An

]
+E

[
|X |1An

]
+ ε.

Since Xn → X in probability we have P[An]→ 0 as n → ∞, so by Proposition 5.22 (ii)

E[|Xn|1An ]→ 0 as n → ∞.

Similarly, since {X} is uniformly integrable,

E[|X |1An ]→ 0 as n → ∞.

Hence E[|Xn −X |]⩽ 2ε for n large enough. Since ε > 0 was arbitrary this proves (ii).
(ii)⇒ (iii) follows by −|Xn −X |⩽ |X |− |Xn|⩽ |X −Xn| as in the proof of Lemma 4.14.
It remains to show (iii)⇒ (i). Note that we can not repeat the arguments in the proof of Lemma 4.14 which

relied on a.s. convergence to use the DCT. Instead, we use the bounded convergence result Lemma 5.23. To
avoid clutter, let Yn = |Xn| and Y = |X |. Note that Yn,Y ⩾ 0, Yn

P→ Y . We use Remark 5.21 to establish UI of C .

Since |(Yn ∧K)− (Y ∧K)|⩽ |Yn −Y |, we have Yn ∧K P→ Y ∧K and, by Lemma 5.23, E[Yn ∧K]→ E[Y ∧K].
Recalling that, by assumption, E[Yn]→ E[Y ] this gives

E[(Yn −K)+] = E[Yn]−E[Yn ∧K]
n→∞−→ E[Y ]−E[Y ∧K] = E[(Y −K)+]< ε,

where the last inequality holds for all K large enough since Y ∈ L 1. Hence there is an n0 such that for n ⩾ n0,

E[(|Xn|−K)+] = E[(Yn −K)+]< 2ε.

There are only finitely many n < n0, so there exists K′ ⩾ K such that such that

E[(|Xn|−K′)+]< 2ε

for all n, as required.

5.5 Further results on UI (Deep Dive)
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The following is very helpful in thinking about UI. While Proposition 5.22 makes it clear that just uniform
bound on the first moments is not enough for UI, in fact anything more than that already is.

Theorem 5.25 (La Vallée Poussin). Let C ⊆L 1. Then C is UI if and only if there exists a positive increasing
and convex g : R+ → R such that

lim
x→∞

g(x)
x

= ∞

and
sup
X∈C

E[g(|X |)]< ∞.

One example of g which we shall meet later on is given by g(x) = x logx.

Proof. TBC

Let us look again at the Definition of UI. It says that for any ε > 0, we can write each X ∈ C as X =
X1{|X |⩽K}+X1{|X |>K}, where the first variable is obviously bounded and the second one is small in L 1. To
rephrase, C is UI if and only if, for any ε > 0, there exists K such that C is contained in the Minkowski sum

C ⊂ B∞
K +B1

ε := {Y +Z : Y ∈ B∞
K ,Z ∈ B1

ε},

where B1
ε is a ball in L 1, B1

ε = {Z ∈ L 1 : E[|Z|] ⩽ ε} and B∞
K is a ball in L ∞ seen as a subset in L 1,

B∞
K = {Y ∈ L 1 : |Y (ω)| ⩽ K ∀ω ∈ Ω}. Note that the Minkowski sum is a convex set so if it contains C it

also contains its convex hull. It follows that if C is UI then so is its convex hull. Similarly, if a sequence in C
converges in L 1 to some X then we can also add X to C without affecting UI. Note also that a union of two
UI families C ,D is still UI and hence so is C +D (since 1

2(C +D) is a subset of the convex hull of C ∪D).
All of these properties become natural in light of the following result.

Theorem 5.26 (Dunford–Pettis). Let C ⊆ L1. TFAE

(i) C is UI

(ii) C is relatively weakly compact (i.e., in the σ(L1,L∞) topology the closure is compact)

(iii) every sequence of elements in C contains a subsequence converging in σ(L1,L∞).

Sketchy sketch of (i)⇒ (ii). From (i) to (ii): consider Q(A) := limUE[X1A], where U is an ultrafilter on
C and A ∈ F . Part (i) in Proposition 5.22 shows the limit is well defined, while part (ii), together with
Lemma 2.4, shows it is a measure. Using Theorem 4.9 we get ξ = dQ

dP , in particular ξ ∈ L 1, and show
that limUE[XY ] = E[ξY ] for any Y ∈ L ∞. This is easy for a simple Y and then follows with a universal
approximation argument in Lemma 1.26.

The reverse, from (ii) to (i), is more difficult. Equivalence between (ii) and (iii) follows from Eberlein–
Smulian theorem, a difficult result which asserts that different types of compactness are equivalent for the
weak topology on a Banach space.

Deep Dive
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6 Conditional Expectation

From now on, we work on a fixed probability space (Ω,F ,P). All the random variables are assumed to
be defined on (Ω,F ).

As already stated, independence and conditional expectation are the two key notions which set probability
alive. We saw the former in §3 and are now about the develop the latter.

6.1 Intuition

Our objective is to capture in a mathematically rigorous way, the intuition that our assessment of probabilities,
and hence of behaviour of random variables, should change as a function of our information. In Prelims we did
this through the notion of conditional probability. Suppose we consider an event A. Then, in absence of any
information, we assess its likelihood as P(A). However, if someone tells us that an even B actually happens,
then we re-assess the chances of A as P(A|B) = P(A∩B)/P(B). Except that this is a post-factum assessment,
once we know that B has happened. A more forward thinking approach would be say: suppose you had the
information about B, i.e., you shall know if it happens or not, then how would you assess chances of A? We
already answered this in §2.2 and the answer was given in (9):

E [1A | σ(B)] (ω) = P(A | σ(B))(ω) =
P(A∩B)
P(B)

1B(ω)+
P(A∩Bc)

P(Bc)
1Bc(ω).

As expected the answer takes one value if B happens and another if Bc does. Note that we used expectations
notation above, harmless here since E[1A] = P(A), but more suitable to moving from indicators to more general
random variables. For an integrable random variable X we already know from Exercise 4.17 that E[X ] is the
single best approximation, in the quadratic sense, to X using a constant. But if we are allowed to use instead a
random variable taking two values, one if B happens and another if Bc does, then we would conjecture

E[X | σ(B)](ω) =
E [X1B]

P(B)
1B(ω)+

E [X1Bc ]

P(Bc)
1Bc(ω).

It turns out this answer is correct as the optimality property, known as the mean square approximation, is pre-
served.

Exercise 6.1. Let X be an integrable random variable and B ∈ F with P(B) > 0. For α,β ∈ R let Yα,β :=
α1B +β1Bc . Show that

inf
α,β∈R

E[(X −Yα,β )
2]

is attained by Yα,β = E[X | σ(B)] above.

It is also easy to see how the above could generalise to a more detailed information: suppose (Bn)n⩾1 is a
partition of Ω, i.e., the sequence is pairwise disjoint and

⋃
n⩾1 Bn = Ω, and that P(Bn)> 0 for all n ⩾ 1. Then

E [1A | σ(Bn : n ⩾ 1)] (ω) = P(A | σ(Bn : n ⩾ 1))(ω) = ∑
n⩾1

P(A∩Bn)

P(Bn)
1Bn(ω)(ω)

or, more generally, for an integrable random variable X ,

E [X | σ(Bn : n ⩾ 1)] (ω) = ∑
n⩾1

E [X1Bn ]

P(Bn)
1Bn(ω) (22)

is undoubtedly the right object. Our information is on the levels of Bn’s – we are able to tell them apart and
hence can reason on each of these instead of the whole of Ω. On each Bn, we just use the old good conditional
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probability or averaging of X . The outcome is a random variable, taking possibly countably many different
values, which tells us how we shall be evaluating the chances of A happening, or approximating X , depending
on our information about Bn’s. However, it is not clear how to proceed further as this is where the intuition stops
really! If we had an uncountable family, each Bi with P(Bi) = 0, i ∈ I, then we have no apparent way of making
sense of the above.

6.2 Definition, existence and uniqueness

If we consider more general types of information, i.e., if we want to condition on a σ -algebra G ⊂ F , we can
not hope to reason set-by-set or ω-by-ω . Instead we can appeal to the optimal prediction property. Above, one
can show that E[X | σ(Bn : n ⩾ 1)] minimises the prediction error E[(X −Y )2] among all Y = ∑n⩾1 αn1Bn . But
this gets a bit tedious if we do it by hand. And it essentially just follows from the fact that on the smallest
level of granularity allowed, i.e., on the sets Bn, we use the best constant to approximate X : its expectation
on that set. Thus, by definition, we have that the average of E[X | σ(Bn : n ⩾ 1)] over any set we ‘know’ or
can distinguish, i.e., any Bn, is the same as average of X . This and the fact that E[X | σ(Bn : n ⩾ 1)] has to be
σ(Bn : n ⩾ 1)-measurable leads to the following definition:

Definition 6.2 (Conditional Expectation). Let (Ω,F ,P) be a probability space and X an integrable random
variable. Let G ⊆F be a σ -algebra. We say that a random variable Y is (a version of) the conditional expectation
of X given G if Y is integrable, G -measurable and

E[Y 1G] = E[X1G] for all G ∈ G .

The integrals of X and Y over sets G ∈ G are the same – this is our averaging property – but Y is also
G measurable whereas X is F -measurable. The conditional probability is defined simply as the conditional
expectation of an indicator

P(A | G ) := E[1A | G ]

for A ∈ F . It is easy to see that when G = σ(B), for an event B ∈ F , the natural object proposed in (9) satisfies
Definition 6.2. More generally, the following result takes care of the first two questions you may want to ask.

Theorem 6.3 (Existence and uniqueness of conditional expectation). Let X be an integrable random variable
on a probability space (Ω,F ,P) and G ⊆ F a σ -algebra. The conditional expectation of X given G exists and
is denoted E[X | G ]. It is a.s. unique in the sense that if Z is also the conditional expectation of X given G then
Z = E[X | G ] a.s.

Proof of uniqueness. Let Y,Z be two conditional expectations of X given G . Let G := {Y > Z} and note that
G ∈ G as Y,Z are G -measurable. By definition, E[Y 1G] = E[X1G] = E[Z1G] so that E[(Y − Z)1G] = 0. But
(Y −Z)1G ⩾ 0 a.s. and hence (Y −Z)1G = 0 a.s., i.e., P(G) = 0 since Y −Z > 0 on G. Swapping Y and Z, we
also have P(Z > Y ) = 0 and hence Y = Z a.s.

We will come back to the proof of existence later. Let us reiterate that the conditional expectation satisfies∫
G
E[X | G ]dP=

∫
G

X dP for all G ∈ G , (23)

i.e., using the expectation notation, E[E[X | G ]1G] = E[X1G], and we shall call (23) the defining relation.

Remark 6.4. If E[X ] = E[Y ] then the DCT shows that the family of sets G for which (23) is true forms a λ -
system. A direct application of π-λ systems lemma thus shows that it is enough to verify (23) for G ∈ A ∪{Ω}
for a π-system A generating G . While simple, this remark is very useful.

Page 59
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Our first task is to verify that (22) was a correct guess. And, with the above remark, it is enough to check
that (23) is satisfied for G = Bn. This is trivial, since if Y denotes the random variable on the right hand side of
(22) then

E[Y 1Bn ] =
E[X1Bn ]

P(Bn)
E[1Bn ] = E[X1Bn ].

Since the definition of the conditional expectation is so important, let us explain it once again, considering the
case G = σ(ξ ) for some random variable ξ . In this case, we often simple write E[X | ξ ] instead of E[X | σ(ξ )].
So, Y = E[X | ξ ] is supposed to be a random variable which depends only on the value of ξ , in the sense that

“Y (ω) = E[X | ξ = z] = E[X1{ξ=z}]/P[ξ = z]′′

when ξ (ω) = z. To avoid getting into trouble dividing by zero, we can integrate over {ξ = z} to express this as

E[Y 1{ξ=z}] = E[X1{ξ=z}].

Still, if P[ξ = z] = 0 for every z (as will often be the case), this condition simply says 0 = 0. So, just as we did
when we failed to express the basic axioms for probability in terms of the probabilities of individual values, we
pass to sets of values, and in particular Borel sets. So instead we insist that Y is a function of ξ and

E[Y 1{ξ∈A}] = E[X1{ξ∈A}]

for each A ∈B(R). This is exactly what Definition 6.2 says in the case G = σ(ξ ). Note that thanks to Theorem
1.27, we can say that E[X |ξ ] = f (ξ ) for some measurable function ξ . Thus, intuitively, we have ’ f (z) =
E[X |ξ = z]‘ except the concept of the conditional expectation actually makes sense of this even if P(ξ = z) = 0
for all z ∈ R.

In general, it is not the values of ξ that matter, but the ‘information’ in ξ , coded by the σ -algebra ξ generates,
so we define conditional expectation with respect to an arbitrary σ -algebra G . This then covers cases such as
conditioning on two random variables at once and much more.

Remark. So far, we defined conditional expectations only when X is integrable. Just as with ordinary expec-
tation, the definitions work without problems if X ⩾ 0, allowing +∞ as a possible value. This is (an option)
exercise for you to check.

6.3 Important properties

We now turn to basic properties of the conditional expectation. Most of the following are obvious. Always
remember that whereas expectation is a number, conditional expectation is a function on Ω and, since conditional
expectation is only defined up to equivalence (i.e., up to equality almost surely) we have to qualify many of our
statements with the caveat ‘a.s.’.

