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Preface. The purpose of these lecture notes is to provide an introduction to computational methods
for the approximate solution of partial differential equations (PDEs), by focusing on the construction
and the mathematical analysis of the conceptually simplest class of algorithms, finite difference methods
for second-order elliptic partial differential equations, initial-boundary-value problems for second-order
parabolic equations, and first- and second-order hyperbolic partial differential equations. Only minimal
prerequisites in differential and integral calculus, mathematical analysis and linear algebra are assumed.

The notes begin with some basic background from the theory of function spaces that are required in
the mathematical analysis of numerical methods for PDEs. The rest of the course focuses on classical
techniques for the numerical solution of boundary-value problems for second-order ordinary differential
equations and elliptic boundary-value problems, in particular the Poisson equation in two dimensions. Key
ideas include: discretization using the finite difference method, stability and convergence analysis, and the
use of the discrete maximum principle. The remaining lectures are devoted to the numerical solution of
initial-boundary-value problems for second-order parabolic and first- and second-order hyperbolic partial
differential equations with topics such as: approximation by finite difference methods, accuracy, stability
(including the Courant–Friedrichs–Lewy (CFL) condition) and convergence.

Syllabus and course structure

Part 1. Overview of the lecture course and motivating examples from various applications in the sciences.
Basic background from the theory of function spaces.

Finite difference approximation of two-point boundary-value problems for second-order ODEs. Mesh-
dependent inner-products and mesh-dependent norms. Discrete Poincaré–Friedrichs inequality.

Stability, consistency and convergence of finite difference approximations of two-point boundary-value
problems.

Part 2. Second-order linear elliptic boundary-value problems and their finite difference approximation:
uniform meshes on axiparallel domains; nonuniform meshes on nonaxiparallel domains.

Discrete maximum principle; stability and convergence in the discrete maximum norm.

Discrete energy estimates; stability and convergence in discrete Sobolev norms.

Iterative solution of systems of linear equations arising from the discretization of second-order linear
elliptic PDEs: linear stationary iterative methods.

Part 3. Second-order parabolic initial-value problems and their finite difference approximation: spatial
semi-discretization via the method of lines; fully discrete explicit and implicit schemes.

Discrete Fourier analysis of finite-difference approximations of initial-value problems for second-order
linear parabolic PDEs: the Courant–Friedrichs–Lewy (CFL) condition.

Finite difference approximation of initial-boundary-value problems for second-order parabolic PDEs.

Discrete maximum principle for finite difference approximations of initial-boundary-value problems for
second-order parabolic PDEs; stability and convergence in the discrete maximum norm.

Discrete energy norm estimates for finite difference approximations of initial-boundary-value problems
for second-order parabolic problems: stability, consistency and convergence.

Part 4. Finite-difference approximation of second-order linear hyperbolic equations.

Discrete energy estimates for second-order hyperbolic problems: stability (including the CFL condition),
consistency and convergence.

Finite difference approximation of linear first-order hyperbolic equations: stability (including the CFL
condition), consistency and convergence.

Finite difference approximation of nonlinear first-order hyperbolic conservation laws with convex nonlin-
earities. The first-order upwind scheme: boundedness of the sequence of approximate solutions in the
discrete maximum norm.
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A note about the problem sheets

There are 4 problem sheets and 4 intercollegiate classes associated with the lectures. Each problem sheet
is divided into three sections: A, B and C.

• Section A covers a mixture of background material and examinable material. Section B covers
examinable material. Section C contains more challenging questions.

• Sections A and C will not be marked and solutions to questions appearing in these sections are
provided to the students. Solutions to questions from Sections A and C will not, normally, be
discussed in the classes.

• Section B contains questions on core material; these are of suitable length for the students to
attempt in up to 8 hours, for a teaching assistant to mark in 20–30 minutes, and for the class tutor
to present in a 90-minute class.

Which lecture videos to watch before attempting the problem sheets?

Problem sheet 1: Watch lecture videos 0, 1, 2, 3;

Problem sheet 2: Watch lecture videos 4, 5, 6, 7;

Problem sheet 3: Watch lecture videos 8, 9, 10, 11;

Problem sheet 4: Watch lecture videos 12, 13, 14, 15, 16.

About these lecture notes

These lecture notes will be updated regularly during Michaelmas Term. If you notice any typographical
errors or inaccuracies, please report them to me by email.



Introduction

Lecture 1Partial differential equations arise in mathematical models of numerous phenomena in science and
engineering, and they also frequently occur in problems that originate from economics and finance. In
most cases the equations concerned are so complicated that their solution by analytical means (e.g. by
Laplace or Fourier transform based techniques or in the form of an infinite series) is either impossible or
impracticable, and one has to resort to numerical techniques for their approximate solution.

These notes are devoted to the construction and the mathematical analysis of the conceptually simplest
class of numerical techniques, finite difference methods, for the approximate solution of elliptic, parabolic
and hyperbolic partial differential equations, by considering simple model problems. Preference is given
to theoretical results concerning the stability and the accuracy of numerical methods – properties that
are of key importance in practical computations.

1 Elements of function spaces

The accuracy of a numerical method for the approximate solution of partial differential equations depends
on its capability to represent the important qualitative features of the (analytical) solution. One such
feature that has to be taken into account in the construction and the analysis of numerical methods is
the smoothness of the solution, and this depends on the smoothness of the data.

Precise assumptions about the smoothness of the data and of the corresponding solution can be con-
veniently formulated by considering classes of functions with particular differentiability and integrability
properties, called function spaces. In this section we present a brief overview of definitions and basic re-
sults form the theory of function spaces which will be used throughout these notes, focusing, in particular,
on spaces of continuous functions, spaces of integrable functions, and Sobolev spaces.

1.1 Spaces of continuous functions

In this section, we describe some simple function spaces that consist of continuous and continuously
differentiable functions. For the sake of notational convenience, we introduce the concept of a multi-
index.

Let N denote the set of nonnegative integers. An n-tuple α = (α1, . . . , αn) ∈ N
n is called a multi-index.

The nonnegative integer |α| := α1 + · · ·+αn is called the length of the multi-index α = (α1, . . . , αn). We
denote (0, . . . , 0) by 0; clearly |0| = 0.

Let

Dα :=

(
∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn

=
∂|α|

∂xα1
1 · · · ∂xαn

n
.

EXAMPLE. Suppose that n = 3 and α = (α1, α2, α3), αj ∈ N, j = 1, 2, 3. Then, for u, a function of
three variables x1, x2, x3, we have that

∑

|α|=3

Dαu =
∂3u

∂x31
+

∂3u

∂x21∂x2
+

∂3u

∂x21∂x3

+
∂3u

∂x1∂x22
+

∂3u

∂x1∂x23
+
∂3u

∂x32

+
∂3u

∂x1∂x2∂x3
+

∂3u

∂x22∂x3
+

∂3u

∂x2∂x
2
3

+
∂3u

∂x33
.

We shall frequently write ∂xj instead of the more cumbersome expression ∂
∂xj

. ⋄
Let Ω be an open set in R

n, and let k ∈ N. We denote by Ck(Ω) the set of all continuous real-valued
functions defined on Ω such that Dαu is continuous on Ω for all α = (α1, . . . , αn) with |α| ≤ k. Assuming
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that Ω is a bounded open set, Ck(Ω) will denote the set of all u in Ck(Ω) such that Dαu can be extended
from Ω to a continuous function on Ω, the closure of the set Ω, for all α = (α1, . . . , αn) with |α| ≤ k. The
linear space Ck(Ω) can then be equipped with the norm

‖u‖Ck(Ω) :=
∑

|α|≤k

sup
x∈Ω

|Dαu(x)| ,

where x := (x1, . . . , xn). In particular, when k = 0, we shall write C(Ω) instead of C0(Ω);

‖u‖C(Ω) = sup
x∈Ω

|u(x)| = max
x∈Ω

|u(x)| .

Similarly, if k = 1,

‖u‖C1(Ω) =
∑

|α|≤1

sup
x∈Ω

|Dαu(x)|

= sup
x∈Ω

|u(x)|+
n∑

j=1

sup
x∈Ω

∣∣∣∣
∂u

∂xj
(x)

∣∣∣∣ .

EXAMPLE. Let n = 1, and consider the open interval Ω = (0, 1) ⊂ R
1. The function u(x) = 1/x

belongs to Ck(Ω) for all k ≥ 0. Since Ω = [0, 1], it is clear that u is not continuous on Ω; the same is true
of its derivatives. Therefore u does not belong to Ck(Ω) for any k ≥ 0. ⋄

The support, supp u, of a continuous function u on Ω is defined as the closure in Ω of the set

{x ∈ Ω : u(x) 6= 0}.

In other words, supp u is the smallest closed subset of Ω such that u = 0 in Ω\supp u.
EXAMPLE. Let w be the function defined on R

n by

w(x) =

{
e
− 1

1−|x|2 , |x| < 1,
0, otherwise;

here |x| := (x21 + · · ·+ x2n)
1/2 for x ∈ R

n. Clearly, supp w is the closed unit ball {x ∈ R
n : |x| ≤ 1}. ⋄

We denote by Ck
0 (Ω) the set of all u ∈ Ck(Ω) such that supp u ⊂ Ω and supp u is bounded. Let

C∞
0 (Ω) =

⋂

k≥0

Ck
0 (Ω).

EXAMPLE. The function w defined in the previous example belongs to C∞
0 (Rn). ⋄

1.2 Spaces of integrable functions

Next we define a class of spaces that consist of (Lebesgue) integrable functions. Let p be a real number,
p ≥ 1; we denote by Lp(Ω) the set of all real-valued functions defined on an open set Ω ⊂ R

n such that

∫

Ω
|u(x)|p dx <∞.

Here, x := (x1, . . . , xn) and dx := dx1 . . . dxn. Functions which are equal almost everywhere (i.e., equal,
except on a set of measure zero) on Ω are identified with each other. Lp(Ω) is equipped with the norm

‖u‖Lp(Ω) :=

(∫

Ω
|u(x)|p dx

)1/p

.

2



A particularly important case is p = 2; then,

‖u‖L2(Ω) =

(∫

Ω
|u(x)|2 dx

)1/2

.

The space L2(Ω) can be equipped with an inner product

(u, v) :=

∫

Ω
u(x)v(x) dx.

Clearly ‖u‖L2(Ω) = (u, u)1/2.
We note in passing that a subset of Rn is said to be a set of measure zero if it can be contained in the

union of countably many open balls of arbitrarily small total volume. For example, the set of all rational
numbers is a set of measure zero in R.

Lemma 1 (The Cauchy–Schwarz inequality). Let u, v ∈ L2(Ω); then

|(u, v)| ≤ ‖u‖L2(Ω)‖v‖L2(Ω).

Proof. Let λ ∈ R; then,

0 ≤ ‖u+ λv‖2L2(Ω) = (u+ λv, u+ λv)

= (u, u) + (u, λv) + (λv, u) + (λv, λv)

= ‖u‖2L2(Ω) + 2λ(u, v) + λ2‖v‖2L2(Ω).

The right-hand side is a quadratic polynomial in λ with real coefficients which is nonnegative for all
λ ∈ R. Therefore its discriminant is nonpositive, i.e.,

|2(u, v)|2 − 4‖u‖2L2(Ω)‖v‖2L2(Ω) ≤ 0,

and hence the desired inequality. �

Corollary 1 (The triangle inequality) Let u, v belong to L2(Ω); then u+ v ∈ L2(Ω), and

‖u+ v‖L2(Ω) ≤ ‖u‖L2(Ω) + ‖v‖L2(Ω).

Proof. By taking λ = 1 in the proof of the Cauchy–Schwarz inequality above, we deduce that

‖u+ v‖2L2(Ω) = ‖u‖2L2(Ω) + 2(u, v) + ‖v‖2L2(Ω)

≤ ‖u‖2L2(Ω) + 2‖u‖L2(Ω)‖v‖L2(Ω) + ‖v‖2L2(Ω) = (‖u‖L2(Ω) + ‖v‖L2(Ω))
2,

where in the transition to the second line we applied the Cauchy–Schwarz inequality. �

Remark The space L2(Ω) equipped with the inner product (·, ·) (and the associated norm ‖u‖L2(Ω) =

(u, u)1/2) is an example of a Hilbert space. In general, a linear space X, equipped with an inner product

(·, ·)X (and the associated norm ‖u‖X := (u, u)
1/2
X ) is called a Hilbert space if, whenever {um}∞m=1 is a

Cauchy sequence in X, i.e., a sequence of elements of X such that

lim
n,m→∞

‖un − um‖X = 0,

then there exists a u ∈ X such that limm→∞ ‖u− um‖X = 0 (i.e., the sequence {um}∞m=1 converges to u
in the norm of X).
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1.3 Sobolev spaces

In this section we introduce a class of function spaces that play an important role in modern differential
equation theory. These spaces, called Sobolev spaces (after the Russian mathematician S.L. Sobolev),
consist of functions u ∈ L2(Ω) whose weak derivatives Dαu are also elements of L2(Ω). To give a precise
definition of a Sobolev space, we shall first explain the meaning of weak derivative.

Suppose that u is a smooth function, say u ∈ Ck(Ω), and let v ∈ C∞
0 (Ω); then we have the following

integration-by-parts formula:
∫

Ω
Dαu(x) v(x) dx = (−1)|α|

∫

Ω
u(x)Dαv(x) dx ∀α : |α| ≤ k, ∀ v ∈ C∞

0 (Ω).

We note here that all integrals on ∂Ω that arise in the course of partial integration, based on the divergence
theorem,1 have vanished because v ∈ C∞

0 (Ω). However, in the theory of partial differential equations one
often has to consider functions u that do not possess the smoothness hypothesized above, yet they have
to be differentiated (in some sense). It is for this purpose that we introduce the idea of a weak derivative.

Suppose that u is locally integrable on Ω (i.e., u ∈ L1(ω) for each bounded open set ω, with ω ⊂ Ω).
Suppose also that there exists a function wα, locally integrable on Ω, and such that

∫

Ω
wα(x) v(x) dx = (−1)|α|

∫

Ω
u(x)Dαv(x) dx ∀ v ∈ C∞

0 (Ω).

Then we say that wα is the weak derivative of u (of order |α| = α1 + · · · + αn) and write wα = Dαu.
Clearly, if u is a smooth function then its weak derivatives coincide with those in the classical (pointwise)
sense. To simplify the notation, we shall use the letter D to denote both a classical and a weak derivative.

EXAMPLE Let Ω = R
1, and suppose that we wish to determine the first weak derivative of the

function u defined on Ω by u(x) = (1−|x|)+. Here, for a real number y, y+ denotes the nonnegative part
of y, defined by y+ := max{y, 0}. Clearly u is not differentiable at the points 0 and ±1. However, because
u is locally integrable on Ω it may, nevertheless, possess a weak derivative. Indeed, for any v ∈ C∞

0 (Ω),
we have that

∫ +∞

−∞
u(x) v′(x) dx =

∫ +∞

−∞
(1− |x|)+ v′(x) dx =

∫ 1

−1
(1− |x|) v′(x) dx

=

∫ 0

−1
(1 + x) v′(x) dx+

∫ 1

0
(1− x) v′(x) dx

= −
∫ 0

−1
v(x) dx+ (1 + x) v(x)|0−1 +

∫ 1

0
v(x) dx+ (1− x) v(x)|1x=0

=

∫ 0

−1
(−1) v(x) dx +

∫ 1

0
(+1) v(x) dx

= −
∫ +∞

−∞
w(x) v(x) dx,

where

w(x) =





0, x < −1,
1, x ∈ (−1, 0),

−1, x ∈ (0, 1),
0, x > 1.

1Observe that
∫

Ω

∂u

∂xi
v dx =

∫

Ω

∂(uv)

∂xi
dx−

∫

Ω

u
∂v

∂xi
dx =

∫

∂Ω

uv νi ds(x)−

∫

Ω

u
∂v

∂xi
dx,

where νi is the i-th component of the unit outward normal vector ν = (ν1, . . . , νn) to the boundary ∂Ω of Ω. Here, the first
equality follows from the product rule for derivatives, while the second equality follows by applying the divergence theorem
to the n-component vector function (0, . . . , 0, uv, 0, . . . , 0) whose i-th component is uv while all of the other components are

equal to zero, and noting that div(0, . . . , 0, uv, 0, . . . , 0) = ∂(uv)
∂xi

and (0, . . . , 0, uv, 0, . . . , 0) · ν = uv νi.
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Thus, the piecewise constant function w is the first (weak) derivative of the continuous piecewise linear
function u, i.e., w = u′ = Du. ⋄

Now we are ready to give a precise definition of a Sobolev space. Let k be a nonnegative integer. We
define (with Dα denoting a weak derivative of order |α| )

Hk(Ω) := {u ∈ L2(Ω) : D
αu ∈ L2(Ω), |α| ≤ k}.

Hk(Ω) is called a Sobolev space of order k; it is equipped with the (Sobolev) norm

‖u‖Hk(Ω) :=


∑

|α|≤k

‖Dαu‖2L2(Ω)




1/2

and the inner product

(u, v)Hk(Ω) :=
∑

|α|≤k

(Dαu,Dαv).

With this inner product, Hk(Ω) is a Hilbert space (for the definition of Hilbert space, see the remark in
Section 1.2). Letting

|u|Hk(Ω) :=


∑

|α|=k

‖Dαu‖2L2(Ω)




1/2

,

we can write

‖u‖Hk(Ω) =




k∑

j=0

|u|2Hj(Ω)




1/2

.

|·|Hk(Ω) is called the Sobolev semi-norm (it is only a semi-norm rather than a norm because if |u|Hk(Ω) = 0

for u ∈ Hk(Ω) and k ≥ 1, then it does not necessarily follow that u ≡ 0 on Ω.)
Throughout these notes we shall frequently use H1(Ω) and H2(Ω).

H1(Ω) :=

{
u ∈ L2(Ω) : ∂xju :=

∂u

∂xj
∈ L2(Ω), j = 1, . . . , n

}
,

‖u‖H1(Ω) :=



‖u‖2L2(Ω) +

n∑

j=1

‖∂xju‖2L2(Ω)





1/2

,

|u|H1(Ω) :=





n∑

j=1

‖∂xju‖2L2(Ω)





1/2

.

Similarly,

H2(Ω) :=
{
u ∈ L2(Ω) : ∂xju ∈ L2(Ω), ∂2xixj

u ∈ L2(Ω), i, j = 1, . . . , n
}
,

‖u‖H2(Ω) :=



‖u‖2L2(Ω) +

n∑

j=1

‖∂xju‖2L2(Ω) +

n∑

i,j=1

‖∂2xixj
u‖2L2(Ω)





1/2

,
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|u|H2(Ω) :=





n∑

i,j=1

‖∂2xixj
u‖2L2(Ω)





1/2

.

Finally, we define a special Sobolev space,

H1
0 (Ω) := {u ∈ H1(Ω) : u = 0 on ∂Ω},

i.e., H1
0 (Ω) is the set of all functions u in H1(Ω) such that u = 0 on ∂Ω, the boundary of the set Ω. We

shall use this space when considering a partial differential equation that is coupled with a homogeneous
(Dirichlet) boundary condition: u = 0 on ∂Ω. We note here that H1

0 (Ω) is also a Hilbert space, with the
same norm and inner product as H1(Ω).

We conclude the section with the following important result.

Lemma 2 (Poincaré–Friedrichs inequality). Suppose that Ω is a bounded open set in R
n (with a suffi-

ciently smooth boundary ∂Ω) and let u ∈ H1
0 (Ω); then, there exists a positive constant c⋆(Ω), independent

of u, such that

∫

Ω
u2(x) dx ≤ c⋆

n∑

i=1

∫

Ω
|∂xiu(x)|2 dx. (1)

Proof. We shall prove this inequality for the special case of a rectangular domain Ω = (a, b) × (c, d) in
R
2. The proof for general Ω is analogous. Evidently,

u(x, y) = u(a, y) +

∫ x

a
∂ξu(ξ, y) dξ =

∫ x

a
∂ξu(ξ, y) dξ, c < y < d.