Proposition 6.5. Let (Ω,F ,P) be a probability space, X and Y integrable random variables, G ⊆ F a σ -
algebra and a,b,c real numbers. Then

(i) E[E[X | G ]] = E[X ].

(ii) E[aX +bY + c | G ]
a.s.
= aE[X | G ]+bE[Y | G ]+ c.

(iii) If X is G -measurable, then E[X | G ]
a.s.
= X.

(iv) E[c | G ]
a.s.
= c.

(v) E[X | { /0,Ω}] = E[X ].
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(vi) If σ(X) and G are independent then E[X | G ] = E[X ] a.s.

(vii) If X ⩽ Y a.s. then E[X | G ]⩽ E[Y | G ] a.s. In particular, if X ⩾ 0 a.s. then E[X | G ]⩾ 0 a.s.

(viii)
∣∣E[X | G ]

∣∣⩽ E[|X | | G ] a.s.

Proof. The proofs all follow from the requirement that E[X | G ] be G -measurable and the defining relation (23).
We just do some examples.

(i) Set G = Ω in the defining relation.
(ii) Clearly Z = aE[X | G ]+bE[Y | G ] is G -measurable, so we just have to check the defining relation. But

for G ∈ G , ∫
G

Z dP=
∫

G

(
aE[X | G ]+bE[Y | G ]

)
dP = a

∫
G
E[X | G ]dP+b

∫
G
E[Y | G ]dP

= a
∫

G
X dP+b

∫
G

Y dP

=
∫

G
(aX +bY )dP.

So Z is a version of E[aX +bY | G ], and equality a.s. follows from uniqueness.
(v) The sub σ -algebra is just { /0,Ω} and so E[X | { /0,Ω}] (in order to be measurable with respect to { /0,Ω})

must be constant. Now integrate over Ω to identify that constant.
(vi) Note that E[X ] is G -measurable and for G ∈ G

E[E[X ]1G] = E[X ]P[G] = E[X ]E[1G] = E[X1G],

so the defining relation holds, where in the last equality we used independence and Proposition 3.11.
(vii) By linearity it is enough to show the ‘in particular’ part. Suppose X ⩾ 0. If P(E[X | G ] < 0) > 0 then

P(A)> 0, where A = {E[X | G ]⩽−1/n} for some n > 0. Since A ∈ G , by (23), we have

0 ⩽ E[X1A] = E[E[X |G ]1A]⩽−P(A)
n

< 0

a contradiction.

Notice that (vi) is intuitively clear. If X is independent of G , then telling me about events in G tells me
nothing about X and so my assessment of its expectation does not change. On the other hand, for (iii), if X is
G -measurable, then telling me about events in G actually tells me the value of X .

The conditional counterparts of our convergence theorems of integration also hold good.

Proposition 6.6 (Conditional Convergence Theorems). Let X1,X2, . . . and X be integrable random variables on
a probability space (Ω,F ,P), and let G ⊆ F be a σ -algebra.

1. cMCT: If Xn ⩾ 0 for all n and Xn ↑ X as n → ∞, then E[Xn | G ] ↑ E[X | G ]a.s. as n → ∞.

2. cFatou: If Xn ⩾ 0 for all n then

E[liminf
n→∞

Xn | G ]⩽ liminf
n→∞

E[Xn | G ] a.s.

3. cDCT: If Y is an integrable random variable, |Xn|⩽ Y for all n and Xn
a.s.→ X, then

E[Xn | G ]
a.s.→ E[X | G ] as n → ∞.
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Proof. The proofs all use the defining relation (23) to transfer statements about convergence of the conditional
probabilities to our usual convergence theorems. We give details for cMCT and leave the rest as an exercise.

Let Yn = E[Xn | G ]. By Proposition 6.5 (vii) we know that Yn ⩾ 0 a.s. and An = {Yn <Yn−1} ∈ G and is null,
P(An) = 0. Let Y := limsupn→∞Yn and A =

⋃
n⩾2 An. Then A ∈ G is a null set, P(A) = 0, Y is G -measurable and

outside of A it is an increasing limit of Yn’s. For any G ∈ G we have

E[Y 1G] = E[Y 1G∩Ac ]
MCT
= lim

n→∞
E[Yn1G∩Ac ]

(23)
= lim

n→∞
E[Xn1G∩Ac ]

MCT
= E[X1G∩Ac ] = E[X1G].

Taking G = Ω, E[Y ] = E[X ]< ∞ and it follows that Y is a version of E[X | G ], as required.

The following two results are incredibly useful in manipulating conditional expectations. The first is some-
times referred to as ‘taking out what is known’.

Lemma 6.7. Let X and Y be random variables on (Ω,F ,P) with X, Y and XY integrable. Let G ⊆ F be a
σ -algebra and suppose that Y is G -measurable. Then

E[XY | G ]
a.s.
= YE[X | G ].

Proof. The function YE[X | G ] is clearly G -measurable, so we must check that it satisfies the defining relation
for E[XY | G ]. We do this by a standard sequence of steps.

First suppose that X and Y are non-negative. If Y = 1A for some A ∈ G , then for any G ∈ G we have
G∩A ∈ G and so by the defining relation (23) for E[X | G ]∫

G
YE[X | G ]dP=

∫
G∩A

E[X | G ]dP=
∫

G∩A
X dP=

∫
G

Y X dP.

Now extend by linearity to simple positive Y s. Now suppose that Y ⩾ 0 is G -measurable. Then there is a
sequence (Yn)n⩾1 of simple G -measurable random variables with Yn ↑ Y as n → ∞, it follows that YnX ↑ Y X
and we conclude by cMCT and a.s. uniqueness of the conditional expectation. Finally, for X , Y not necessarily
non-negative, write XY = (X+−X−)(Y+−Y−) and use linearity of the integral.

Proposition 6.8 (Tower property of conditional expectations). Let (Ω,F ,P) be a probability space, X an inte-
grable random variable and F1, F2 σ -algebras with F1 ⊆ F2 ⊆ F . Then

E
[
E[X | F2]

∣∣F1

]
= E[X | F1] a.s.

In other words, writing Xi = E[X | Fi],
E[X2 | F1] = X1 a.s.

Proof. The left-hand side is certainly F1-measurable, so we need to check the defining relation for E[X | F1].
Let G ∈ F1, noting that G ∈ F2. Applying the defining relation twice∫

G
E
[
E[X | F2]

∣∣F1

]
dP=

∫
G
E[X | F2]dP=

∫
G

X dP.

This extends (i) of Proposition 6.5 which (in the light of (v)) is just the case F1 = { /0,Ω}.
Jensen’s inequality, Theorem 5.11, also extends to the conditional setting.

Proposition 6.9 (Conditional Jensen’s Inequality). Suppose that (Ω,F ,P) is a probability space and that X is
an integrable random variable taking values in an open interval I ⊆ R. Let f : I → R be convex and let G be a
sub σ -algebra of F . If E[| f (X)|]< ∞ then

E[ f (X) | G ]⩾ f (E[X | G ]) a.s.
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Proof. A convex function f on I is continuous and can be represented as the supremum over a countable family
of affine functions {ln : n ⩾ 1} on I. Indeed, we may simply take ln to be supporting tangents from Lemma 5.12
over a dense sets of mn in I. We have

ln (E[X | G ]) = E[ln(X) | G ]⩽ E[ f (X)|G ] a.s.

and since a countable union of null sets is null, we may assume that the above holds a.s. for all n ⩾ 1 simultane-
ously. The result follows by taking the supremum in n.

An important special case is f (x) = xp for p > 1. In particular, for p = 2

E[X2 | G ]⩾ E[X | G ]2 a.s.

A very simple special case of this is the following.

Example 6.10. Suppose that X is a non-trivial non-negative random variable: X ⩾ 0 and P(X > 0)> 0. Then

P[X > 0]⩾
E[X ]2

E[X2]
.

Proof. Let A = {X > 0} and note that E[X1Ac ] = 0 and E[X ] = E[X1A]. In particular

E[X | σ(A)] =
E[X ]

P(A)
1A.

Using Proposition 6.5 (i) and Proposition 6.9,

E[X2] = E
[
E[X2 | σ(A)]

]
⩾ E

[
E[X | σ(A)]2

]
=

E[X ]2

P(A)
.

Rearranging gives the result.

Taking expectations in the conditional Jensen for f (x) = |x|p, p ⩾ 1, tells us that for X ∈ L p,

∥E[X |G ]∥p ⩽ ∥X∥p,

or in functional analytic terms, X → E[X |G ] is a linear operator on Lp with norm ⩽ 1. It follows that it is also
continuous in the weak topology, i.e., when Lp is endowed with the σ(Lp,Lq) topology.

Deep Dive

The following provides a very important example of families of uniformly integrable random variables.
Indeed, such families will play a key role in the remainder of this course. In the important special case when
(Fn) is a filtration, (Xn) is a martingale, see Example 8.7.

Theorem 6.11. Let X be an integrable random variable on (Ω,F ,P) and {Fα : α ∈ I} a family of σ -algebras
with each Fα ⊆ F . Then the family {Xα : α ∈ I} with

Xα = E[X | Fα ] a.s.

is uniformly integrable.
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Proof. Since f (x) = |x| is convex, by the conditional form of Jensen’s inequality (Proposition 6.9),

|Xα |= |E[X | Fα ]|⩽ E
[
|X | | Fα

]
a.s. (24)

and in particular E[|Xα |]⩽ E[|X |]. Using (24) and monotonicity of the conditional expectation (property (vii) in
Proposition 6.5), we have

E[|Xα |1{|Xα |>K}]⩽ E
[
E[|X | | Fα ]1{|Xα |>K}

]
= E[|X |1{|Xα |>K}], (25)

where for the equality we moved the indicator function inside the conditional expectation by Lemma 6.7 and
then used property (i) in Proposition 6.5. Since {X} is UI, applying Proposition 5.22, for a given ε > 0 we can
find δ > 0 such that P(A)< δ implies E[|X |1A]< ε . Since

P[|Xα |⩾ K]⩽
E[|Xα |]

K
⩽

E[|X |]
K

,

setting K = 2E[|X |]/δ < ∞, it follows that E[|Xα |1{|Xα |>K}]< ε for every α .

Finally, we come back to the optimality property discussed in Exercises 4.17 and 6.1. This was our motivat-
ing property and it is reassuring to see it holds throughout!

Remark (Conditional Expectation via Mean Square Approximation). Let (Ω,F ,P) be a probability space and
X , Y square integrable random variables. Let G be a sub σ -algebra of F and suppose that Y is G -measurable.
Then

E[(Y −X)2] = E
[(

Y −E[X | G ]+E[X | G ]−X
)2
]

= E
[
(Y −E[X | G ])2]+E

[
(E[X | G ]−X)2]+2E[WZ]

where W = Y −E[X | G ] and Z = E[X | G ]−X . Now Y and E[X | G ] are G -measurable, so W is G measurable,
and using Proposition 6.5 (i) and Lemma 6.7 we have

E[WZ] = E
[
E[WZ | G ]

]
= E

[
WE[Z | G ]

]
.

But E
[
E[X | G ] | G

]
= E[X | G ], so E[Z | G ] = 0. Hence E[WZ] = 0, i.e., the cross-term vanishes. The second

term only depends on X and the first one is minimised by taking Y = E[X | G ]. Thus E[(X −Y )2] is min-
imised taking Y = E[X | G ] or, in other words, E[X | G ] is the best mean-square approximation of X among
all G -measurable random variables. We shall now use this property as our starting point to show existence of
conditional expectations!

6.4 Orthogonal projection in L 2

We need to develop an abstract equivalent of the well known projection in Rd . We work in L 2. It is (nearly) a
Hilbert space and has a natural geometry. From a probabilistic point of view we centre random variables around
their mean and consider variance and covariance.

Exercise 6.12. For X ,Y ∈ L 2 let

Cov(X ,Y ) = E[(X −E[X ])]E[(Y −E[Y ])] = E[XY ]−E[X ]E[Y ].

Show that Cov(·, ·) is bilinear on L 2 and that

Var(X +Y ) = Var(X)+Var(Y ), if Cov(X ,Y ) = 0.

When Cov(X ,Y ) = 0 we say that X and Y are uncorrelated. Clearly if X and Y are independent then they are
also uncorrelated. Show that the reverse does not need to hold (by means of a counterexample).
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Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

From a geometric point of view there is no need to centre things around their mean. We introduce a scalar
product

⟨X ,Y ⟩ := E[XY ], X ,Y ∈ L 2.

Note that this is well defined since by Hölder’s inequality, Theorem 5.14, XY ∈ L 1. We say that X and Y are
orthogonal if ⟨X ,Y ⟩= 0.

Lemma 6.13 (Pythagoras’ theorem). If X ,Y ∈ L 2 are orthogonal then

∥X +Y∥2
2 = ∥X∥2

2 +∥Y∥2
2.

Exercise 6.14. Show that ⟨·, ·⟩ is bilinear on L 2 and use it to establish the parallelogram law

∥X∥2
2 +∥Y∥2

2 =
1
2

(
∥X +Y∥2

2 +∥X −Y∥2
2
)
. (26)

Recall from above that completeness means that Cauchy sequences converge to elements in the space.

Theorem 6.15. Let K be a complete vector subspace of L 2. For any X ∈ L 2 the infimum

inf
Z∈K

∥X −Z∥2

is attained by some Y ∈ K and (X −Y ) is orthogonal to Z for all Z ∈ K .