Thus, by the Cauchy–Schwarz inequality,

∫

Ω
|u(x, y)|2 dxdy =

∫ b

a

∫ d

c

∣∣∣∣
∫ x

a
∂ξu(ξ, y) dξ

∣∣∣∣
2

dxdy

≤
∫ b

a

∫ d

c
(x− a)

(∫ x

a
|∂ξu(ξ, y)|2 dξ

)
dxdy

≤
∫ b

a
(x− a) dx

(∫ d

c

∫ b

a
|∂ξu(ξ, y)|2 dξ dy

)

=
1

2
(b− a)2

∫

Ω
|∂xu(x, y)|2 dxdy.

Analogously, ∫

Ω
|u(x, y)|2 dxdy ≤ 1

2
(d− c)2

∫

Ω
|∂yu(x, y)|2 dxdy.

By combining the two inequalities (viz. by moving the constants 1
2(b− a)2 and 1

2(d− c)2 to the left-hand
sides of the respective inequalities, and then summing the resulting inequalities), we obtain

∫

Ω
|u(x, y)|2 dxdy ≤ c⋆

∫

Ω

(
|∂xu(x, y)|2 + |∂yu(x, y)|2

)
dxdy,

where c⋆ =

(
2

(b− a)2
+

2

(d− c)2

)−1

. �
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2 Elliptic boundary-value problems

Lecture 2In the first half of this lecture course we shall focus on boundary-value problems for elliptic partial
differential equations. Elliptic equations are typified by the Laplace equation2

∆u = 0,

and its nonhomogeneous counterpart, Poisson’s equation

−∆u = f.

More generally, let Ω be a bounded open set in R
n, and consider the (linear) second-order partial differ-

ential equation

−
n∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x), x ∈ Ω, (2)

where the coefficients ai,j, bi, c and f satisfy the following conditions:

ai,j ∈ C1(Ω), i, j = 1, . . . , n;

bi ∈ C(Ω), i = 1, . . . , n;

c ∈ C(Ω), f ∈ C(Ω), and
n∑

i,j=1

ai,j(x)ξiξj ≥ c̃

n∑

i=1

ξ2i , ∀ ξ = (ξ1, . . . , ξn) ∈ R
n, ∀x ∈ Ω;

(3)

here c̃ is a positive constant independent of x and ξ. The condition (3) is usually referred to as uniform
ellipticity and (2) is called an elliptic equation. In the case of Poisson’s equation, for example, ai,j = δi,j
for i, j = 1, . . . , n (and also bi(x) ≡ 0 for i = 1, . . . , n and c(x) ≡ 0), and the ellipticity condition is
therefore trivially satisfied, with c̃ = 1.

The equation (2) is supplemented with one of the following boundary conditions:

(a) u = g on ∂Ω (Dirichlet boundary condition);

(b) ∂u
∂ν = g on ∂Ω, where ν denotes the unit outward normal vector to the boundary ∂Ω of Ω, and

where the derivative in the direction of ν is defined by ∂u
∂ν := ∇u ·ν (Neumann boundary condition);

(c) ∂u
∂ν + σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin boundary condition);

(d) A more general version of the boundary conditions (b) and (c) is

n∑

i,j=1

ai,j
∂u

∂xi
cosαj + σ(x)u = g on ∂Ω,

where αj is the angle between the unit outward normal vector ν to ∂Ω and the Oxj axis (oblique
derivative boundary condition).

In many physical problems more than one type of boundary condition is imposed on ∂Ω (e.g. ∂Ω
is the union of two disjoint subsets ∂Ω1 and ∂Ω2, with a Dirichlet boundary condition is imposed on
∂Ω1 and a Neumann boundary condition on ∂Ω2). The study of such mixed boundary-value problems is
beyond the scope of these notes.

2Recall that in n space dimensions the Laplace operator ∆ is defined by ∆u := ∂2u
∂x2

1

+ · · ·+ ∂2u
∂x2

n

.
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We begin by considering the homogeneous Dirichlet boundary-value problem

−
n∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x) for x ∈ Ω, (4)

u = 0 on ∂Ω, (5)

where ai,j, bi, c and f are as in (3).
A function u ∈ C2(Ω) ∩ C(Ω) satisfying (4) and (5) is called a classical solution of this problem.

The theory of partial differential equations tells us that (4), (5) has a unique classical solution, provided
that ai,j, bi, c, f and ∂Ω are sufficiently smooth. However, in many applications one has to consider
boundary-value problems where these smoothness requirements are violated, and for such problems the
classical theory of partial differential equations is inappropriate. Take, for example, Poisson’s equation
on the cube Ω = (−1, 1)n in R

n, subject to a zero Dirichlet boundary condition:
−∆u = sgn

(
1
2 − |x|

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω.

}
(∗)

This problem does not have a classical solution, u ∈ C2(Ω) ∩ C(Ω), for otherwise ∆u would be a
continuous function on Ω, which is not possible because sgn(1/2− |x|) is not a continuous function on Ω.

Start of

optional

material
2.1 Existence and uniqueness of weak solutions

In order to overcome the limitations of the classical theory of partial differential equations and to be able
to deal with partial differential equations with “nonsmooth” data such as (∗), we generalize the notion
of solution by weakening the differentiability requirements on u; this will lead us to the notion of weak
solution. To begin, let us suppose that u is a classical solution of (4), (5). Then, for any v ∈ C1

0 (Ω),

−
n∑

i,j=1

∫

Ω

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
v dx+

n∑

i=1

∫

Ω
bi(x)

∂u

∂xi
v dx+

∫

Ω
c(x)uv dx =

∫

Ω
f(x)v(x) dx.

Upon integration by parts in the first integral and noting that v = 0 on ∂Ω, we obtain:

n∑

i,j=1

∫

Ω
ai,j(x)

∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω
bi(x)

∂u

∂xi
v dx+

∫

Ω
c(x)uv dx =

∫

Ω
f(x)v(x) dx ∀ v ∈ C1

0 (Ω).

In order for this equality to make sense we no longer need to assume that u ∈ C2(Ω): it is sufficient that
u ∈ L2(Ω) and ∂u/∂xi ∈ L2(Ω), i = 1, . . . , n. Thus, remembering that u has to satisfy a zero Dirichlet
boundary condition on ∂Ω, it is natural to seek u in the space H1

0 (Ω) instead, where, as in Section 1.3,

H1
0 (Ω) =

{
u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω), i = 1, . . . , n, u = 0 on ∂Ω

}
.

Therefore, we consider the following problem: find u in H1
0 (Ω), such that

n∑

i,j=1

∫

Ω
ai,j(x)

∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω
bi(x)

∂u

∂xi
v dx+

∫

Ω
c(x)uv dx =

∫

Ω
f(x)v(x) dx ∀ v ∈ C1

0(Ω). (6)

We note that C1
0 (Ω) ⊂ H1

0 (Ω), and it is easily seen that when u ∈ H1
0 (Ω) and v ∈ H1

0 (Ω), (instead of
v ∈ C1

0 (Ω)), the expressions on the left-hand side and right-hand side of (6) are both still meaningful (in
fact, we shall prove this below). This motivates the following definition.
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Definition 1 Let ai,j ∈ C(Ω), i, j = 1, . . . , n, bi ∈ C(Ω), i = 1, . . . , n, c ∈ C(Ω), and let f ∈ L2(Ω). A
function u ∈ H1

0 (Ω) satisfying

n∑

i,j=1

∫

Ω
ai,j(x)

∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω
bi(x)

∂u

∂xi
v dx+

∫

Ω
c(x)uv dx =

∫

Ω
f(x)v(x) dx ∀ v ∈ H1

0 (Ω) (7)

is called a weak solution of (4), (5). All partial derivatives in (7) should be understood as weak derivatives.

Clearly if u is a classical solution of (4), (5), then it is also a weak solution of (4), (5). However, the
converse is not true. If (4), (5) has a weak solution, this may not be smooth enough to be a classical
solution. Indeed, we shall prove below that the boundary-value problem (∗) has a unique weak solution
u ∈ H1

0 (Ω), despite the fact that it does not have a classical solution. Before focusing on this particular
boundary-value problem, we consider the wider issue of existence of a unique weak solution to the general
problem (4), (5).

For the sake of simplicity, let us introduce the following notation:

a(w, v) :=

n∑

i,j=1

∫

Ω
ai,j(x)

∂w

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω
bi(x)

∂w

∂xi
v dx+

∫

Ω
c(x)wv dx (8)

and

ℓ(v) :=

∫

Ω
f(x)v(x) dx. (9)

With this new notation, problem (7) can be written as follows:

find u ∈ H1
0 (Ω) such that a(u, v) = ℓ(v) ∀ v ∈ H1

0 (Ω). (10)

Before proceeding we observe that, for any f ∈ L2(Ω) the mapping v ∈ H1
0 (Ω) 7→ ℓ(v) ∈ R is a linear

functional on H1
0 (Ω). Similarly, for each fixed v ∈ H1

0 (Ω) the mapping w ∈ H1
0 (Ω) 7→ a(w, v) ∈ R is a

linear functional on H1
0 (Ω) and for each fixed w ∈ H1

0 (Ω) the mapping v ∈ H1
0 (Ω) 7→ a(w, v) ∈ R is a

linear functional on H1
0 (Ω); thus a(·, ·) is a bilinear functional (or bilinear form) on H1

0 (Ω)×H1
0 (Ω).

We shall prove the existence of a unique solution to this problem by appealing to the following abstract
result from Functional Analysis.

Theorem 1 (Lax & Milgram theorem3) Suppose that V is a real Hilbert space equipped with norm ‖ · ‖V .
Let a(·, ·) be a bilinear form on V × V such that:

(a) There exists a c0 > 0 such that a(v, v) ≥ c0‖v‖2V for all v ∈ V ;

(b) There exists a c1 > 0 such that |a(w, v)| ≤ c1‖w‖V ‖v‖V for all w, v ∈ V ;

and let ℓ(·) be a linear functional on V such that

(c) There exists a c2 > 0 such that |ℓ(v)| ≤ c2‖v‖V for all v ∈ V .

Then, there exists a unique u ∈ V such that

a(u, v) = ℓ(v) ∀ v ∈ V.

3Lax, P. D.; Milgram, A. N. Parabolic equations. Contributions to the theory of partial differential equations, pp. 167190.
Annals of Mathematics Studies, no. 33. Princeton University Press, Princeton, N. J., 1954. For a proof of this result the
interested reader is referred to the book of P. Ciarlet: The Finite Element Method for Elliptic Problems, SIAM, Philadelphia,
2002. The digital version of the book is available from https://epubs.siam.org/doi/book/10.1137/1.9780898719208.
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We apply the Lax–Milgram theorem with V = H1
0 (Ω) and ‖ · ‖V = ‖ · ‖H1(Ω) to show the existence of

a unique weak solution to (4), (5) (or, equivalently, to (10)). Let us recall from Section 1.3 that H1
0 (Ω)

is a Hilbert space with the inner product

(w, v)H1(Ω) :=

∫

Ω
w v dx+

n∑

i=1

∫

Ω

∂w

∂xi

∂v

∂xi
dx

and the associated norm ‖v‖H1(Ω) = (v, v)
1/2
H1(Ω)

. Next we show that a(·, ·) and ℓ(·), defined by (8) and

(9), satisfy the hypotheses (a), (b), (c) of the Lax–Milgram theorem.
We begin with (c). The mapping v 7→ ℓ(v) is linear: indeed, for any α, β ∈ R,

ℓ(αv1 + βv2) =

∫

Ω
f(x) (αv1(x) + βv2(x)) dx

= α

∫

Ω
f(x) v1(x) dx+ β

∫

Ω
f(x) v2(x) dx

= αℓ(v1) + βℓ(v2), v1, v2 ∈ H1
0 (Ω);

hence, ℓ(·) is a linear functional on H1
0 (Ω). Also, by the Cauchy–Schwarz inequality,

|ℓ(v)| =
∣∣∣∣
∫

Ω
f(x)v(x) dx

∣∣∣∣ ≤
(∫

Ω
|f(x)|2 dx

)1/2(∫

Ω
|v(x)|2 dx

)1/2

= ‖f‖L2(Ω)‖v‖L2(Ω) ≤ ‖f‖L2(Ω)‖v‖H1(Ω),

for all v ∈ H1
0 (Ω), where we have used the obvious inequality ‖v‖L2(Ω) ≤ ‖v‖H1(Ω). Letting c2 = ‖f‖L2(Ω),

we obtain the required bound: |ℓ(v)| ≤ c2‖v‖L2(Ω) for all v ∈ H1(Ω).
Next we verify (b). For any fixed v ∈ H1

0 (Ω), the mapping w ∈ H1
0 (Ω) 7→ a(w, v) ∈ R is linear.

Similarly, for any fixed w ∈ H1
0 (Ω), the mapping v ∈ H1

0 (Ω) 7→ a(w, v) ∈ R is linear. Hence a(·, ·) is a
bilinear form on H1

0 (Ω)×H1
0 (Ω). By employing the Cauchy–Schwarz inequality, we deduce that

|a(w, v)| ≤
n∑

i,j=1

max
x∈Ω

|ai,j(x)|
∣∣∣∣
∫

Ω

∂w

∂xi

∂v

∂xj
dx

∣∣∣∣+
n∑

i=1

max
x∈Ω

|bi(x)|
∣∣∣∣
∫

Ω

∂w

∂xi
v dx

∣∣∣∣+max
x∈Ω

|c(x)|
∣∣∣∣
∫

Ω
w(x)v(x) dx

∣∣∣∣

≤ c





n∑

i,j=1

(∫

Ω

∣∣∣∣
∂w

∂xi

∣∣∣∣
2

dx

)1/2(∫

Ω

∣∣∣∣
∂v

∂xj

∣∣∣∣
2

dx

)1/2

+

n∑

i=1

(∫

Ω

∣∣∣∣
∂w

∂xi

∣∣∣∣
2

dx

)1/2(∫

Ω
|v|2 dx

)1/2

+

(∫

Ω
|w|2 dx

)1/2 (∫

Ω
|v|2 dx

)1/2
}

≤ c





(∫

Ω
|w|2 dx

)1/2

+
n∑

i=1

(∫

Ω

∣∣∣∣
∂w

∂xi

∣∣∣∣
2

dx

)1/2








(∫

Ω
|v|2 dx

)1/2

+
n∑

j=1

(∫

Ω

∣∣∣∣
∂v

∂xj

∣∣∣∣
2

dx

)1/2


,

(11)

where

c = max

{
max

1≤i,j≤n
max
x∈Ω

|ai,j(x)| , max
1≤i≤n

max
x∈Ω

|bi(x)| ,max
x∈Ω

|c(x)|
}
.

By further majorization of the right-hand side in (11) by applying the inequality
√
a+

√
b ≤

√
2
√
a+ b,

where a, b ≥ 0, to each of the expressions in the curly brackets, we arrive at the inequality

|a(w, v)| ≤ 2nc

{∫

Ω
|w|2 dx+

n∑

i=1

∫

Ω

∣∣∣∣
∂w

∂xi

∣∣∣∣
2

dx

}1/2




∫

Ω
|v|2 dx+

n∑

j=1

∫

Ω

∣∣∣∣
∂v

∂xj

∣∣∣∣
2

dx





1/2

;
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by letting c1 := 2nc, we obtain the desired bound asserted in (b) of the Lax–Milgram theorem.
It remains to verify hypothesis (a) of the Lax–Milgram theorem. Using the uniform ellipticity condition

(3)4, we deduce that

a(v, v) ≥ c̃

n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣
2

dx+

n∑

i=1

∫

Ω
bi(x)

1

2

∂

∂xi
(v2) dx+

∫

Ω
c(x) |v|2 dx,

where we wrote ∂v
∂xi

v as 1
2

∂
∂xi

(v2).

In (3)1 we assumed that ai,j ∈ C1(Ω) for all i, j = 1, . . . , n. As a matter of fact, since the weak
formulation of the boundary-value problem stated in Definition 1 does not involve differentiation of the
coefficients ai,j , and nor has the verification of the conditions of hypotheses (a) and (b) of the Lax–
Milgram theorem required that ai,j ∈ C1(Ω) for all i, j = 1, . . . , n, it will suffice to suppose the weaker
requirement that ai,j ∈ C(Ω) for all i, j = 1, . . . , n, which is what was assumed in Definition 14. On the
other hand, to proceed with the verification of hypothesis (a) of the Lax–Milgram theorem, we shall have
to strengthen our original assumption that bi ∈ C(Ω), i = 1, . . . , n, and require instead that bi ∈ C1(Ω),
i = 1, . . . , n.

Integrating by parts in the second term on the right and noting that the boundary integral term
arising in the course of partial integration vanishes thanks to the fact that v|∂Ω = 0, we then obtain

a(v, v) ≥ c̃
n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣
2

dx+

∫

Ω

(
c(x)− 1

2

n∑

i=1

∂bi
∂xi

(x)

)
|v|2 dx.

Suppose that bi, i = 1, . . . , n, and c satisfy the inequality

c(x)− 1

2

n∑

i=1

∂bi
∂xi

(x) ≥ 0, x ∈ Ω. (12)

Then,

a(v, v) ≥ c̃
n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣
2

dx. (13)

By virtue of the Poincaré–Friedrichs inequality stated in Lemma 1.2, the right-hand side can be further
bounded from below to obtain

a(v, v) ≥ c̃

c⋆

∫

Ω
|v|2 dx. (14)

Summing the inequalities (13) and (14) we deduce that

a(v, v) ≥ c0

(∫

Ω
|v|2 dx+

n∑

i=1

∫

Ω

∣∣∣∣
∂v

∂xi

∣∣∣∣
2

dx

)
, (15)

where c0 = c̃/(1+c⋆), and hence hypothesis (a) of the Lax–Milgram theorem has also been verified. Having
checked all hypotheses of the Lax–Milgram theorem, we deduce the existence of a unique u ∈ H1

0 (Ω)
satisfying (10); thereby problem (4), (5) has a unique weak solution u ∈ H1

0 (Ω).
We record this result in the following theorem.

4As a matter of fact, the requirement that ai,j ∈ C(Ω) for i, j = 1, . . . , n can be further weakened: it suffices to assume
that ai,j ∈ L∞(Ω) for i, j = 1, . . . , n, i.e., that there exists a positive real number M such |ai,j(x)| ≤ M for all i, j = 1, . . . , n
and for all x ∈ Ω, except perhaps for a set of x of measure zero. Thus, for example, the coefficients ai,j may be bounded
piecewise continuous functions defined on Ω.
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Theorem 2 Suppose that ai,j ∈ C(Ω), i, j = 1, . . . , n, bi ∈ C1(Ω), i = 1, . . . , n, c ∈ C(Ω), f ∈ L2(Ω),
and assume that (3) and (12) hold; then the boundary-value problem (4), (5) possesses a unique weak
solution u ∈ H1

0 (Ω). In addition,

‖u‖H1(Ω) ≤
1

c0
‖f‖L2(Ω). (16)

Proof. We only have to prove the inequality (16). By the inequality (15), the definition (10) of the
weak formulation, the Cauchy–Schwarz inequality and by recalling the definition of the norm ‖ · ‖H1(Ω),
we have that

c0‖u‖2H1(Ω) ≤ a(u, u) = ℓ(u) = (f, u)

≤ |(f, u)| ≤ ‖f‖L2(Ω)‖u‖L2(Ω)

≤ ‖f‖L2(Ω)‖u‖H1(Ω).