Remark. The above result can be rephrased by saying that any X ∈L 2 can be written as X =Y +(X −Y ) with
Y ∈ K and (X −Y ) orthogonal to K . Clearly such a decomposition is a.s. unique: if we have two such Y1,Y2
then their difference would be both in K and orthogonal to K and hence E[(Y1 −Y2)

2] = 0 so that Y1 = Y2 a.s.
We call Y the (orthogonal) projection of X on K .

Example 6.16. Let K be the vector space of random variables which are a.s. constant. Exercise 4.17 shows
that the projection of X on K is given by E[X ].

Proof of Theorem 6.15. Let (Yn)n⩾1 be a sequence which attains the desired infimum, ∥X −Yn∥2 → ∆. We argue
that the sequence is Cauchy. Using (26), we have

∥X −Yr∥2
2 +∥X −Ys∥2

2 = 2∥X − 1
2(Yr +Ys)∥2

2 +2∥ 1
2(Yr −Ys)∥2

2.

Since K is a vector space, 1
2(Yr ±Ys) ∈ K and in particular ∥X − 1

2(Yr +Ys)∥2
2 ⩾ ∆2. Optimality of (Yn)n⩾1

readily implies that
sup
r,s⩾n

∥Yr −Ys∥2
n→∞−→ 0,

i.e., (Yn)n⩾1 is Cauchy. Since K is complete, there exists Y ∈ K with ∥Yn −Y∥2 → 0 as n → ∞. Minkowski’s
inequality, see Theorem 5.14, then gives ∥X −Y∥2 ⩽ ∥X −Yn∥2 + ∥Y −Yn∥2 and taking limits we see that
∥X −Y∥2 = ∆ as required.

Proof of existence in Theorem 6.3. Suppose first that X ∈ L 2(Ω,F ,P) and let K = L 2(Ω,G ,P). Clearly K
is a vector subspace of L 2(Ω,F ,P) and is complete by Theorem 5.16. Let Y be the orthogonal projection of X
on K from Theorem 6.15. We will now verify that Y is a version of the conditional expectation of X given G .
First Y is G -measurable since Y ∈ K . Second, for G ∈ G note that 1G ∈ K and since (X −Y ) is orthogonal to
K we have E[(X −Y )1G] = 0 which shows that (23) hold.

For X ∈ L 1, by linearity, it is enough to deal with X± separately. Suppose thus that X ⩾ 0 and let Xn =
X ∧ n which are bounded and in particular in L 2 so that Yn = E[Xn | G ] exists by the above. From the cMCT,
Proposition 6.6, we know that Y := limsupn→∞Yn is a version of E[X | G ].

6.5 Conditional Independence (Deep Dive)
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The notion of conditional independence appears very naturally when we discuss the Markov property. If you
recall from Part A Probability, a simply way of saying that (Xn)n⩾0 is a Markov chain was to say that the
future distribution of the chain only depends on path so far through the present state, or, that future and past
are conditionally independent given present.

Definition 6.17. Let F1,F2,F3 be three sub-σ -algebras of F . We say that F1 and F3 are conditionally
independent given F2 if

P(A1 ∩A3 | F2) = P(A1 | F2)P(A3 | F2), a.s.

for all A1 ∈ F1,A3 ∈ F3.

It is should be clear, by linearity of conditional expectation (see Proposition 6.5) and the conditional
monotone convergence theorem (see Proposition 6.6), that the above is equivalent to saying that

E[X1X3 | F2] = E[X1 | F2]E[X3 | F2] a.s.

for all non-negative random variables X1 and X3, respectively F1- and F3- measurable. We could also
replace non-negativity by integrability of X1X3,X1 and X3. It is also clear that independence can be recovered
by taking the trivial F2 = { /0,Ω}.

Theorem 6.18. Let F1,F2,F3 be three sub-σ -algebras of F , and set F12 = σ(F1,F2). Then F1 and F3
are conditionally independent given F2 if and only if

E[X3 | F12] = E[X3 | F2] a.s.

for all F3-measurable integrable random variable X3.

Proof. To make various equalities clearer, we will refer to different properties in Proposition 6.5 simply by
their list numbers (i),(ii) etc. We will refer to the tower property of conditional expectation, Proposition 6.8,
as (t) and to the property of “taking out what is known”, Lemma 6.7, as (k).
(⇒) We suppose F1 and F3 are conditionally independent given F2. By definition, E[X3 | F2] is F2-
measurable and hence also F12-measurable. To establish the desired equality, we thus need to verify that

E[E[X3 | F2]1A] = E[X31A]

for all A ∈F12. This holds for A = Ω by (i). It is then easy to see that the family of sets A for which the above
holds is a λ -system and thus it is enough, by Lemma 1.12, to verify it for the π-system of sets A = A1 ∩A2,
A1 ∈ F1,A1 ∈ F2. We have

E[E[X3 | F2]1A11A2 ]
(t)
= E[E[E[X3 | F2]1A11A2 | F2]]

(k)
= E[E[X3 | F2]1A2E[1A2 | F2]] (27)

= E[1A2E[X31A1 | F2]]
(k)
= E[E[1A2X31A1 | F2]]

(i)
= E[X31A11A2 ], (28)

as required, and where the third equality followed by the assumed conditional independence.
(⇐) Suppose now that

E[X3 | F12] = E[X3 | F2] a.s.

Deep Dive
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for all F3-measurable integrable random variable X3. Then

E[X1X3 |F2]
(t)
=E[E[X1X3 |F12] |F2]

(k)
= E[X1E[X3 |F12] |F2] =E[X1E[X3 |F2] |F2]

(k)
= E[X1 |F2]E[X3 |F2],

as required and where the third equality followed by assumption.
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7 Filtrations and stopping times

The language and tools we have developed so far lend themselves beautifully to describing random phenomena
occurring in time. These are known as stochastic processes and they offer a new level of fun! We will be able
to capture their dynamics, their relation to us learning new information, their local properties as well as their
long-run behaviour and so much more!

We start with notions relating to information and its evolution. This is captured via σ -algebras and suitable
classes of random variables. We work on a fixed probability space (Ω,F ,P). Note however, in analogy to §1,
the measure P does not play any role here, it’s all about sets, functions and their measurability. P will become
important in the next step: when we consider the nature of the random evolution in §8.

Definition 7.1 (Filtration). A filtration on the probability space (Ω,F ,P) is a sequence (Fn)n⩾0 of σ -algebras
Fn ⊆ F such that for all n, Fn ⊆ Fn+1.

We then call (Ω,F ,(Fn)n⩾0,P) a filtered probability space.

Usually n is interpreted as time and Fn represents our knowledge accumulated by time n. Note in particular
that we never forget anything. We usually start at time 0 (the beginning), but not always. We let

F∞ = σ

(⋃
n⩾0

Fn

)
(29)

be the σ -algebra generated by the filtration. This captures all the information we may acquire but it may be
smaller than the abstract F on our space.

Definition 7.2 (Adapted stochastic process). A stochastic process (Xn)n⩾0 is a sequence of random variables
defined on (Ω,F ,P). The process is integrable if each Xn is integrable.

We say that (Xn)n⩾0 is adapted to the filtration (Fn)n⩾0 if, for each n, Xn is Fn-measurable.

We may write X for (Xn)n⩾0. If Fn represents our knowledge at time n, then X being adapted to (Fn)n⩾0
simply means that Xn is observable at time n. Here is an obvious example of such a filtration.

Definition 7.3 (Natural filtration). The natural filtration (F X
n )n⩾0 associated with a stochastic process (Xn)n⩾0

on the probability space (Ω,F ,P) is defined by

F X
n = σ(X0,X1, . . . ,Xn), n ⩾ 0.

A stochastic process X is automatically adapted to the natural filtration it generates. It is also, by definition,
the smallest filtration to which X is adapted.

We talked above of the index n as the time. We can think of this as days, seconds or years. But it could
also be some other, non-uniform, clock ticking. Whatever the real world interpretation of this clock may be,
we shall refer to instances in this clock as deterministic times. It is maybe easiest to think of these as days and
Xn could be, e.g., the temperature recorded in Greenwich Observatory at noon on this day, or the Rolls-Royce
Holdings plc closing price at London Stock Exchange. However, in reality we use many other, random, times:
the next time I meet you, the first time you see a yeti, the moment the stock price drops by more than 30%
from its past maximum. It is clear these are well defined but not known a priori. They are not deterministic but
rather of the type ‘I know you when I see you’. We shall turn these now into a mathematically precise notion of
stopping times. Much of the power of martingale methods that we develop later comes from the fact that they
work equally well index by deterministic times as indexed by stopping times.

Definition 7.4 (Stopping time). Let (Ω,F ,P) be a probability space and (Fn)n⩾0 a filtration. A random variable
τ taking values in N∪{∞}= {0,1,2, . . . ,∞} is called a stopping time with respect to (Fn)n⩾0 if {τ = n} ∈ Fn

for all n.
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So a random time τ is a stopping time if at any point in time n, I can use the current information Fn to
decide if I should stop {τ = n} or not. Because (Fn)n⩾0 is filtration, this is equivalent to {τ ⩽ n} ∈ Fn – I stop
now or have stopped already – or yet to {τ > n} ∈ Fn, I decide to continue. You can think of a stopping time as
a valid strategy for playing a game, investing or gambling. The strategy can rely on the information accrued so
far but can not ‘peak into the future’. All of the examples listed before the definition have this property.

If the choice of the filtration is unambiguous we shall simply say that τ is a stopping time. Stopping times
are sometimes called optional times. Note that not all random times are stopping times. If n = 365 and τ is the
warmest day of the year, then I need F365 to decide when τ actually happens. Likewise, the day in November
2020 on which Rolls Royce is most expensive is not known in advance or when it happens. You need to wait till
the end of November to know when it actually occurred. It is not a stopping time.

We now discuss some easy properties of stopping times and first examples. All of this captures the intuition,
e.g., it is clear that if I have two valid strategies then I may decide to stop when the first one tells me to, or when
both tell me to, i.e., minimum and maximum of stopping times are also stopping times.

Proposition 7.5. Let (Ω,F ,(Fn)n⩾0,P) be a filtered probability space and τ,ρ stopping times. Then

(i) A deterministic time t, t(ω) = n for all ω ∈ Ω is a stopping time;

(ii) τ ∧ρ and τ ∨ρ are stopping times.

Proof. Exercise

The following proposition says that the first time an adapted process enters a region is a stopping time. It is
also called the first hitting time and provides a canonical example of a stopping time. Indeed, many times will
be of this type for some process X. We recall the usual convention that inf /0 = ∞.

Proposition 7.6. Let X = (Xn)n⩾0 be an adapted process on (Ω,F ,(Fn)n⩾0,P) and B ∈ B(R). Then

hB = inf{n ⩾ 0 : Xn ∈ B},

the first hitting time of B, is a stopping time.

Proof.

{hB ⩽ n}=
n⋃

k=0

X−1
k (B) ∈ Fn.

The next thing we would like to understand is what information do we have at the moment τ? This is a
random time, sometimes it may come early and sometimes very late. But intuitively, since we know it happens
when it happens, we should be able to specify the information we have amassed by that time. This is now made
precise.

Definition 7.7. Let τ be a stopping time on (Ω,F ,(Fn)n⩾0,P). The σ -algebra of information at time τ is
defined as

Fτ = {A ∈ F∞ : A∩{τ = n} ∈ Fn ∀n ⩾ 0}. (30)

So an event A is known by time τ if its part learned if τ = n is normally learned by time n. Note that in the
definition we could change {τ = n} to {τ ⩽ n}. The following shows that our new notion behaves as we would
want it to.

Proposition 7.8. Let τ,ρ be stopping times on (Ω,F ,(Fn)n⩾0,P). Then
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(i) Fτ defined in (30) is a σ -algebra;

(ii) if τ ⩽ ρ then Fτ ⊆ Fρ .

Proof. Exercise.

In particular, combining Propositions 7.5 and 7.8, we have that (Fτ∧n)n⩾0 is a filtration which is smaller
than the original one in the sense that Fτ∧n ⊆ Fn, n ⩾ 0.

If (Xn)n⩾0 represents our ongoing winning in a game and τ is our stopping strategy then the final win is Xτ .
If τ < ∞ then it is a well defined function

Ω ∋ ω −→ Xτ(ω) := Xτ(ω)(ω)

and is F -measurable since
X−1

τ (B) =
⋃
n⩾0

τ
−1({n})∩X−1

n (B) ∈ F .

In fact, Xτ is Fτ -measurable. We rephrase this introducing the notion of a stopped process.

Proposition 7.9 (Stopped process). Let X = (Xn)n⩾0 be an adapted process on (Ω,F ,(Fn)n⩾0,P) and τ a
stopping time. Then Xτ = (Xτ∧n)n⩾0 is a stochastic process, called the stopped process. Xτ is adapted to the
filtration (Fτ∧n)n⩾0 and hence also to the filtration (Fn)n⩾0.