Hence the desired inequality. �

Now we return to our earlier example (∗), which has been shown to have no classical solution. However,
by applying Theorem 4 with ai,j(x) ≡ 1, i = j, ai,j(x) ≡ 0, i 6= j, 1 ≤ i, j ≤ n, bi(x) ≡ 0 for i = 1, . . . , n,
c(x) ≡ 0, f(x) = sgn(12−|x|), and Ω = (−1, 1)n, we see that inequality (3) holds with c̃ = 1 and inequality
(12) is trivially satisfied. Thus (∗) has a unique weak solution u ∈ H1

0 (Ω).

Remark. The existence and uniqueness of a weak solution to a Neumann, a Robin, or an oblique deriva-
tive boundary-value problem can be established in a similar fashion, using the Lax–Milgram theorem. ⋄
Remark. Theorem 2 implies that the weak formulation of the elliptic boundary-value problem (4), (5)
is well-posed in the sense of Hadamard ; that is, for each f ∈ L2(Ω) there exists a unique (weak) solution
u ∈ H1

0 (Ω), and “small” changes in f give rise to “small” changes in the corresponding solution u. The
latter property follows by noting that if u1 and u2 are weak solutions in H1

0 (Ω) of (4), (5) corresponding
to right-hand sides f1 and f2 in L2(Ω), respectively, then u1 − u2 is the weak solution in H1

0 (Ω) of (4),
(5) corresponding to the right-hand side f1 − f2 ∈ L2(Ω). Thus, by virtue of (16),

‖u1 − u2‖H1(Ω) ≤
1

c0
‖f1 − f2‖L2(Ω), (17)

and the required continuous dependence of the solution of the boundary-value problem on the right-hand
side directly follows. ⋄ End of

optional

material
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3 Introduction to the theory of finite difference schemes

Let Ω be a bounded open set in R
n and suppose that we wish to solve the boundary-value problem

Lu = f in Ω,

Bu = g on Γ := ∂Ω,
(18)

where L is a linear partial differential operator, and B is a linear operator which specifies the boundary
condition. For example,

Lu ≡ −
n∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+

n∑

i=1

bi
∂u

∂xi
+ cu,

and

Bu ≡ u (Dirichlet boundary condition),

or

Bu ≡ ∂u

∂ν
(Neumann boundary condition),

or

Bu ≡
n∑

i,j=1

ai,j(x) cosαj + σ(x)u (oblique derivative boundary condition),

where αj is the angle between the unit outward normal vector ν to ∂Ω and the Oxj axis.
In general, it is impossible to determine the solution of the boundary-value problem (18) in closed

form. Thus the aim of this chapter is to describe a simple and general numerical technique for the
approximate solution of (18), called the finite difference method. The construction of a finite difference
scheme consists of two basic steps: first, the computational domain is approximated by a finite set of
points, called the finite difference mesh, and second, the derivatives appearing in the differential equation
(and, possibly also in the boundary condition(s)) are approximated by divided differences (difference
quotients) on the finite difference mesh.

To describe the first of these two steps more precisely, suppose that we have ‘approximated’ Ω = Ω∪Γ
by a finite set of points

Ωh = Ωh ∪ Γh,

where Ωh ⊂ Ω and Γh ⊂ Γ; Ωh is called a mesh, Ωh is the set of interior mesh-points and Γh the set
of boundary mesh-points. The parameter h = (h1, . . . , hn) measures the ‘fineness’ of the mesh (here hi
denotes the mesh-size in the coordinate direction Oxi): the smaller max1≤i≤n hi is, the finer the mesh.

Having constructed the mesh, we proceed by replacing the derivatives in L by divided differences,
and we approximate the boundary condition in a similar fashion. This yields the finite difference scheme

LhU(x) = fh(x), x ∈ Ωh,

BhU(x) = gh(x), x ∈ Γh,
(19)

where fh and gh are suitable approximations of f and g, respectively. Now (19) is a system of linear alge-
braic equations involving the values of U at the mesh-points, and can be solved by Gaussian elimination
or an iterative method, provided, of course, that it has a unique solution. The sequence {U(x) : x ∈ Ωh}
is an approximation to {u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

There are two classes of problems associated with finite difference schemes:

13



(1) the first, and more fundamental, is the problem of approximation, that is, whether (19) approxi-
mates the boundary-value problem (18) in some sense, and whether its solution {U(x) : x ∈ Ωh}
approximates {u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

(2) the second problem concerns the effective solution of the discrete problem (19) using techniques
from Numerical Linear Algebra.

In these notes we shall be primarily concerned with the first of these two problems — the question of
approximation — although we shall also briefly consider the question of iterative solution of systems of
linear algebraic equations by a simple iterative method. More sophisticated iterative methods, so called
Krylov subspace iterations, for the solution of large systems of linear algebraic equations, such as those
that arise from the approximate solution of partial differential equations, are covered in the fourth-year
C6.1 Numerical Linear Algebra course.

3.1 Finite difference approximation of a two-point boundary-value problem

Lecture 3In order to give a simple illustration of the general framework of finite difference approximation, let us
consider the following two-point boundary-value problem for a second-order linear (ordinary) differential
equation:

−u′′ + c(x)u = f(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,
(20)

where f and c are real-valued functions, which are defined and continuous on the interval [0, 1] and
c(x) ≥ 0 for all x ∈ [0, 1].

The first step in the construction of a finite difference scheme for this boundary-value problem is to
define the mesh. Let N be an integer, N ≥ 2, and let h := 1/N be the mesh-size; the mesh-points
are xi := ih, i = 0, . . . , N. Formally, Ωh := {xi : i = 1, . . . , N − 1} is the set of interior mesh-points,
Γh := {x0, xN} the set of boundary mesh-points and Ωh := Ωh ∪ Γh the set of all mesh-points. Suppose
that u is sufficiently smooth (e.g. u ∈ C4([0, 1])). Then, by Taylor series expansion,

u(xi±1) = u(xi ± h)

= u(xi)± hu′(xi) +
h2

2
u′′(xi)±

h3

6
u′′′(xi) +O(h4),

so that

D+
x u(xi) :=

u(xi+1)− u(xi)

h
= u′(xi) +O(h),

D−
x u(xi) :=

u(xi)− u(xi−1)

h
= u′(xi) +O(h),

and

D+
xD

−
x u(xi) = D−

xD
+
x u(xi)

=
u(xi+1)− 2u(xi) + u(xi−1)

h2
= u′′(xi) +O(h2).

D+
x and D−

x are called the forward and backward first divided difference operator, respectively, and
D+

xD
−
x (= D−

xD
+
x ) is called the (symmetric) second divided difference operator. The difference operator

D0
x, called the central first divided difference operator, is defined by

D0
xu(xi) :=

1

2

(
D+

x u(xi) +D−
x u(xi)

)
=
u(xi+1)− u(xi−1)

2h
(= u′(xi) +O(h2)).

14



Thus we replace the second derivative u′′ in the differential equation by the second divided difference
D+

xD
−
x u(xi); hence,

−D+
xD

−
x u(xi) + c(xi)u(xi) ≈ f(xi), i = 1, . . . , N − 1,

u(x0) = 0, u(xN ) = 0.
(21)

Now (21) indicates that the approximate solution U (not to be confused with the exact solution u) should
be sought as the solution of the system of difference equations:

−D+
xD

−
x Ui + c(xi)Ui = f(xi), i = 1, . . . , N − 1,

U0 = 0, UN = 0.
(22)

This is, in fact, a system of N−1 linear algebraic equations for the N−1 unknowns, Ui, i = 1, . . . , N −1.
Using matrix notation, the linear system can be written as follows:




2

h2
+ c(x1) − 1

h2 0
− 1

h2

2

h2
+ c(x2) − 1

h2

. . .
. . .

. . .

− 1
h2

2

h2
+ c(xN−2) − 1

h2

0 − 1
h2

2

h2
+ c(xN−1)







U1

U2
...

UN−2

UN−1




=




f(x1)
f(x2)

...
f(xN−2)
f(xN−1)



,

or, more compactly, AU = F , where A is the symmetric tridiagonal (N − 1)× (N − 1) matrix displayed
above, and U and F are column vectors of size N − 1, corresponding to the N − 1 ‘interior’ mesh-points
x1, . . . , xN−1 contained in the open interval (0, 1).

3.2 Existence and uniqueness of solutions, stability, consistency, and convergence

We begin the analysis of the finite difference scheme (22) by showing that it has a unique solution. It
suffices to show that the matrix A is nonsingular (i.e., detA 6= 0), and therefore invertible. We shall
do so by developing a technique which we shall, in subsequent sections, extend to the finite difference
approximation of partial differential equations. The purpose of this section is to introduce the key ideas
through the finite difference approximation (21) of the simple two-point boundary-value problem (20).

For this purpose, we introduce, for two functions V and W defined at the interior mesh-points xi,
i = 1, . . . , N − 1, the inner product

(V,W )h :=

N−1∑

i=1

hViWi,

which resembles the L2((0, 1))-inner product

(v,w) :=

∫ 1

0
v(x)w(x) dx.

The argument that we shall develop is based on mimicking, at the discrete level, the following proce-
dure based on integration-by-parts, noting that the solution of the boundary-value problem (20) satisfies
the homogeneous boundary conditions u(0) = 0 and u(1) = 0 at the end-points of the interval [0, 1]:

∫ 1

0
(−u′′(x) + c(x)u(x))u(x) dx =

∫ 1

0
|u′(x)|2 + c(x)|u(x)|2 dx ≥

∫ 1

0
|u′(x)|2 dx, (23)
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thanks to the assumption that c(x) ≥ 0 for all x ∈ [0, 1]. Thus if, for example, f is identically zero on
[0, 1], then so is −u′′+c(x)u, and thanks to the inequality (23) the function u′ is then also identically equal
to zero on [0, 1]. Consequently, u is a constant function on [0, 1], but because u(0) = 0 and u(1) = 0, the
constant function u must be identically equal to 0. In other words, the only solution to the homogeneous
boundary-value problem (i.e., the boundary-value problem with f(x) ≡ 0 for x ∈ [0, 1]) is the function
u(x) ≡ 0, x ∈ [0, 1]. For the finite difference approximation of the boundary-value problem, if we could
show by an analogous argument that the homogeneous system of linear algebraic equations corresponding
to f(xi) = 0, i = 1, . . . , N − 1, has the trivial solution Ui = 0, i = 0, . . . , N , as its unique solution, then
the desired invertibility of the matrix A would directly follow.

Our key technical tool to this end is the following summation-by-parts identity, which is the discrete
counterpart of the integration-by-parts identity (−u′′, u) = (u′, u′) = ‖u′‖2L2((0,1))

satisfied by the function

u, obeying the homogeneous boundary conditions u(0) = 0, u(1) = 0, used in (23) above.

Lemma 3 Suppose that V is a function defined at the mesh-points xi, i = 0, . . . , N , and let V0 = VN = 0;
then,

(−D+
xD

−
x V, V )h =

N∑

i=1

h
∣∣D−

x Vi
∣∣2 . (24)

Proof. By recalling the definition of the inner product (·, ·)h and the definition of D+
xD

−
x Vi we have

that

(−D+
xD

−
x V, V )h = −

N−1∑

i=1

h (D+
xD

−
x Vi)Vi

= −
N−1∑

i=1

Vi+1 − Vi
h

Vi +

N−1∑

i=1

Vi − Vi−1

h
Vi

= −
N∑

i=2

Vi − Vi−1

h
Vi−1 +

N−1∑

i=1

Vi − Vi−1

h
Vi

= −
N∑

i=1

Vi − Vi−1

h
Vi−1 +

N∑

i=1

Vi − Vi−1

h
Vi

=
N∑

i=1

Vi − Vi−1

h
(Vi − Vi−1) =

N∑

i=1

h
∣∣D−

x Vi
∣∣2 ,

where in the transition to the third line we shifted the index in the first summation, and in the transition
to the fourth line we made use of the fact that, by hypothesis, V0 = VN = 0. �

Returning to the finite difference scheme (22), let V be as in the above lemma and note that as, by
hypothesis, c(x) ≥ 0 for all x ∈ [0, 1], we have that

(AV, V )h = (−D+
xD

−
x V + cV, V )h

= (−D+
xD

−
x V, V )h + (cV, V )h

≥
N∑

i=1

h
∣∣D−

x Vi
∣∣2 . (25)

Thus, if AV = 0 for some V , then D−
x Vi = 0, i = 1, . . . , N ; because V0 = VN = 0, this implies that

Vi = 0, i = 0, . . . , N . Hence AV = 0 if and only if V = 0. It therefore follows that A is a nonsingular
matrix, and thereby (22) has a unique solution, U = A−1F. We record this result in the next theorem.
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Theorem 3 Suppose that c and f are continuous real-valued functions defined on the interval [0, 1], and
c(x) ≥ 0 for all x ∈ [0, 1]; then, the finite difference scheme (22) possesses a unique solution U .

We note in passing that, thanks to Theorem 3, the boundary-value problem (20) has a unique (weak)
solution under the hypotheses on c and f asserted in Theorem 3.

Remark 1 In the discussion preceding Theorem 3 we used the symbol A to denote the matrix of the system
of linear equations that arises from the finite difference approximation as well as the finite difference
operator V 7→ −D+

xD
−
x V + cV . Similarly, we used the symbol U to denote the vector (U1, . . . , UN−1)

T

of unknowns representing the solution of the system of linear algebraic equations AU = F as well as the
mesh function defined on the finite difference mesh Ωh with the understanding that U0 = UN = 0. For
the sake of notational simplicity we shall continue to use these conventions throughout: i.e., we shall use
the same notation for matrices and finite difference operators, and we shall use the same notation for
vectors and mesh functions defined over finite difference meshes. It will be clear from the context which
of the two interpretations of the same symbol is intended.

Next, we investigate the approximation properties of the finite difference scheme (22). A key ingredient
in our analysis is the fact that the scheme (22) is stable (or discretely well-posed) in the sense that “small”
perturbations in the data result in “small” perturbations in the corresponding finite difference solution.
Effectively, we shall prove the discrete version of the inequality (16). For this purpose, we define the
discrete L2-norm

‖U‖h := (U,U)
1/2
h =

(
N−1∑

i=1

h|Ui|2
)1/2

,

and the discrete Sobolev norm

‖U‖1,h := (‖U‖2h + ‖D−
x U ]|2h)1/2,

where

‖V ]|2h :=

N∑

i=1

h |Vi|2

is the norm induced by the inner product

(V,W ]h :=

N∑

i=1

hViWi.

Using this notation, the inequality (25) can be rewritten as follows:

(AV, V )h ≥ ‖D−
x V ]|2h. (26)

In fact, by employing a discrete version of the Poincaré–Friedrichs inequality (1), stated in Lemma 4
below, we shall be able to prove that

(AV, V )h ≥ c0‖V ‖21,h,
where c0 is a positive constant, independent of h.

Lemma 4 (Discrete Poincaré–Friedrichs inequality.) Let V be a function defined on the finite difference
mesh {xi := ih : i = 0, . . . , N}, where h := 1/N and N ≥ 2, and such that V0 = VN = 0; then, there
exists a positive constant c⋆, independent of V and h, such that

‖V ‖2h ≤ c⋆‖D−
x V ]|2h (27)

for all such V .
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Proof. We proceed in the same way as in the proof of inequality (1). We begin by noting that, thanks
to the definition of D−

x Vi and by use of the Cauchy–Schwarz inequality,

|Vi|2 =

∣∣∣∣∣∣

i∑

j=1

h (D−
x Vj)

∣∣∣∣∣∣

2

≤




i∑

j=1

h




i∑

j=1

h
∣∣D−

x Vj
∣∣2 = ih

i∑

j=1

h
∣∣D−

x Vj
∣∣2 .

Therefore, because
∑N−1

i=1 i = 1
2(N − 1)N and Nh = 1, we have that

‖V ‖2h =
N−1∑

i=1

h |Vi|2 ≤
N−1∑

i=1

ih2
i∑

j=1

h
∣∣D−

x Vj
∣∣2

≤ 1

2
(N − 1)Nh2

N∑

j=1

h
∣∣D−

x Vj
∣∣2

≤ 1

2
‖D−

x V ]|2h.

We note that the constant c⋆ = 1/2 in the inequality (27). �

Using the inequality (27) to bound the right-hand side of the inequality (26) from below we obtain

(AV, V )h ≥ 1

c⋆
‖V ‖2h. (28)

Adding the inequality (26) to the inequality (28) we arrive at the inequality

(AV, V )h ≥ (1 + c⋆)
−1
(
‖V ‖2h + ‖D−

x V ]|2h
)
.

Letting c0 = (1 + c⋆)
−1 it follows that

(AV, V )h ≥ c0‖V ‖21,h. (29)

Now the stability of the finite difference scheme (22) easily follows.

Theorem 4 The scheme (22) is stable in the sense that

‖U‖1,h ≤ 1

c0
‖f‖h. (30)

Proof. From the inequality (29) and the definition (22) of the finite difference scheme we have that

c0‖U‖21,h ≤ (AU,U)h = (f, U)h ≤ |(f, U)h|
≤ ‖f‖h‖U‖h ≤ ‖f‖h‖U‖1,h,

and hence the inequality (30). �

Using this stability result it is easy to derive an estimate of the error between the exact solution, u,
and its finite difference approximation, U . We define the global error, e, by

ei := u(xi)− Ui, i = 0, . . . , N.

Obviously e0 = 0, eN = 0, and

Aei = Au(xi)−AUi = Au(xi)− f(xi)

= −D+
xD

−
x u(xi) + c(xi)u(xi)− f(xi)

= u′′(xi)−D+
xD

−
x u(xi), i = 1, . . . , N − 1.
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Thus,

Aei = ϕi, i = 1, . . . , N − 1,

e0 = 0, eN = 0,
(31)

where ϕi := Au(xi) − f(xi) = u′′(xi) − D+
xD

−
x u(xi) is the consistency error (sometimes also called the

truncation error). By applying the inequality (30) to the finite difference scheme (31), we obtain

‖u− U‖1,h = ‖e‖1,h ≤ 1

c0
‖ϕ‖h. (32)

It remains to estimate ‖ϕ‖h. We showed on page 14 that, if u ∈ C4([0, 1]), then

ϕi = u′′(xi)−D+
xD

−
x u(xi) = O(h2),

i.e., there exists a positive constant C, independent of h, such that

|ϕi| ≤ Ch2.

Consequently,

‖ϕ‖h =

(
N−1∑

i=1

h |ϕi|2
)1/2

≤ Ch2. (33)

By combining the inequalities (32) and (33) it follows that

‖u− U‖1,h ≤ C

c0
h2. (34)

In fact, a more careful treatment of the remainder term in the Taylor series expansion on p.14 reveals
that

ϕi = u′′(xi)−D+
xD

−
x u(xi) = −h

2

12
uIV (ξi), ξi ∈ [xi−1, xi+1].

Thus

|ϕi| ≤ h2
1

12
max
x∈[0,1]

∣∣uIV (x)
∣∣ , and hence C =

1

12
max
x∈[0,1]

∣∣uIV (x)
∣∣

in inequality (33). Recalling that c0 = (1 + c⋆)
−1 and c⋆ = 1/2, we deduce that c0 = 2/3. Substituting

the values of the constants C and c0 into inequality (34) it follows that

‖u− U‖1,h ≤ 1

8
h2‖uIV ‖C([0,1]).

Thus we have proved the following result.