Proof. It suffices to show that if ρ is a finite stopping time then Xρ is Fρ -measurable which follows from
Corollary 1.19 and (30) since

{Xρ ⩽ x}∩{ρ = n}= {Xn ⩽ x}∩{ρ = n} ∈ Fn, for all n ⩾ 0.
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8 Martingales in discrete time

Much of modern probability theory derived from two sources: the mathematics of measure and gambling. (The
latter perhaps explains why it took so long for probability theory to become a respectable part of mathematics.)
Although the term ‘martingale’ has many meanings outside mathematics – it is the name given to a strap attached
to a fencer’s épée, it’s a strut under the bowsprit of a sailing ship and it is part of a horse’s harness that prevents
the horse from throwing its head back – its introduction to mathematics, by Ville in 1939, was inspired by the
gambling strategy ‘the infallible martingale’. This is a strategy for making a sure profit on games such as roulette
in which one makes a sequence of bets. The strategy is to stake £1 (on, say, black or red at roulette) and keep
doubling the stake until that number wins. When it does, all previous losses and more are recouped and you
leave the table with a profit. It doesn’t matter how unfavourable the odds are, only that a winning play comes up
eventually. But the martingale is not infallible. Nailing down why in purely mathematical terms had to await the
development of martingales in the mathematical sense by J.L. Doob in the 1940’s. Doob originally called them
‘processes with property E’, but in his famous book on stochastic processes he reverted to the term ‘martingale’
and he later attributed much of the success of martingale theory to the name.

8.1 Definitions, examples and first properties

The mathematical term martingale doesn’t refer to the gambling strategy, but rather models the outcomes of a
series of fair games (although as we shall see this is only one application). Here is the key definition:

Definition 8.1 (Martingale, submartingales, supermartingale). Let (Ω,F ,(Fn)n⩾0,P) be a filtered probability
space. An integrable, Fn-adapted stochastic process (Xn)n⩾0 is called

(i) a martingale if for every n ⩾ 0, E[Xn+1 | Fn] = Xn a.s.,

(ii) a submartingale if for every n ⩾ 0, E[Xn+1 | Fn]⩾ Xn a.s.,

(iii) a supermartingale if for every n ⩾ 0, E[Xn+1 | Fn]⩽ Xn a.s.

If we think of Xn as our accumulated fortune when we make a sequence of bets, then a martingale represents
a fair game in the sense that the conditional expectation of Xn+1 −Xn, given our knowledge at the time when we
make the (n+1)st bet (that is Fn), is zero. A submartingale represents a favourable game and a supermartingale
an unfavourable game. One could say that these terms are the wrong way round, i.e., they represent the point of
view of ‘the other player’. However, they are very well established by now, so it’s too late to change them!

Here are some elementary properties.

Proposition 8.2. Let (Ω,F ,P) be a probability space.

(i) A stochastic process (Xn)n⩾0 on (Ω,F ,P) is a submartingale w.r.t. the filtration (Fn)n⩾0 if and only
if (−Xn)n⩾0 is a supermartingale. It is a martingale if and only if it is both a supermartingale and a
submartingale.

(ii) If (Xn)n⩾0 is a submartingale w.r.t. some filtration (Fn)n⩾0 and is adapted to another smaller filtration
(Gn)n⩾0, Gn ⊆ Fn, n ⩾ 0, then it is also a submartingale with respect to (Gn)n⩾0. In particular, X is a
submartingale with respect to its natural filtration (F X

n )n⩾0.

(iii) If (Xn)n⩾0 is a submartingale and n ⩾ m then

E[Xn | Fm]⩾ Xm a.s.
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Proof. (i) is obvious.
For (ii) note that integrability is not affected by a change of filtration. Thus, by the tower property,

E[Xn+1 | Gn] = E
[
E[Xn+1 | Fn] | Gn

]
⩾ E[Xn | Gn] = Xn a.s.

By definition, X is adapted to its own natural filtration and it is the smallest such filtration so F X
n ⊆ Fn and the

above applies.
(iii). We fix m and prove the result by induction on n. The base case n = m is obvious. For n > m we have

Fm ⊆ Fn and using the submartingale property

E[Xn+1 | Fm] = E
[
E[Xn+1 | Fn] | Fm

]
⩾ E[Xn | Fm] a.s.,

so E[Xn | Fm]⩾ Xm a.s. follows by induction.

Of course, part (iii) holds for a supermartingale with the inequalities reversed, and for a martingale with
equality instead. Also, taking expectations in (iii), we see that for a submartingale X we have

E[Xn]⩾ E[Xm]⩾ E[X0], n ⩾ m ⩾ 0,

with reversed inequalities for supermartingale and equalities for a martingale. Note however that the property
E[Xn+1 | Fn] = Xn is much stronger than just E[Xn+1] = E[Xn]!

Remark. The collection of all martingales on a fixed filtered probability space (Ω,F ,(Fn)n⩾0,P) is a vector
space: if (Xn)n⩾0 and (Yn)n⩾0 are martingales then so is (aXn +bYn)n⩾0 for any a,b ∈ R.

Warning. There is a reason why we usually have a filtration in mind. In contrast to the above remark, it is easy
(exercise!) to find examples where (Xn) is a martingale with respect to its natural filtration, (Yn) is a martingale
with respect to its natural filtration, but (Xn +Yn) is not a martingale with respect to its natural filtration. So it’s
not just to be fussy that we specify a filtration (Fn).

Example 8.3 (Sums of independent random variables). Suppose that Y1,Y2, . . . are independent integrable ran-
dom variables on the probability space (Ω,F ,P) and that E[Yn] = 0 for each n. Let X0 = 0 and

Xn =
n

∑
k=1

Yk, n ⩾ 1.

Then (Xn)n⩾0 is a martingale with respect to the natural filtration given by

Fn = σ(X0,X1, . . . ,Xn) = σ(Y1, . . . ,Yn).

Indeed, X is adapted and integrable and

E[Xn+1 | Fn] = E[Xn +Yn+1 | Fn] = E[Xn | Fn]+E[Yn+1 | Fn] = Xn +E[Yn+1] = Xn, a.s.

Note that we used basic properties of the conditional expectations, notably (iii) and (vi) in Proposition 6.5.
These are very useful when dealing with martingales!

In this sense martingales generalize the notion of sums of independent random variables with mean zero.
The independent random variables (Yi)i⩾1 of Example 8.3 can be replaced by martingale differences (which are
not necessarily independent).

Definition 8.4 (Martingale differences). Let (Ω,F ,P) be a probability space and (Fn)n⩾0 a filtration. A se-
quence (Yn)n⩾1 of integrable random variables, adapted to the filtration (Fn)n⩾1, is called a martingale difference
sequence w.r.t. (Fn) if

E[Yn+1 | Fn] = 0 a.s. for all n ⩾ 0.
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Jan Obłój MT 2022, B8.1: Probability, Measure and Martingales

It is easy to check that (Xn)n⩾0 is a martingale w.r.t. (Fn)n⩾0 if and only if X0 is integrable and F0-
measurable, and (Xn −Xn−1)n⩾1 is a martingale difference sequence w.r.t. (Fn). Here are two examples of
martingale which are not sums of independent random variables.

Example 8.5. Let (Ω,F ,P) be a probability space and let (Zn)n⩾1 be a sequence of independent integrable
random variables with E[Zn] = 1 for all n. Define

Xn =
n

∏
i=1

Zi for n ⩾ 0,

so X0 = 1. Then (Xn)n⩾0 is a martingale w.r.t. its natural filtration. (Exercise).

Example 8.6. Suppose that Y1,Y2, . . . are i.i.d. random variables on (Ω,F ,P) with E[exp(Y1)] = c < ∞. Then

Xn = exp(Y1 + . . .+Yn)c−n

is a martingale with respect to the natural filtration (exercise!).

Example 8.7. Let (Ω,F ,(Fn)n⩾0,P) be a filtered probability space and X an integrable random variable. Then

Xn = E[X | Fn], n ⩾ 0,

is an (Fn)n⩾0-martingale. Indeed, Xn is certainly Fn-measurable and integrable and, by the tower property of
conditional expectation,

E[Xn+1 | Fn] = E[E[X | Fn+1] | Fn] = E[X | Fn] = Xn a.s.

We note also that X is automatically UI by Theorem 6.11 and if Xn → X in probability then it already converges
in L 1 by Theorem 5.24. We shall later see that this is always the case and this convergence characterises such
closed martingales.

Example 8.8. An integrable adapted process X which is increasing, Xn ⩾ Xn−1 a.s., n ⩾ 1, is a submartingale.

The above gave a trivial example of a submartingale. We now turn to more interesting examples and ways
of obtaining (sub/super)martingales from other martingales. The first way is trivial: suppose that (Xn)n⩾0 is a
(sub)martingale with respect to (Fn)n⩾0, and that Y is F0-measurable. Then (Xn−Y )n⩾0 is also a (sub)martingale
w.r.t. (Fn). In particular, if X0 is F0-measurable, then (Xn)n⩾0 is a martingale if and only if (Xn −X0)n⩾0 is a
martingale. This is often useful, as in many contexts it allows us to assume without loss of generality that X0 = 0.

Proposition 8.9. Let (Ω,F ,P) be a probability space. Suppose that (Xn)n⩾0 is a martingale with respect to the
filtration (Fn)n⩾0. Let f be a convex function on R. If f (Xn) is an integrable random variable for each n ⩾ 0,
then ( f (Xn))n⩾0 is a submartingale w.r.t (Fn)n⩾0.

Proof. Since Xn is Fn-measurable, so is f (Xn). By Jensen’s inequality for conditional expectations and the
martingale property of (Xn),

E[ f (Xn+1) | Fn]⩾ f
(
E[Xn+1 | Fn]

)
= f (Xn) a.s.

Corollary 8.10. If (Xn)n⩾0 is a martingale w.r.t. (Fn)n⩾0 and K ∈ R then (subject to integrability) (|Xn|)n⩾0,
(X2

n )n⩾0, (eXn)n⩾0, (e−Xn)n⩾0, (max(Xn,K))n⩾0 are all submartingales w.r.t. (Fn)n⩾0.
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Definition 8.11 (Predictable process). Let (Ω,F ,P) be a probability space and (Fn)n⩾0 a filtration. A sequence
(Vn)n⩾1 of random variables is predictable with respect to (Fn)n⩾0 if Vn is Fn−1-measurable for all n ⩾ 1.

In other words, the value of Vn is known ‘one step in advance.’

Theorem 8.12 (Discrete stochastic integral or martingale transform). Let (Ω,F ,(Fn)n⩾0,P) be a filtered prob-
ability space and (Yn)n⩾0 a martingale. Suppose that (Vn)n⩾1 is predictable w.r.t. (Fn), and let X0 = 0 and

Xn =
n

∑
k=1

Vk(Yk −Yk−1), n ⩾ 1.

If each Xn is integrable then (Xn)n⩾0 is a martingale w.r.t. (Fn).

An important special case when all Xn are automatically integrable is when all Vn are bounded. The sequence
(Xn)n⩾0 is called a martingale transform and is often denoted

((V ◦Y )n)n⩾0.

It is a discrete version of the stochastic integral. Here we started with X0 = 0; as far as obtaining a martingale
is concerned, it makes no difference if we add some F0-measurable integrable random variable Z to all Xn;
sometimes we take Z = Y0, so Xn = Y0 +∑

n
k=1Vk(Yk −Yk−1).

Proof. For k ⩽ n, all Yk and Vk are Fn-measurable, so Xn is Fn-measurable. Also,

E[Xn+1 −Xn | Fn]
a.s.
= E[Vn+1(Yn+1 −Yn) | Fn]
a.s.
= Vn+1E[Yn+1 −Yn | Fn] (taking out what is known)

= 0 a.s.

Typical examples of predictable sequences appear in gambling or finance contexts where they might con-
stitute strategies for future action. The strategy is then based on the current state of affairs. If, for example,
(k−1) rounds of some gambling game have just been completed, then the strategy for the kth round is to bet Vk;
a quantity that can only depend on what is known by time k−1. The change in fortune in the kth round is then
Vk(Yk −Yk−1). More broadly, we will use the above result to retain the martingale property under stopping. This
will be fundamental in what follows, see Theorem 8.16.

Proposition 8.13. Let (Yn)n⩾0 be a supermartingale on a filtered probability space (Ω,F ,(Fn)n⩾0,P), (Vn)n⩾1
a non-negative predictable process and let X0 = 0 and

Xn =
n

∑
k=1

Vk(Yk −Yk−1), n ⩾ 1.

If Xn is integrable, n ⩾ 0, then X is a supermartingale.

Proof. Exercise: imitate the proof of Theorem 8.12.

There are more examples on the problem sheet. Here is a last one.
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Exercise 8.14. Let (Yi)i⩾1 be independent random variables such that E[Yi] = mi, Var(Yi) = σ2
i < ∞. Let

s2
n =

n

∑
i=1

σ
2
i = Var

(
n

∑
i=1

Yi

)
.

Take (Fn)n⩾0 to be the natural filtration generated by (Yn)n⩾1. By Example 8.3,

Xn =
n

∑
i=1

(Yi −mi)

is a martingale and so by Proposition 8.9, since f (x) = x2 is a convex function, (X2
n )n⩾0 is a submartingale. But

we can recover a martingale from it by compensation. Show that

Mn =

(
n

∑
i=1

(Yi −mi)

)2

− s2
n, n ⩾ 0

is a martingale with respect to (Fn)n⩾0.

This process of ‘compensation’, whereby we correct a process by something predictable (in this example it
was deterministic) in order to obtain a martingale reflects a general result due to Doob.

Theorem 8.15 (Doob’s Decomposition Theorem). Let (Ω,F ,(Fn)n⩾0,P) be a filtered probability space and
X = (Xn)n⩾0 an integrable adapted process. Then

(i) (Xn)n⩾0 has a Doob decomposition
Xn = X0 +Mn +An (31)

where (Mn)n⩾0 is a martingale w.r.t. (Fn)n⩾0, (An)n⩾1 is predictable w.r.t. (Fn), and M0 = 0 = A0.