Theorem 5 Let f ∈ C([0, 1]), c ∈ C([0, 1]), with c(x) ≥ 0 for all x ∈ [0, 1], and suppose that the
corresponding (weak) solution of the boundary-value problem (20) belongs to C4([0, 1]); then

‖u− U‖1,h ≤ 1

8
h2‖uIV ‖C([0,1]). (35)
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The analysis of the simple finite difference scheme (22) contains the key steps of a general error analysis
for finite difference approximations of (elliptic) partial differential equations:

(1) The first step is to prove the stability of the scheme in an appropriate mesh-dependent norm (c.f.
inequality (30), for example). A typical stability result for the general finite difference scheme (19) is

|||U |||Ωh
≤ C1 (‖fh‖Ωh

+ ‖gh‖Γh
), (36)

where ||| · |||Ωh
, ‖ · ‖Ωh

and ‖ · ‖Γh
are mesh-dependent norms involving mesh-points of Ωh (or Ωh) and

Γh, respectively, and C1 is a positive constant, independent of h.
(2) The second step is to estimate the size of the consistency error,

ϕΩh
:= Lhu− fh, in Ωh,

ϕΓh
:= Bhu− gh, on Γh.

(in the case of the finite difference scheme (20) ϕΓh
= 0, and therefore ϕΓh

did not appear explicitly in
our error analysis). If

‖ϕΩh
‖Ωh

+ ‖ϕΓh
‖Γh

→ 0 as h→ 0,

for a sufficiently smooth solution u of the boundary-value problem (18), we say that the scheme (19) is
consistent. If p is the largest positive integer such that

‖ϕΩh
‖Ωh

+ ‖ϕΓh
‖Γh

≤ C2h
p as h→ 0,

(where C2 is a positive constant independent of h) for all sufficiently smooth u, the scheme is said to have
order of accuracy (or order of consistency) p.

The finite difference scheme (19) is said to provide a convergent approximation to the solution u of
the boundary-value problem (18) in the norm ||| · |||Ωh

, if

|||u− U |||Ωh
→ 0 as h→ 0.

If q is the largest positive integer such that

|||u− U |||Ωh
≤ Chq as h→ 0

(where C is a positive constant independent of the mesh-size h), then the scheme is said to have order of
convergence q.

From these definitions we deduce the following fundamental theorem.

Theorem 6 Suppose that the finite difference scheme (19), involving linear finite difference operators
Lh and Bh, is stable (i.e., the inequality (36) holds for all fh and gh) and that the scheme is a consistent
approximation of the boundary-value problem (18); then the finite difference scheme (19) is a convergent
approximation of the boundary-value problem (18), and the order of convergence q is not smaller then the
order of accuracy (order of consistency) p.

Proof. We define the global error e := u − U . Then, thanks to the assumed linearity of Lh, we have
that

Lhe = Lh(u− U) = Lhu− LhU = Lhu− fh.

Thus

Lhe = ϕΩh
.
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Similarly, thanks to the assumed linearity of Bh, we have that

Bhe = ϕΓh
.

By the assumed stability of the scheme it then follows that

|||u− U |||Ωh
= |||e|||Ωh

≤ C1(‖ϕΩh
‖Ωh

+ ‖ϕΓh
‖Γh

),

and hence the stated result with q ≥ p thanks to the assumed consistency of order p of the finite difference
scheme. That completes the proof. �

Thus, paraphrasing Theorem 3.6, stability and consistency imply convergence. This abstract result is
at the heart of the convergence analysis of finite difference approximations of differential equations.
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4 Finite difference approximation of elliptic boundary-value problems

Lecture 4In Section 3 we presented a detailed error analysis for a finite difference approximation of a two-point
boundary-value problem. Here we shall carry out a similar analysis for the model problem

−∆u+ c(x, y)u = f(x, y) in Ω,

u = 0 on ∂Ω,
(37)

where Ω = (0, 1) × (0, 1), c is a continuous function on Ω and c(x, y) ≥ 0. As far as the smoothness of
the function f is concerned, we shall consider two separate cases:

(a) First we shall assume that f is a continuous function on Ω. In this case, the error analysis will
proceed along the same lines as in Section 3.

(b) We shall then consider the case when f is only in L2(Ω). As f need not be continuous on Ω, the
boundary-value problem (37) need not have a classical solution – only a weak solution exists. This
gives rise to technical difficulties: in particular, we cannot use a Taylor series expansion to estimate
the size of the consistency error. We shall bypass the problem by employing a different technique.

(a) (f ∈ C(Ω)) The first step in the construction of the finite difference approximation of (37) is
to define the mesh. Let N be an integer, N ≥ 2, and let h := 1/N ; the mesh-points are (xi, yj),
i, j = 0, . . . , N, where xi := ih, yj := jh. These mesh-points form the mesh

Ωh := {(xi, yj) ∈ Ω : i, j = 0, . . . , N}.

Similarly as in Section 3, we consider the set of interior mesh-points

Ωh := {(xi, yj) ∈ Ω : i, j = 1, ..., N − 1},

and the set of boundary mesh-points Γh := Ωh \ Ωh.
Analogously to (22), the finite difference scheme is:

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) + c(xi, yj)Ui,j = f(xi, yj) for (xi, yj) ∈ Ωh,

U = 0 on Γh.
(38)

In an expanded form, this can be written as follows:

−
{
Ui+1,j − 2Ui,j + Ui−1,j

h2
+
Ui,j+1 − 2Ui,j + Ui,j−1

h2

}
+ c(xi, yj)Ui,j = f(xi, yj),

i, j = 1, . . . , N − 1, (39)

Ui,j = 0 if i = 0, i = N or if j = 0, j = N. (40)

For each i and j, 1 ≤ i, j ≤ N − 1, the finite difference equation (39) involves five values of the
approximate solution U : Ui,j, Ui−1,j , Ui+1,j, Ui,j−1, Ui,j+1, and is therefore frequently referred to as
the five-point difference scheme. It is again possible to write (39), (40) as a system of linear algebraic
equations

AU = F, (41)

where now

U = (U11, U12, . . . , U1,N−1, U21, U22, . . . , U2,N−1, . . . ,

. . . , Ui1, Ui2, . . . , Ui,N−1, . . . , UN−1,1, UN−1,2, . . . , UN−1,N−1)
T,
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Figure 1: The mesh Ωh(·), the boundary mesh Γh(×), and a typical five-point difference stencil.

F = (F11, F12, . . . , F1,N−1, F21, F22, . . . , F2,N−1, . . . ,

. . . , Fi1, Fi2, . . . , Fi,N−1, . . . , FN−1,1, FN−1,2, . . . , FN−1,N−1)
T,

and A is an (N − 1)2 × (N − 1)2 sparse matrix of banded structure (i.e. a sparse matrix whose nonzero
entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on
either side). A typical row of the matrix contains five nonzero entries, corresponding to the five values of
U in the finite difference stencil shown in Fig. 1, while the sparsity structure of A is depicted in Fig. 2.

4.1 Existence and uniqueness of a solution, stability, consistency, and convergence

Next we show that (38) has a unique solution. We proceed analogously as in Section 3. For two functions,
V and W , defined on Ωh, we introduce the inner product

(V,W )h :=

N−1∑

i=1

N−1∑

j=1

h2Vi,jWi,j,

which resembles the L2-inner product (v,w) :=
∫
Ω v(x, y)w(x, y) dxdy. The next result is a direct

extension of Lemma 3 from the univariate case to the case of two space dimensions.

Lemma 5 Suppose that V is a function defined on Ωh and that V = 0 on Γh; then,

(−D+
xD

−
x V, V )h + (−D+

y D
−
y V, V )h =

N∑

i=1

N−1∑

j=1

h2|D−
x Vi,j|2 +

N−1∑

i=1

N∑

j=1

h2|D−
y Vi,j |2. (42)

Proof. The identity (42) is a direct consequence of (24) and the analogous identity for −D+
y D

−
y . �
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Figure 2: The sparsity structure of the banded matrix A.

Returning to the analysis of the finite difference scheme (38), we shall now proceed in much the same
way as in the univariate case considered in the previous section. We note that, since c(x, y) ≥ 0 on Ω, by
(42) we have that

(AV, V )h = (−D+
xD

−
x V −D+

y D
−
y V + cV, V )h

= (−D+
xD

−
x V, V )h + (−D+

y D
−
y V, V )h + (cV, V )h

≥
N∑

i=1

N−1∑

j=1

h2|D−
x Vi,j|2 +

N−1∑

i=1

N∑

j=1

h2|D−
y Vi,j|2,

(43)

for any V defined on Ωh such that V = 0 on Γh. Now this implies, just as in the one-dimensional analysis
presented in Section 3, that A is a nonsingular matrix. Indeed if AV = 0, then (43) yields:

D−
x Vi,j =

Vi,j − Vi−1,j

h
= 0,

i = 1, . . . , N,
j = 1, . . . , N − 1;

D−
y Vi,j =

Vi,j − Vi,j−1

h
= 0,

i = 1, . . . , N − 1,
j = 1, . . . , N.

Since V = 0 on Γh, these imply that V ≡ 0. Thus AV = 0 if and only if V = 0. Hence A is nonsingular,
and U = A−1F is the unique solution of (38). Thus the solution of the finite difference scheme (38) may
be found by solving the system of linear algebraic equations (41).

In order to prove the stability of the finite difference scheme (38), we introduce (similarly as in the
univariate case) the mesh–dependent norms

‖U‖h := (U,U)
1/2
h ,

and

‖U‖1,h := (‖U‖2h + ‖D−
x U ]|2x + ‖D−

y U ]|2y)1/2,
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where

‖D−
x U ]|x :=




N∑

i=1

N−1∑

j=1

h2|D−
x Ui,j |2




1/2

and

‖D−
y U ]|y :=




N−1∑

i=1

N∑

j=1

h2|D−
y Ui,j|2




1/2

.

The norm ‖ · ‖1,h is the discrete version of the Sobolev norm ‖ · ‖H1(Ω), defined by

‖u‖H1(Ω) :=

(
‖u‖2L2(Ω) +

∥∥∥∥
∂u

∂x

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂u

∂y

∥∥∥∥
2

L2(Ω)

)1/2

.