(ii) Doob decompositions are essentially unique: if Xn = X0 + M̃n + Ãn is another Doob decomposition of
(Xn)n⩾0 then

P
(

Mn = M̃n, An = Ãn for all n ⩾ 0
)
= 1.

(iii) (Xn)n⩾0 is a submartingale if and only if (An)n⩾0 in (31) is an increasing process (i.e., An+1 ⩾ An a.s. for
all n) and a supermartingale if and only if (An)n⩾0 is a decreasing process.

Proof. (i). Let

An =
n

∑
k=1

E[Xk −Xk−1 | Fk−1] =
n

∑
k=1

(
E[Xk | Fk−1]−Xk−1

)
and

Mn =
n

∑
k=1

(
Xk −E[Xk | Fk−1]

)
.

Then Mn+An = ∑
n
k=1(Xk−Xk−1) = Xn−X0, so (31) holds. The kth summand in An is Fk−1-measurable, so An is

Fn−1-measurable, i.e., A is a predictable process. Also, as X is integrable so are (Mn)n⩾0 and (An)n⩾0. Finally,
since

E[Mn+1 −Mn | Fn] = E
[
Xn+1 −E[Xn+1 | Fn]

∣∣Fn
]
= 0, a.s.

the process (Mn)n⩾0 is a martingale.
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(ii) For uniqueness, note that in any Doob decomposition, by predictability we have

An+1 −An = E[An+1 −An | Fn]

= E[(Xn+1 −Xn)− (Mn+1 −Mn) | Fn]

= E[Xn+1 −Xn | Fn] a.s.,

which combined with A0 = 0 proves uniqueness of (An). Since Mn = Xn −X0 −An, uniqueness of (Mn) follows.
(iii) Just note that

E[Xn+1 | Fn]−Xn = E[Xn+1 −Xn | Fn] = An+1 −An a.s.

as shown above.

Remark. The above proof follows a clear logic and is, all in all, a relatively straightforward exercise. In contrast,
the proof of the analogue result for martingales indexed with a continuous time parameter is a delicate affair!

Remark (The angle bracket process ⟨M⟩). Let M be a martingale on (Ω,F ,(Fn)n⩾0,P) with E[M2
n ] < ∞ for

each n. We then say that M is an L2-martingale. Naturally, by Proposition 8.9, (M2
n)n⩾0 is a submartingale. Thus

by Theorem 8.15 it has a Doob decomposition (which is essentially unique),

M2
n = M2

0 +Nn +An

where (Nn)n⩾0 is a martingale and (An)n⩾0 is an increasing predictable process. The process (An)n⩾0 is often
denoted by (⟨M⟩n)n⩾0.

Note that E[M2
n ] = E[M2

0 ]+E[An] and (since E[Mn+1 | Fn] = Mn) that

An+1 −An = E[M2
n+1 −M2

n | Fn] = E[(Mn+1 −Mn)
2 | Fn].

That is, the increments of An are the conditional variances of our martingale difference sequence. It turns out
that (⟨M⟩n)n⩾0 is an extremely powerful tool with which to study (Mn)n⩾0. It is beyond our scope here, but
its continuous time equivalent, known as the quadratic variation process, will be used extensively in Part B
Continuous Martingales and Stochastic Calculus course.

8.2 Stopped martingales and Stopping Theorems

Much of the power of martingale methods, as we shall see, comes from the fact that (under suitable boundedness
assumptions) the martingale property is preserved if we ‘stop’ the process at stopping times. In fact, the ‘natural’
deterministic times are something of a red herring. It is far better and more useful to think of martingales as
living on random time scales. Random, but ones which do not anticipate the future, so ones made up of stopping
times.

The following is a simple corollary of Theorem 8.12. It is however so important that it is stated as a theorem!

Theorem 8.16 (Stopped Martingale). Let X be a martingale on a filtered probability space (Ω,F ,(Fn)n⩾0,P)
and τ be a finite stopping time. Then Xτ = (Xτ∧n : n ⩾ 0) is a martingale with respect to (Fn)n⩾0 and with
respect to (Fτ∧n)n⩾0.

Proof. Note that {τ ⩾ k}= {τ > k−1} ∈ Fk−1 so that Vk = 1k⩽τ , k ⩾ 1, is predictable. We have

X0 +
n

∑
k=1

Vk(Xk −Xk−1) = X0 +
τ∧n

∑
k=1

(Xk −Xk−1) = Xτ∧n

and the result follows by Theorem 8.12 and Proposition 8.2.
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More generally, we have the following fundamental result.

Theorem 8.17 (Doob’s Optional Sampling Theorem). Let X be a martingale on a filtered probability space
(Ω,F ,(Fn)n⩾0,P) and τ,ρ be two bounded stopping times, τ ⩽ ρ . Then

E[Xρ | Fτ ] = Xτ a.s. (32)

and in particular E[Xρ ] = E[Xτ ] = E[X0].
Similarly, if X is a sub- (resp. super-) martingale then E[Xρ | Fτ ]⩾ Xτ (resp. E[Xρ | Fτ ]⩽ Xτ ) a.s.

Proof. Consider first the case when ρ = n is a constant. Then (32) follows by simply checking the defining
relationship for the conditional expectation since for any A ∈ Fτ we have

E[Xn1A] =
n

∑
k=0

E[Xn1A1τ=k] =
n

∑
k=0

E[Xk1A1τ=k] =
n

∑
k=0

E[Xτ1A1τ=k] = E[Xτ1A],

where the first equality follows since τ ⩽ n and the second by definition of Fτ in (30) and since X is a martingale.
Consider now the general case. The process Yn = Xρ∧n −Xτ∧n, n ⩾ 0, is a martingale as a difference of two
martingales, by Theorem 8.16. It follows that:

0 = Yτ∧n = E[Yn | Fτ∧n] = E[Xρ∧n | Fτ∧n]−Xτ∧n a.s.

where the first equality is by definition, the second follows from the case of a deterministic ρ shown above and
the third since Xτ∧n is Fτ∧n-measurable by Proposition 7.9. It suffices to take n large enough so that n ⩾ ρ ⩾ τ .

The proof for sub-/super- martingales is the same but uses Proposition 8.13 instead of Theorem 8.12.

We note that the assumption that τ,ρ are bounded is important as the following simple example demon-
strates.

Example 8.18. Let (Yk)k⩾1 be i.i.d. random variables with P(Yk = 1) = P(Yk = −1) = 1
2 . Set Mn = ∑

n
k=1Yk.

Thus Mn is the position of a simple random walk started from the origin after n steps. In particular, (Mn)n⩾0 is a
martingale and E[Mn] = 0 for all n.

Now let τ = h{1} = min{n : Mn = 1}, a stopping time by Proposition 7.6. It is easy to show, e.g., in analogy
to Exercise 3.21, that τ < ∞ a.s. and hence Mτ = 1 a.s. But then E[Mτ ] = 1 ̸= 0 = E[M0].

The problem in the above example is is that τ is too large. It is finite a.s. but E[τ] = ∞. Doob’s stopping
theorem may be extended but requires some further assumptions. Here we give most often invoked extensions.

Corollary 8.19 (Variants of Doob’s Optional Stopping Theorem). Let (Mn)n⩾0 be a martingale on a filtered
probability space (Ω,F ,(Fn)n⩾0,P) and τ an a.s. finite stopping time. Then

E[Mτ1τ<∞] = E[M0]

if either of the following two conditions holds:

(i) {Mn : n ⩾ 0} is uniformly integrable;

(ii) E[τ]< ∞ and there exists L ∈ R such that

E
[
|Mn+1 −Mn|

∣∣Fn
]
⩽ L, a.s. for all n.
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Proof. (i) Let K > 0. The process (|Mn| −K)+, n ⩾ 0 is a submartingale by Proposition 8.9 and hence, by
Theorem 8.17, we have E[(|Mτ∧n|−K)+]⩽ E[(|Mn|−K)+]. It follows, by Remark 5.21, that the family (Mτ∧n :
n ⩾ 0) is Uniformly Integrable. We have Mτ∧n → Mτ1τ<∞ a.s., since τ is a.s. finite, and hence also in L 1 by
Theorem 5.24. In particular E[Mτ∧n]→ E[Mτ1τ<∞]. We conclude since, by Theorem 8.17, E[Mτ∧n] = E[M0].

(ii) Replacing Mn by Mn −M0, we assume without loss of generality that M0 = 0. Then

|Mn∧τ |= |Mn∧τ −M0∧τ | ⩽
n

∑
i=1

|Mi∧τ −M(i−1)∧τ |⩽
∞

∑
i=1

|Mi∧τ −M(i−1)∧τ |=
∞

∑
i=1

1τ⩾i|Mi −Mi−1|. (33)

Now

E

[
∞

∑
i=1

1τ⩾i|Mi −Mi−1|

]
=

∞

∑
i=1

E
[
1τ⩾i|Mi −Mi−1|

]
(by monotone convergence)

=
∞

∑
i=1

E
[
E
[
1τ⩾i|Mi −Mi−1|

∣∣Fi−1
] ]

(tower property)

=
∞

∑
i=1

E
[

1τ⩾iE
[
|Mi −Mi−1|

∣∣Fi−1
] ]

(since {τ ⩾ i} ∈ Fi−1)

⩽ L
∞

∑
i=1

E[1τ⩾i] = L
∞

∑
i=1

P[τ ⩾ i] = LE[τ]< ∞.

The result now follows, as above, by DCT with the function on the right hand side of (33) as the dominating
function.

We stated the Optional Stopping Theorem for martingales, but similar results are available for sub/super-
martingales – just replace the equality in (32) by the appropriate inequality.

Note that if |Mi −Mi−1|⩽ L always holds, and E[τ]< ∞, then the second case applies. This is an important
case of the Optional Stopping Theorem for applications. We give one such example.

Example 8.20. Suppose that (Ω,F ,P) is a probability space and (Xi)i⩾1 are i.i.d. random variables with P[Xi =
j] = p j > 0 for each j = 0,1,2, . . .. What is the expected number of random variables that must be observed
before the subsequence 0,1,2,0,1 occurs?

Solution. Consider a casino offering fair bets, where the expected gain from each bet is zero. In particular, a
gambler betting £a on the outcome of the next random variable being a j will lose with probability 1− p j and
will win £a/p j with probability p j. (Her expected pay-out is 0(1− p j)+ p ja/p j = a, the same as the stake.)

Imagine a sequence of gamblers betting at the casino, each with an initial fortune of £1.
Gambler i bets £1 that Xi = 0; she is out if she loses and, if she wins, she bets her entire fortune of £1/p0 that

Xi+1 = 1; if she wins again she bets her fortune of £1/(p0 p1) that Xi+2 = 2; if she wins that bet, then she bets
£1/(p0 p1 p2) that Xi+3 = 0; if she wins that bet then she bets her total fortune of £1/(p2

0 p1 p2) that Xi+4 = 1; if
she wins she quits with a fortune of £1/(p2

0 p2
1 p2).

Let Mn be the casino’s winnings after n games (so when Xn has just been revealed). Then (Mn)n⩾0 is a
mean zero martingale w.r.t. the filtration (Fn)n⩾0 where Fn = σ(X1, . . . ,Xn). Write τ for the number of random
variables to be revealed before we see the required pattern. Let ε = p2

0 p2
1 p2 and note that P(τ > 5)⩽ (1−ε) and

more generally, P(τ > 5n)⩽ (1− ε)n so that E[τ] = ∑n⩾0P(τ ⩾ n)< ∞. Since at most 5 people bet at any one
time, |Mn+1 −Mn| is bounded by a constant (say L = 5/(p2

0 p2
1 p2)), so condition (ii) of Theorem 8.19 is satisfied

(with this L).
When Xτ is revealed each of the gamblers 1,2, . . . ,τ have paid £1 to enter.

• Gambler τ −4 has won £1/(p2
0 p2

1 p2),
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• Gamblers τ −3 and τ −2 have both lost and are out,

• Gambler τ −1 has won £1/(p0 p1),

• Gambler τ has lost and is out.

Of course, gamblers τ +1,τ +2, . . . have not bet at all yet and all gamblers prior to τ −4 have lost and are out.

Mτ = τ − 1
p2

0 p2
1 p2

− 1
p0 p1

.

By Theorem 8.19 E[Mτ ] = 0, so taking expectations,

E[τ] =
1

p2
0 p2

1 p2
+

1
p0 p1

.

The same trick can be used to calculate the expected time until any specified (finite) pattern occurs in i.i.d.
data.

8.3 Maximal Inequalities

Martingales have to evolve, locally, in a balanced way – in the sense that the conditional expectation of the
increment, at any point in time, is zero. This allows us to control the maximum of the process, along its
trajectory, using its final value.

Theorem 8.21 (Doob’s maximal inequality). Let (Xn)n⩾0 be a submartingale on (Ω,F ,(Fn)n⩾0,P). Then, for
λ > 0,

Y λ
n = (Xn −λ )1{maxk⩽n Xk⩾λ}, n ⩾ 0,

is a submartingale. In particular,

λP
[
max
k⩽n

Xk ⩾ λ
]
⩽ E[Xn1{maxk⩽n Xk⩾λ}]⩽ E[|Xn|]. (34)

Proof. Let τ = h[λ ,∞) = inf{n ⩾ 0 : Xn ⩾ λ} and set Vn = 1{τ⩽n−1}, n ⩾ 1. Let Xn := maxk⩽n Xk and note that
Vn = 1{Xn−1⩾λ}. Applying Proposition 8.13 to −X and V we deduce that (V ◦X)0 = 0,

(V ◦X)n =
n

∑
k=1

Vk(Xk −Xk−1) = Xn∨τ −Xτ = (Xn −Xτ)1{τ⩽n}, n ⩾ 1,

is a submartingale. Further, Xτ ⩾ λ by definition so that (Xτ −λ )1{τ⩽n}, n ⩾ 0, is an adapted integrable and
non-decreasing process and hence a submartingale. This shows that Y λ is a sum of two submartingales and
hence also a submartingale. In particular

0 ⩽ E[(X0 −λ )1{X0⩾λ}] = E[Y λ
0 ]⩽ E[Y λ

n ] = E[(Xn −λ )1{τ⩽n}] = E[Xn1{Xn⩾λ}]−λP(Xn ⩾ λ ).

Rearranging we obtain the first required inequality and the second one is trivial.

Corollary 8.22. Let p ⩾ 1 and (Mn)n⩾0 be a martingale on a filtered probability space (Ω,F ,(Fn)n⩾0,P) with
Mn ∈ L p for all n ⩾ 0. Then, for any n ⩾ 0 and λ > 0

P
[

max
n⩽N

|Mn|⩾ λ

]
⩽

E[|MN |p]
λ p .
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Proof. This follows by applying Theorem 8.21 to (|Mn|p)n⩾0 which is a submartingale by Proposition 8.9.

Theorem 8.23 (Doob’s Lp inequality). Let p> 1 and (Xn)n⩾0 be a non-negative submartingale on (Ω,F ,(Fn)n⩾0,P)
with Xn ∈ L p for all n ⩾ 0. Then maxk⩽n Xk ∈ L p and

E[X p
n ]⩽ E

[
max
k⩽n

X p
k

]
⩽

(
p

p−1

)p

E[X p
n ].

Proof. The result follows instantly from Theorem 8.21 and Lemma 5.15.

Remark. Note that maxk⩽n X p
k = (maxk⩽n Xk)

p. The above is most often applied with Xn = |Mn| for a martingale
M. Note that p/(p− 1) = q with 1/p+ 1/q = 1. The above can be rephrased saying that the L p norm of the
running maximum ∥maxk⩽n Xk∥p is comparable with the L p norm of the terminal value ∥Xn∥p. The assumption
p > 1 is important. The result is no longer true for p = 1.
Note that the stopped process Xn is also a positive submartingale so the values of X after n are irrelevant, it is
enough to have the submartingale defined for 1 ⩽ k ⩽ n.

We finish the section with a variant of the maximal inequality for supermartingales.

Proposition 8.24. Let (Xn)n⩾0 be a supermartingale on a filtered probability space (Ω,F ,(Fn)n⩾0,P). Then

λP(max
k⩽n

|Xk|⩾ λ )⩽ E[X0]+2E[X−
n ], ∀λ ,n ⩾ 0. (35)

Proof. Applying Doob’s optional sampling theorem to X and the stopping time τ = min{k : Xk ⩾ λ}∧ n, we
obtain

E[X0]⩾ E[Xτ ]⩾ λP(max
k⩽n

Xk ⩾ λ )+E[Xn1{maxk⩽n Xk<λ}].

This leads to
λP(max

k⩽n
Xk ⩾ λ )⩽ E[X0]+E[X−

n ].

On the other hand, the process (X−
n )n⩾0 is a non-negative submartingale so we may apply Theorem 8.21 directly

to it giving
λP(max

k⩽n
X−

k ⩾ λ )⩽ E[X−
n ].

Combining, we obtain the desired result.

8.4 The Upcrossing Lemma and Martingale Convergence

We turn now to studying the limiting behaviour of sub-/super- martingales. We start by bounding the number of
times these processes can cross an interval of values [a,b]. This will allow us to control their oscillations and, in
consequence, their limits.

Let (Xn)n⩾0 be an integrable random process, for example modelling the value of an asset. Suppose that
(Vn)n⩾1 is a predictable process representing an investment strategy based on that asset. The result of Theo-
rem 8.13 tells us that if (Xn)n⩾0 is a supermartingale and our strategy (Vn)n⩾1 only allows us to hold non-negative
amounts of the asset, then our fortune is also a supermartingale. Consider the following strategy:

1. You do not invest until the current value Xn goes below some level a (representing what you consider to
be a bottom price), in which case you buy a share.

2. You keep your share until Xn gets above some level b (a value you consider to be overpriced) in which
case you sell your share and you return to the first step.

Page 80
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Three remarks:

1. However clever this strategy may seem, if (Xn)n⩾0 is a supermartingale and you stop playing at some
bounded stopping time, then in expectation your losses will at least equal your winnings. You can not
outsmart the game.

2. Your ‘winnings’, i.e., profit from shares actually sold, are at least (b− a) times the number of times the
process went up from a to b. (They can be greater, since the price can ‘jump over’ a and b.)

3. If you stop, owning a share, at a time n when the value is below the price at which you bought, then
(selling out) you lose an amount which is at most (Xn −a)−: you bought at or below a.

Combining these remarks, if (Xn)n⩾0 is a supermartingale we should be able to bound (from above) the expected
number of times the stock price rises from a to b by E[(Xn − a)−]/(b− a). This is precisely what Doob’s
upcrossing inequality will tell us. To make it precise, we need some notation.

Definition 8.25 (Upcrossings). If x = (xn)n⩾0 is a sequence of real numbers and a < b are fixed, define two
integer-valued sequences (ρk)k⩾1 = (ρk([a,b],x))k⩾1 and (τk)k⩾0 = (τk([a,b],x))k⩾0 recursively as follows:

Let τ0 = 0 and for k ⩾ 1 let
ρk = inf{n ⩾ τk−1 : xn ⩽ a},

τk = inf{n ⩾ ρk : xn ⩾ b},

with the usual convention that inf /0 = ∞.
Let

Un([a,b],x) = max{k ⩾ 0 : τk ⩽ n}

be the number of upcrossings of [a,b] by x by time n and let

U([a,b],x) = sup
n

Un([a,b],x) = sup{k ⩾ 0 : τk < ∞}

be the total number of upcrossings of [a,b] by x.

Lemma 8.26 (Doob’s Upcrossing Lemma). Let X = (Xn)n⩾0 be a supermartingale on a filtered probability
space (Ω,F ,(Fn)n⩾0,P) and a < b some fixed real numbers. Then, for every n ⩾ 0,

E[Un([a,b],X)]⩽
E[(Xn −a)−]

b−a
.

Proof. ρk,τk are simply first hitting times after previous hitting times. It is an easy induction to check that for
k ⩾ 1, the random variables ρk = ρk([a,b],X) and τk = τk([a,b],X) are stopping times. Now set

Vn = ∑
k⩾1

1{ρk<n⩽τk}.

Notice that Vn only takes the values 0 and 1. It is 1 at time n if X is in the process of making an upcrossing from
a to b or if ρk < n and τk = ∞. It encodes our investment strategy above: we hold one unit of stock during an
upcrossing or if τk is infinite for some k and n > ρk.
Notice that

{ρk < n ⩽ τk}= {ρk ⩽ n−1}∩{τk ⩽ n−1}c ∈ Fn−1.
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ρ1 τ1 ρ2 τ2

a

b

V = 0 V = 1 V = 0 V = 1

Figure 2: Illustration of the sequence of stopping times introduced in Definition 8.25.

So (Vn)n⩾1 is non-negative and predictable so, by Proposition 8.13, (V ◦X)n, n ⩾ 0 is a supermartingale. We
write Un =Un([a,b],X) and compute directly:

(V ◦X)n =
n

∑
k=1

Vk(Xk −Xk−1)

=
Un

∑
i=1

(Xτi −Xρi)+1{ρUn+1<n}(Xn −XρUn+1) (36)

⩾ (b−a)Un − (Xn −a)−. (37)

For the last step, note that if indicator function in (36) is non-zero, then ρUn+1 < ∞, so XρUn+1 ⩽ a. Hence
Xn −XρUn+1 ⩾ Xn −a ⩾−(Xn −a)−. Taking expectations in (37),

0 = E[(V ◦X)0]⩾ E[(V ◦X)n]⩾ (b−a)E[Un]−E[(Xn −a)−]

and rearranging gives the result.

One way to show that a sequence of real numbers converges as n → ∞ is to show that it doesn’t oscillate too
wildly; this can be expressed in terms of upcrossings as follows.

Lemma 8.27. A real sequence x = (xn) converges to a limit in [−∞,∞] if and only if U([a,b],x) < ∞ for all
a,b ∈Q with a < b.

Proof. From the definitions/basic analysis, x converges if and only if liminfxn = limsupxn.
(i) If U([a,b],x) = ∞, then

liminf
n→∞

xn ⩽ a < b ⩽ limsup
n→∞

xn

and so x does not converge.
(ii) If x does not converge, then we can choose rationals a and b with

liminf
n→∞

xn < a < b < limsup
n→∞

xn,

and then U([a,b],x) = ∞.

A supermartingale X is just a random sequence; by Doob’s Upcrossing Lemma we can bound the expected
number of upcrossings of [a,b] that it makes for any a < b and so our hope is that we can combine this with
Lemma 8.27 to show that the random sequence (Xn) converges. This is our next result.
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Definition 8.28. Let (Xn) be a sequence of random variables on a probability space (Ω,F ,P), and let p ⩾ 1.
We say that (Xn) is bounded in Lp if

sup
n
E[|Xn|p]< ∞.

Note that the condition says exactly that the set {Xn : n ⩾ 0} of random variables is a bounded subset of
Lp(Ω,F ,P): there is some K such that ||Xn||p ⩽ K for all n.

Theorem 8.29 (Doob’s Forward Convergence Theorem). Let X be a sub- or super- martingale on a filtered
probability space (Ω,F ,(Fn)n⩾0,P). If X is bounded in L1 then (Xn)n⩾0 converges a.s to a limit X∞, and X∞ is
integrable.

Proof. Considering (−Xn) if necessary, we may suppose without loss of generality that X = (Xn) is a super-
martingale.

Fix rationals a < b. Then by Doob’s Upcrossing Lemma

E[Un([a,b],X)]⩽
E[(Xn −a)−]

b−a
⩽

E[|Xn|]+ |a|
b−a

.

Since Un(· · ·) ↑U(· · ·) as n → ∞, by the Monotone Convergence Theorem

E[U([a,b],X)] = lim
n→∞

E[Un([a,b],X)]⩽
supnE[|Xn|]+ |a|

b−a
< ∞.

Hence P[U([a,b],X) = ∞] = 0. Since Q is countable, it follows that

P
[
∃a,b ∈Q, a < b, s.t. U([a,b],X) = ∞

]
= 0.

So by Lemma 8.27 (Xn)n⩾0 converges a.s. to some X∞. (Specifically, we may take X∞ = liminfXn, which is
always defined, and measurable.) It remains to check that X∞ is integrable. Since |Xn| → |X∞| a.s., Fatou’s
Lemma gives

E[|X∞|] = E
[
liminf

n→∞
|Xn|
]
⩽ liminf

n→∞
E[|Xn|]⩽ sup

n
E[|Xn|],

which is finite by assumption.

Remark. Warning: the above does not say that Xn converge to X in L 1. In particular, it does not say that
E[Xn]→ E[X ]. This, in general, is false, as Example 8.31 below demonstrates.

Corollary 8.30. If (Xn)n⩾0 is a non-negative supermartingale, then X∞ = limn→∞ Xn exists a.s.

Proof. Since E[|Xn|] = E[Xn]⩽ E[X0] we may apply Theorem 8.29.

Of course, the result holds for any supermartingale bounded below by a constant, and for any submartingale
bounded above by a constant. The classic example of a non-negative supermartingale is your bankroll if you
bet in a (realistic) casino, where all bets are at unfavourable (or, unrealistically, neutral) odds, and you can’t bet
more than you have. Here is another example.

Example 8.31 (Galton–Watson branching process). Recall Definition 0.1: let X be a non-negative integer valued
random variable with 0 < m = E[X ] < ∞. Let (Xn,r)n,r⩾1 be an array of i.i.d. random variables with the same
distribution as X . Set Z0 = 1 and

Zn+1 =
Zn

∑
r=1

Xn+1,r =
∞

∑
r=1

Xn+1,r1{Zn⩾r}
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so Zn+1 is the number of individuals in generation (n+ 1) of our branching process. Finally, let Mn = Zn/mn,
and let Fn = σ({Xi,r : i ⩽ n,r ⩾ 1}). By cMCT (which applies since everything is non-negative)

E[Zn+1 | Fn] =
∞

∑
r=1

E[1{Zn⩾r}Xn+1,r | Fn] a.s.

=
∞

∑
r=1

1{Zn⩾r}E[Xn+1,r | Fn] a.s. (taking out what is known)

=
∞

∑
r=1

1{Zn⩾r}E[Xn+1,r] a.s. (independence)

=
∞

∑
r=1

1{Zn⩾r}m = Znm,

and in particular Zn,Mn are both integrable. Clearly, both are Fn-measurable and E[Mn+1 | Fn] = Mn a.s. We
conclude that (Mn)n⩾0 is a non-negative martingale and, by Corollary 8.30, it converges a.s. to a finite limit M∞.
Does it converge in any other sense?

If m < 1 then by the above (Zn)n⩾0 is a non-negative supermartingale and hence also converges a.s. to a finite
limit Z∞. But since Mn = Zn/mn converges, we necessarily have Z∞ = 0 a.s. Since Zn is integer valued it has to
be equal to 0 from some point onwards, i.e., Zn = 0 a.s., for n ⩾ τ , where τ = τ(ω) is the extinction time which
we conclude has to be finite a.s. Note that τ = inf{n : Zn = 0} is a stopping time.

It follows that M∞ = 0 a.s. as well since Mn = 0 for n ⩾ τ . In particular, Mn does not converge to M∞ in L 1

by Lemma 4.14, and hence also not in any other L p for p > 1 by Lemma 5.13.

What is happening for our subcritical branching process is that although for large n, Mn is very likely to be
zero, if it is not zero then it is very big with sufficiently high probability that E[Mn] is constant and does not
converge to 0. This mirrors what we saw with sequences in Example 5.3. Finally note that, by Theorem 5.24,
we can also conclude that {Mn : n ⩾ 0} is not Uniformly Integrable.

8.5 Uniformly integrable martingales

We have done most of the work in §5.4. It remains to use it in conjunction with what we already know about
martingales. We say that a martingale M = (Mn)n⩾0 is uniformly integrable to indicate that the family of random
variables {Mn : n ⩾ 0} is UI.

Theorem 8.32. Let (Mn)n⩾0 be a martingale on a filtered probability space (Ω,F ,(Fn)n⩾0,P). TFAE

(i) M is uniformly integrable,

(ii) there is some F∞-measurable random variable M∞ such that Mn → M∞ almost surely and in L 1,

(iii) there is an integrable F∞-measurable random variable M∞ such that Mn = E[M∞ | Fn] a.s. for all n.

Further, under these conditions, if M∞ ∈ L p for p > 1 then the convergence Mn → M∞ also holds in L p.

Proof. (i) =⇒ (ii): M is UI so in particular, by Proposition 5.22, bounded in L 1 and hence, by Doob’s Forward
Convergence Theorem (Theorem 8.29) it converges a.s. to some integrable M∞. Since a.s. convergence implies
convergence in probability, Mn → M∞ in L1 by Theorem 5.24. Each Mn is F∞-measurable and hence so is M∞

by Proposition 1.24.
(ii) =⇒ (iii): Since (Mn) is a martingale, for m ⩾ n, we have

E[Mm | Fn] = Mn a.s.,
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so, by the defining relation (23) for the conditional expectation,

E[Mm1A] = E[Mn1A], for all A ∈ Fn.

Since ∣∣E[M∞1A]−E[Mm1A]
∣∣⩽ E[|(M∞ −Mm)1A|]⩽ E[|M∞ −Mm|]→ 0,

it follows that
E[M∞1A] = E[Mn1A] for all A ∈ Fn.

Since Mn is Fn-measurable, this shows that Mn = E[M∞ | Fn] a.s.
(iii) =⇒ (i) by Theorem 6.11.
The last assertion follows instantly from the Dominated Convergence Theorem and Theorem 8.33 below.

We now extend the optional sampling theorem as well as the maximal and Lp inequalities to the setting of
UI martingales.

Theorem 8.33. On a filtered probability space (Ω,F ,(Fn)n⩾0,P), let M be a UI martingale so that Mn =
E[M∞ | Fn] for some M∞ ∈ L 1(Ω,F∞,P). Then for any stopping times τ ⩽ ρ

E[Mρ | Fτ ] = Mτ a.s. (38)

and in particular E[Mτ ] = E[M0].
Further, Doob’s maximal and Lp inequalities extend to n = ∞. Specifically, with M∗

∞ = maxn⩾0 |Mn| we have

λP[M∗
∞ ⩾ λ ]⩽ E[|M∞|1{M∗

∞⩾λ}], λ ⩾ 0. (39)

Further, if M∞ ∈ L p for some p > 1 then, with p−1 +q−1 = 1,

∥M∞∥p ⩽ ∥M∗
∞∥p ⩽ q∥M∞∥p (40)

and Mn → M∞ in L p.

Proof. First note that if τ is bounded, τ ⩽ n and ρ = ∞ then by Theorem 8.17

Mτ = E[Mn | Fτ ] = E[E[M∞ | Fn] | Fτ ] = E[M∞ | Fτ ].

It remains the establish the same for any stopping time τ and ρ = ∞ as the general case then follows by the
tower property.

Let A ∈ Fτ and note that A∩{τ ⩽ n} is in Fn, by definition of Fτ , but also in Fτ∧n as is easy to verify.
Then

E[M∞1A∩{τ<∞}] = lim
n→∞

E[M∞1A∩{τ⩽n}] = lim
n→∞

E[Mτ∧n1A∩{τ⩽n}] = E[Mτ1A∩{τ<∞}],

where the first equality follows by the MCT, the second follows since we already have the desired property for
bounded stopping times and the last equality is a consequence of Theorem 5.24 thanks to uniform integrability
of the family Mτ∧n = E[M∞ | Fτ∧n], n ⩾ 0, (by Theorem 6.11) and a.s. convergence Mτ∧n1A∩{τ⩽n} → Mτ1A

(and hence also in probability). Finally, the equality E[M∞1A∩{τ=∞}] = E[Mτ1A∩{τ=∞}] is obvious. This
establishes (38).

We turn to the two remaining assertions. By conditional Jensen’s inequality (|Mn|)0⩽n⩽∞ is a submartin-
gale. By Doob’s maximal inequality, Theorem 8.21, with M∗

n = maxk⩽n |Mk|, we have

λP
[
M∗

n ⩾ λ
]
⩽ E[|Mn|1{M∗

n⩾λ}]⩽ E[|M∞|1{M∗
n⩾λ}]

Deep Dive
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since {M∗
n ⩾ λ} ∈ Fn and E[|M∞| | Fn]⩾ |Mn|. Taking the limit in n → ∞, using MCT on the left and DCT

on the right, we see that the maximal inequality (39) holds as required. Suppose now that M∞ ∈ L p for some
p > 1. Then Doob’s Lp inequality (40) follows by Lemma 5.15. It shows in particular that |Mn|p ⩽ (M∗

∞)
p ∈

L 1 and hence Mn → M∞ in L p by the DCT.

Page 86
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9 Some applications of the martingale theory

9.1 Backwards Martingales and the Strong Law of Large Numbers

So far our martingales were sequences (Mn) of random variables on (Ω,F ,P) defined for all integers n ⩾ 0.
But in fact the definition makes just as good sense for any ‘interval’ I of integers. The conditions are that
for every t ∈ I we have a σ -algebra Ft ⊆ F (information known at time t) and an integrable, Ft-measurable
random variable Mt , with E[Mt+1 | Ft ] = Mt a.s. Note that we already implicitly considered the finite case
I = {0,1,2, . . . ,N}.

Backwards martingales are martingales for which time is indexed by I = {t ∈ Z : t ⩽ 0}. The main difficulty
is deciding whether to write (Mn)n⩽0 or (M−n)n⩾0. From now on we write the latter. Note that a backwards
martingale ends at time 0. This instantly reminds us of UI martingales in Theorem 8.32 and makes our life
easier.

Definition 9.1. Given σ -algebras (F−n)n⩾0 with F−n ⊆ F and

· · · ⊆ F−(n+1) ⊆ F−n ⊆ ·· · ⊆ F−2 ⊆ F−1 ⊆ F0,

a backwards martingale w.r.t. (F−n) is a sequence (M−n)n⩾0 of integrable random variables, each M−n is F−n-
measurable and

E[M−n+1 | F−n] = M−n a.s.

for all n ⩾ 1.

For any backwards martingale, we have

E[M0 | F−n] = M−n a.s.

Since M0 is integrable, it follows from Theorem 6.11 that (M−n)n⩾0 is automatically uniformly integrable.
Doob’s Upcrossing Lemma (Lemma 8.26), dealt with martingales on a finite set of time points. We can

apply it to (M−m,M−m+1, . . . ,M−1,M0), to see that if Um([a,b],M) is the number of upcrossings of [a,b] by the
backwards martingale between times −m and 0, then

E[Um([a,b],M)]⩽
E[(M0 −a)−]

b−a
. (41)

Mimicking the proof of Doob’s Forward Convergence Theorem (Theorem 8.29), we let m → ∞ and use Mono-
tone Convergence Theorem to conclude that U([a,b],M) = U∞([a,b],M) is integrable and hence finite a.s.
Lemma 8.27 then shows that M−n converges a.s. to M−∞ := liminfn→∞ M−n. Recall that as n increases F−n

decrease, so that M−∞ is F−n-measurable for all n ⩾ 0 and hence also measurable with respect to

F−∞ =
∞⋂

k=0

F−k.

Since (M−n) is uniformly integrable, adapting the proof of Theorem 8.32 gives the following result.

Theorem 9.2. Let (M−n)n⩾0 be a backwards martingale w.r.t. (F−n)n⩾0. Then M−n converges a.s. and in L1 as
n → ∞ to the random variable M−∞ = E[M0 | F−∞].

Note that we can replace M0 by any other fixed element of the sequence: M−∞ =E[M−k |F−∞] for all k ⩾ 0.
We now use this result to prove the celebrated Kolmogorov’s Strong Law.
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Theorem 9.3 (Kolmogorov’s Strong Law of Large Numbers). Let (Xn)n⩾1 be a sequence of i.i.d. random vari-
ables each of which is integrable and has mean m, and set

Sn =
n

∑
k=1

Xk.

Then
Sn

n
n→∞−→ m a.s. and in L 1.

Proof. For n ⩾ 1 set
F−n = σ(Sn,Sn+1,Sn+2, . . .) = σ(Sn,Xn+1,Xn+2, . . .),

noting that F−n−1 ⊆ F−n. Conditioning on F−n preserves the symmetry between X1, . . . ,Xn, since none of
Sn,Sn+1, . . . is affected by permuting X1, . . . ,Xn. Hence,

E[X1 | F−n] = E[X2 | F−n] = · · ·= E[Xn | F−n]

and so they are all equal (a.s.) to their average:

E[Xi | F−n] =
1
n
E[X1 + · · ·+Xn | F−n] =

1
n
E[Sn | F−n] =

1
n

Sn, 1 ⩽ i ⩽ n.

Let M−n = Sn/n. Then, for n ⩾ 2,

E[M−n+1 | F−n] =
1

n−1
E[Sn−1 | F−n] =

1
n−1

n−1

∑
i=1

E[Xi | F−n] =
Sn

n
= M−n.

In other words, (M−n)n⩾1 is a backwards martingale w.r.t. (F−n)n⩾1. Thus, by Theorem 9.2, Sn/n converges
a.s. and in L1 to M−∞ = E[M−1 | F−∞], where F−∞ =

⋂
k⩾1 F−k.

Now by L1 convergence, E[M−∞] = limn→∞E[M−n] =E[M−1] =E[S1] =m. In terms of the random variables
X1,X2, . . . , the limit M−∞ = liminfSn/n is a tail random variable, so by Kolmogorov’s 0-1 law (Theorem 3.14)
it is a.s. constant, so M−∞ = m a.s.

9.2 Exchangeability and the ballot theorem

The material in §9.2 is not part of the “examinable syllabus”. You won’t be asked to reproduce these results
directly. However, just like many of the problem sheet questions, the methods help to develop your intuition
for the ideas of the course.

In our proof of the Strong Law of Large Numbers we used symmetry in a key way. There it followed
from independence of our random variables, but in general a weaker condition suffices.

Definition 9.4 (Exchangeability). The random variables X1, . . . ,Xn are said to be exchangeable if the vector
(Xi1 , . . . ,Xin) has the same probability distribution for every permutation i1, . . . , in of 1, . . . ,n.

Example 9.5. Let X1, . . . ,Xn be the results of n successive samples without replacement from a pool of at
least n values (some of which may be the same). Then the random variables X1, . . . ,Xn are exchangeable but
not independent.

It turns out that we can use the construction in the proof of the Strong Law of Large Numbers to manu-
facture a finite martingale from a finite collection of exchangeable random variables. Suppose that X1, . . . ,Xn

Deep Dive
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are exchangeable and integrable, and set S j = ∑
j
i=1 Xi. Let

Z j = E[X1 | σ(Sn+1− j, . . . ,Sn−1,Sn)], j = 1,2, . . .n.

Note that Z j is defined by conditioning on the last j sums; since we condition on more as j increases, (Z j)
n
j=1

is certainly a martingale. Now

Sn+1− j = E[Sn+1− j | σ(Sn+1− j, . . . ,Sn)]

=
n+ j−1

∑
i=1

E[Xi | σ(Sn+1− j, . . . ,Sn)]

= (n+1− j)E[X1 | σ(Sn+1− j, . . . ,Sn)] (by exchangeability)

= (n+1− j)Z j,

so Z j = Sn+1− j/(n+1− j).

Definition 9.6. The martingale

Z j =
Sn+1− j

n+1− j
, j = 1,2, . . . ,n,

is sometimes called Doob’s backward martingale.

Example 9.7 (The ballot problem). In an election between candidates A and B, candidate A receives n votes
and candidate B receives m votes, where n > m. Assuming that in the count of votes all orderings are equally
likely, what is the probability that A is always ahead of B during the count?

Solution:
Let Xi = 1 if the ith vote counted is for A and −1 if the ith vote counted is for B, and let Sk = ∑

k
i=1 Xi.

Because all orderings of the n+m votes are equally likely, X1, . . . ,Xn+m are exchangeable, so

Z j =
Sn+m+1− j

n+m+1− j
, j = 1,2, . . . ,n+m,

is a Doob backward martingale.
Because

Z1 =
Sn+m

n+m
=

n−m
n+m

,

the mean of this martingale is (n−m)/(n+m).
Because n > m, either (i) A is always ahead in the count, or (ii) there is a tie at some point. Case (ii)

happens if and only if some S j = 0, i.e., if and only if some Z j = 0.
Define the bounded stopping time τ by

τ = min{ j ⩾ 1 : Z j = 0 or j = n+m}.

In case (i), Zτ = Zn+m = X1 = 1. (If A is always ahead, he must receive the first vote.) Clearly, in case (ii),
Zτ = 0, so

Zτ =

{
1 if A is always ahead,
0 otherwise.
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By Theorem 8.17, E[Zτ ] = (n−m)/(n+m) and so

P[A is always ahead] =
n−m
n+m

.

2

9.3 Azuma-Hoeffding inequality and concentration of Lipschitz functions

The material in §9.3 is not part of the “examinable syllabus”. You won’t be asked to reproduce any of these
results directly. However, the methods involved are very good illustrations of ideas from earlier in the course:
particularly the Doob martingale ideas involved in Theorem 9.12 and its applications.

By applying Markov’s inequality to the moment generating function, we can get better bounds than we
get from the mean and variance alone.

Lemma 9.8. (i) Let Y be a random variable with mean 0, taking values in [−c,c]. Then

E[eθY ]⩽ exp
(

1
2

θ
2c2
)
.

(ii) Let G be a σ -algebra, and Y be a random variable with E[Y |G ] = 0 a.s. and Y ∈ [−c,c] a.s. Then

E[eθY | G ]⩽ exp
(

1
2

θ
2c2
)

a.s.

Proof. Let f (y) = eθy. Since f is convex,

f (y)⩽
c− y
2c

f (−c)+
c+ y
2c

f (c)

for all y ∈ [−c,c]. Then taking expectations,

E[ f (Y )]⩽ E
[

c−Y
2c

f (−c)+
c+Y

2c
f (c)

]
=

1
2

f (−c)+
1
2

f (c)

=
e−θc + eθc

2
.

Now, comparing Taylor expansions term by term,

e−θc + eθc

2
=

∞

∑
n=0

(θc)2n

(2n)!
⩽

∞

∑
n=0

(θc)2n

2nn!
= exp

(
1
2

θ
2c2
)
.

giving part (i).
For the conditional version of the statement, consider any G ∈ G with P[G] > 0. Then E[Y 1G] = 0, so

E[Y | G] = 0. Applying part (i) with probability measure P[. | G], we obtain E[eθY | G]⩽ exp
(1

2 θ 2c2
)
.

Now consider the G-measurable set G := {ω : E[eθY |G ](ω) > exp
(1

2 θ 2c2
)
}. If this set has positive

probability, it contradicts the previous paragraph. So indeed E[eθY | G ]⩽ exp
(1

2 θ 2c2
)

a.s. as required.
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Lemma 9.9. Suppose M is a martingale with M0 = 0 and |Mn −Mn−1|⩽ c a.s. for all n. Then

E
[
eθMn

]
⩽ exp

(
1
2

θ
2c2n

)
.

Proof. Let Wn = eθMn , so that Wn is non-negative and Wn =Wn−1eθ(Mn−Mn−1).
Then applying Lemma 9.8(ii) with Y = Mn −Mn−1 and G = Fn=1,

E(Wn | Fn−1) =Wn−1E
[
eθ(Mn−Mn−1) | Fn−1

]
⩽Wn−1 exp

(
1
2

θ
2c2
)

a.s.

Taking expectations we obtain E[Wn]⩽ exp
(1

2 θ 2c2
)
E[Wn−1] and the result follows by induction.

Theorem 9.10 (Simple version of the Azuma-Hoeffding inequality). Suppose M is a martingale with M0 = 0
and |Mn −Mn−1|⩽ c a.s. for all n. Then

P(Mn ⩾ a)⩽ exp
(
−1

2
a2

c2n

)
,

and

P(|Mn|⩾ a)⩽ 2exp
(
−1

2
a2

c2n

)
.

Proof.

P(Mn ⩾ a)⩽ P
(

eθMn ⩽ eθa
)

⩽ e−θa exp
(

1
2

θ
2c2
)

using Markov’s inequality. Now we are free to optimise over θ . The RHS is minimised when θ = a/(c2n),
giving the required bound.

The same argument applies replacing M by the martingale −M. Summing the two bounds then gives the
bound for |M|.

We now introduce the idea of discrete Lipschitz functions.

Definition 9.11. Let h be a function of n variables. The function h is said to be c-Lipschitz, where c > 0, if
changing the value of any one coordinate causes the value of h to change by at most c. That is, whenever
x = (x1, . . . ,xn) and y = (y1, . . . ,yn) differ in at most one coordinate, then |h(x)−h(y)|⩽ c.

Theorem 9.12 (Concentration of discrete Lipschitz functions). Suppose h is a c-Lipschitz function, and
X1, . . . ,Xn are independent random variables. Then

P(|h(X1, . . . ,Xn)−E[h(X1, . . . ,Xn)]|⩾ a)⩽ 2exp
(
−1

2
a2

c2n

)
.
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Proof. The proof is based on the idea of the Doob martingale. We reveal information about the underly-
ing random variables X1, . . . ,Xn one step at a time, gradually acquiring a more precise idea of the value
h(X1, . . . ,Xn).

For 0 ⩽ k ⩽ n, let Fk = σ(X1, . . . ,Xk), and let

Mk = E[h(X1, . . . ,Xn) | Fk]−E[h(X1, . . . ,Xn)].

Then M0 = 0, and Mn = h(X1, . . . ,Xn)−E[h(X1, . . . ,Xn)].
We claim |Mk+1 −Mk|⩽ c a.s. To show this, let X̂k+1 be a random variable with the same distribution as

Xk+1, which is independent of X1, . . . ,Xn.
Then

E[h(X1, . . . ,Xk,Xk+1, . . . ,Xn) | Fk]

= E[h(X1, . . . ,Xk, X̂k+1, . . . ,Xn) | Fk]

= E[h(X1, . . . ,Xk, X̂k+1, . . . ,Xn) | Fk+1].

This gives

Mk+1 −Mk = E[h(X1, . . . ,Xk, X̂k+1, . . . ,Xn)−h(X1, . . . ,Xk,Xk+1, . . . ,Xn) | Fk+1].

But the difference between the two values of h inside the conditional expectation on the RHS is in [−c,c],
so we obtain |Mk+1 −Mk| ⩽ c a.s. as required. Now the required estimate for Mn follows from the Azuma-
Hoeffding bound (Theorem 9.10).

The examples below of the application of Theorem 9.12 show that martingale methods can be applied to
problems far away from what one might think of as “stochastic process theory”.

Example 9.13 (Longest common subsequence). Let X = (X1,X2, . . . ,Xm) and Y = (Y1,Y2, . . . ,Ym) be two
independent sequences, each with independent entries.

Let Lm be the length of the longest sequence which is a subsequence (not necessarily consecutive) of both
sequences.

For example, if m = 12 and X =“CAGGGTAGTAAG” and Y =“CGTGTGAAAACT” then both X and
Y contain the substring “CGGTAAA”, and Lm = 7.

Changing a single entry can’t change the length of the longest common subsequence by more than 1. We
can apply Theorem 9.12 with n = 2m and c = 1, to get

P(|Lm −E[Lm]|⩾ a)⩽ 2exp
(
− a2

4m

)
.

We obtain that for large m, “typical fluctuations” of Lm around its mean are on the scale at most
√

m.
Note that we didn’t require the sequences X and Y to have the same distribution, or for the entries of each

sequence to be identically distributed.
As suggested by the choice of strings above, longest common subsequence problems arise for example

in computational biology, involving the comparison of DNA strings (which evolve via mutation, insertion or
deletion of individual nucleotides).

Example 9.14 (Minimum-length matching). Suppose there are m red points in the box [0,1]2 ⊂ R2, with
positions R1, . . . ,Rm, and m blue points with positions B1, . . . ,Bm.
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Let X be the length of the minimal-length matching, which joins pairs consisting of one blue and one red
point. That is,

Xm = min
m

∑
k=1

∥Rk −Bik∥,

where the minimum is taken over all permutations i1, i2, . . . , im of 1,2, . . . ,m, and ∥r−b∥ denotes Euclidean
distance between r and b.

Alternatively let Y be the length of the minimal-length alternating tour, a path which visits all 2m points,
alternating between red and blue, and returning to its starting point:

Ym = min

{
m

∑
k=1

∥Rik −B jk∥+
m−1

∑
k=1

∥B jk −Rik+1∥+∥B jm −Ri1∥

}
,

where now the minimum is over all pairs of permutations i1, i2, . . . , im and j1, j2, . . . , jm of 1,2, . . . ,m.
Moving a single point cannot change Xm by more than

√
2, and cannot change Ym by more than 2

√
2.

If the positions of the points are independent, then applying Theorem 9.12 with n = 2m and the appropriate
value of c, we obtain

P(|Xm −E[Xm]|⩾ a)⩽ 2exp
(
− a2

8m

)
P(|Ym −E[Ym]|⩾ a)⩽ 2exp

(
− a2

32m

)
.

Again this gives concentration of Xm and Ym around their means on the scale of
√

m. This may be a poor
bound; for example if all the points are i.i.d. uniform on the box [0,1]2, then in fact the means themselves
grow like

√
m as m → ∞. However, we didn’t assume identical distribution. For example we might have red

points uniform on the left half [0,1/2]× [0,1], and blue points uniform on the right half [1/2,1]× [0,1], in
which case the means grow linearly in m, and the O(

√
m) fluctuation bound is more interesting.

Example 9.15 (Chromatic number of a random graph). The Erdös-Rényi random graph model G(N, p) con-
sists of a graph with N vertices, in which each edge (out of the

(
N
2

)
possible edges) appears independently

with probability p. If p= 1/2, then the graph is uniformly distributed over all possible graphs with N vertices.
The chromatic number χ(G) of a graph G is the minimal number of colours needed to colour the vertices

of G so that any two adjacent vertices have different colours.
Consider applying Theorem 9.12 to the chromatic number χ(G) of a random graph G ∼ G(N,1/2).

We could write χ(G) as a function of
(

N
2

)
independent Bernoulli random variables, each one encoding the

presence or absence of a given edge. Adding or removing a single edge cannot change the chromatic number
by more than 1. This would give us a fluctuation bound on χ(G) on the order of N as N → ∞. However,
for large N this is an extremely poor, in fact trivial, result, since χ(G) itself is known to be on the order of
N/ log(N).

We can do much better. For 2 ⩽ k ⩽ N, let Xk consist of a collection of k − 1 Bernoulli random vari-
ables, encoding the presence or absence of the k−1 edges {1,k},{2,k}, . . . ,{k−1,k}. It’s still the case that
X2, . . . ,XN are independent. All the information in Xk concerns edges that intersect the vertex k; changing the
status of any subset of these edges can only change the chromatic number by at most 1 (consider recolouring
vertex k as necessary). The Doob martingale from the proof of Theorem 9.12 involves revealing information
about the graph vertex by vertex, rather than edge by edge, and is called the vertex exposure martingale.
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Applying the theorem with n = N −1 and c = 1, we obtain

P(|χ(G)−E[χ(G)]|⩾ a)⩽ 2exp
(
− a2

2(N −1)

)
,

giving a concentration bound on the scale of
√

N for large N.

9.4 The Law of the Iterated Logarithm

9.5 Likelihood Ratio and Statistics

9.6 Radon-Nikodym Theorem
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expectation, 43
extinction probability, 7

Fatou’s Lemma, 35, 41
reverse, 35, 41
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natural, 69
Fubini’s Theorem, 46

Galton–Watson branching process, 6, 84

Hölder’s inequality, 53
hitting time, 70

i.i.d., 34
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sets, 34
limsup, 17

sets, 34

Markov’s inequality, 50
martingale, 8, 72

backwards, 88
stopped, 77

martingale convergence theorem, 84
martingale difference, 73
martingale transform, 75
maximal inequality, 80
measurable function, 15
measurable space, 12
measure, 21

absolutely continuous, 22
equivalent, 22
image, 27, 42
marginal, 28
monotone convergence properties, 21
product, 29
pushforward, 27
restriction of, 24
sum of, 24

measure space, 21
Minkowski’s inequality, 53
modes of convergence, 47
Monotone Convergence Theorem, 39

natural filtration, 69
null set, 22

Option pricing, 11
Optional Stopping Theorem, 78
optional time, 69
orthogonal, 66
orthogonal projection, 66

predictable process, 75
probability kernel, 45
process

stopped, 71
product σ -algebra, 13, 16
product measure, 29
product space, 13, 16
projection

orthogonal, 66

Radon-Nikodym Theorem, 40

random variable, 15
independent, 32

reverse Fatou’s Lemma, 41

scalar product, 66
set function, 21
simple function, 17

canonical form, 17
stopped process, 71
stopping time, 69

first hitting, 70
Strong law of large numbers, 89
submartingale, 72
supermartingale, 72

tail σ -algebra, 33
taking out what is known, 63
tower property, 7, 63

uncorrelated, 66
uniform integrability, 54

and L1 convergence, 56
uniqueness of extension, 23
upcrossing, 82
upcrossing lemma, 82

Vitali’s Convergence Theorem, 56
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