With this new notation, the inequality (43) can be rewritten in the following compact form:

(AV, V )h ≥ ‖D−
x V ]|2x + ‖D−

y V ]|2y. (44)

Using the discrete Poincaré–Friedrichs inequality stated in the next lemma, we shall be able to deduce
that

(AV, V )h ≥ c0‖V ‖21,h,

where c0 is a positive constant.

Lemma 6 (Discrete Poincaré–Friedrichs inequality.) Suppose that V is a function defined on Ωh and
such that V = 0 on Γh; then, there exists a constant c∗, independent of V and h, such that

‖V ‖2h ≤ c∗
(
‖D−

x V ]|2x + ‖D−
y V ]|2y

)
(45)

for all such V .

Proof. The inequality (45) is a straightforward consequence of its univariate counterpart (27). It follows
from (27) that, for each fixed j, 1 ≤ j ≤ N − 1,

N−1∑

i=1

h|Vi,j|2 ≤
1

2

N∑

i=1

h|D−
x Vi,j|2. (46)

Analogously, for each fixed i, 1 ≤ i ≤ N − 1,

N−1∑

j=1

h|Vi,j|2 ≤
1

2

N∑

j=1

h|D−
y Vi,j|2. (47)

We first multiply (46) by h and sum through j, 1 ≤ j ≤ N − 1, then multiply (47) by h and sum through
i, 1 ≤ i ≤ N − 1, and finally add these two inequalities to obtain

2 ‖V ‖2h ≤ 1

2

(
‖D−

x V ]|2x + ‖D−
y V ]|2y

)
.

Hence we arrive at (45) with c∗ =
1
4 . That completes the proof. �
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Now the inequalities (44) and (45) imply that

(AV, V )h ≥ 1

c∗
‖V ‖2h.

Finally, combining this inequality with (44) and recalling the definition of the norm ‖ · ‖1,h, we obtain

(AV, V )h ≥ c0‖V ‖21,h, (48)

where c0 = (1 + c∗)−1.

Using the inequality (48) we can now prove the stability of the finite difference scheme (38).

Theorem 7 The finite difference scheme (38) is stable in the sense that

‖U‖1,h ≤ 1

c0
‖f‖h. (49)

Proof. The proof of this inequality is identical to that of the stability inequality (30) in the univariate
case. From (48) and (38) we have that

c0‖U‖21,h ≤ (AU,U)h = (f, U)h ≤ |(f, U)h|
≤ ‖f‖h‖U‖h ≤ ‖f‖h‖U‖1,h,

and hence we arrive at the desired inequality (49). �

4.1.1 Convergence in the class of classical solutions

Having established stability of the finite difference scheme (38), we turn to the question of its accuracy.
We define the global error, e, by

ei,j := u(xi, yj)− Ui,j, 0 ≤ i, j ≤ N.

Then, assuming that u ∈ C4(Ω), and employing Taylor series expansions with remainder terms in the x
and y coordinate directions, respectively, we have that

Aei,j = Au(xi, yj)−AUi,j = Au(xi.yj)− fi,j

= ∆u(xi, yj)− (D+
x D

−
x u(xi, yj) +D+

y D
−
y u(xi, yj))

=

[
∂2u

∂x2
(xi, yj)−D+

xD
−
x u(xi, yj)

]
+

[
∂2u

∂y2
(xi, yj)−D+

y D
−
y u(xi, yj)

]

= −h
2

12

∂4u

∂x4
(ξi, yj)−

h2

12

∂4u

∂y4
(xi, ηj), 1 ≤ i, j ≤ N − 1,

where ξi ∈ [xi−1, xi+1], ηj ∈ [yj−1, yj+1], and fi,j := f(xi, yj).
We define the consistency error (or truncation error) of the finite difference scheme (38) by

ϕi,j := Au(xi, yj)− fi,j.

Then, by the calculations above,

ϕi,j = −h
2

12

(
∂4u

∂x4
(ξi, yj) +

∂4u

∂y4
(xi, ηj)

)
, 1 ≤ i, j ≤ N − 1,
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and

Aei,j = ϕi,j , 1 ≤ i, j ≤ N − 1,

e = 0 on Γh.

Thanks to the stability result (49), we therefore have that

‖u− U‖1,h = ‖e‖1,h ≤ 1

c0
‖ϕ‖h. (50)

To arrive at a bound on the global error e := u − U in the norm ‖ · ‖1,h it therefore remains to bound
‖ϕ‖h and insert the resulting bound in the right-hand side of (50). Indeed, by noting that

|ϕi,j | ≤
h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
,

we deduce that the consistency error, ϕ, satisfies

‖ϕ‖h ≤ h2

12

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (51)

Finally (50) and (51) yield the following result.

Theorem 8 Let f ∈ C(Ω), c ∈ C(Ω), with c(x, y) ≥ 0, (x, y) ∈ Ω, and suppose that the corresponding
weak solution of the boundary-value problem (37) belongs to C4(Ω); then,

‖u− U‖1,h ≤ 5h2

48

(∥∥∥∥
∂4u

∂x4

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂4u

∂y4

∥∥∥∥
C(Ω)

)
. (52)

Proof. Recall that c0 = (1 + c∗)−1 and c∗ =
1
4 , so that 1/c0 = 5

4 , and combine (50) and (51). �

According to this result, the five-point difference scheme (38) for the boundary-value problem (37)
is second-order convergent, provided that u is sufficiently smooth. As in the univariate case, we have
deduced second-order convergence of the finite difference scheme from its stability and its second-order
consistency, under the assumption that the exact solution u is sufficiently smooth, i.e., that u ∈ C4(Ω),
and therefore, because c ∈ C(Ω) by hypothesis, necessarily f = −∆u+ cu ∈ C(Ω).

In general, however, even if f and c are smooth functions, the corresponding solution, u, of (37) will
not be a smooth function because the boundary, Γ, of the domain, Ω = (0, 1)2, is not a smooth curve.
Thus, the hypothesis u ∈ C4(Ω) is unrealistic.5

Our analysis has another limitation: it has been performed under the assumption that, at the very
least, f ∈ C(Ω), which was required in order to ensure that the values of the function f are correctly
defined at the mesh-points. However, in physical applications one often has to consider differential
equations where f is not a continuous function on Ω, but discontinuous (e.g. piecewise continuous) or,
more generally, f ∈ L2(Ω). We know that in this case Theorem 2.3 still implies that the problem has
a unique weak solution, so it is natural to ask whether one can construct an accurate finite difference
approximation of the weak solution. This brings us to case (b), formulated on page 22.

5We note in passing that the regularity u ∈ C4(Ω) can be guaranteed by assuming suitable, so called, compatibility

conditions on the function f , which, for example in the special case when c is identically zero, require that the function f
and its first and second partial derivatives vanish at the four corners of the square domain Ω = (0, 1)2. However, we shall
not consider such situations involving compatibility conditions here.
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Figure 3: The cell Ki,j

(b) (f ∈ L2(Ω)). We retain the same finite difference Lecture 5mesh as in case (a), but we shall modify the
right-hand side in the finite difference scheme (39) to cater for the fact that f is no longer assumed to be
a continuous function on Ω.

The idea is to replace f(xi, yj) in (39) by a ‘cell-average’ of f ,

Tfi,j :=
1

h2

∫

Ki,j

f(x, y) dxdy,

where

Ki,j =

[
xi −

h

2
, xi +

h

2

]
×
[
yj −

h

2
, yj +

h

2

]
.

This, seemingly ad hoc approach, has the following justification. By integrating the partial differential
equation −∆u+cu = f over the cell Ki,j , noting that ∆u = ∇·(∇u) = div(∇u), and using the divergence
theorem we have that

−
∫

∂Ki,j

∂u

∂ν
ds+

∫

Ki,j

cudxdy =

∫

Ki,j

f dxdy (∗∗)

where ∂Ki,j is the boundary of Ki,j , and ν is the unit outward normal to ∂Ki,j . The outward normal
vectors to the faces of ∂Ki,j point in the coordinate directions, so the normal derivative ∂u/∂ν can be
approximated by divided differences using the values of u at the five mesh-points (xi, yj), (xi±1, yj),
(xi, yj±1) marked by “•” in Fig. 3. Thus, by approximating the second integral on the left by mid-point
quadrature, continuing to assume that c ∈ C(Ω), and dividing both sides by meas(Ki,j) = h2, we obtain

−(D+
xD

−
x u(xi, yj) +D+

y D
−
y u(xi, yj)) + c(xi, yj)u(xi, yj) ≈

1

h2

∫

Ki,j

f(x, y) dxdy.

Remark 2 Finite difference schemes that arise from integral formulations of a differential equation, such
as (∗∗), are called finite volume methods. ⋄
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Clearly, Tfi,j is well defined for f in L2(Ω) (in fact, Tfi,j is well defined even if f ∈ L1(Ω) only); indeed,

|Tfi,j| =
1

h2

∣∣∣∣∣

∫

Ki,j

f(x, y) dxdy

∣∣∣∣∣

≤ 1

h2

(∫

Ki,j

12 dxdy

)1/2(∫

Ki,j

|f(x, y)|2 dxdy
)1/2

(53)

=
1

h
‖f‖L2(Ki,j) ≤

1

h
‖f‖L2(Ω).

Thus we define our finite difference (or, more precisely, finite volume) approximation of (37) by

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) + c(xi, yj)Ui,j = Tfi,j, for (xi, yj) ∈ Ωh,

U = 0, on Γh.
(54)

Since we have not changed the difference operator on the left-hand side, the argument presented on page
24 still applies, and therefore (54) has a unique solution, U .

Theorem 9 The scheme (54) is stable in the sense that

‖U‖1,h ≤ 1

c0
‖Tf‖h

(
≤ 1

c0
‖f‖L2(Ω)

)
. (55)

Proof. According to (48) and (53),

c0‖U‖21,h ≤ (AU,U)h = (Tf,U)h

≤ ‖Tf‖h‖U‖h ≤ ‖Tf‖h‖U‖1,h
≤ ‖f‖L2(Ω)‖U‖1,h,

and hence (55). �

Having established the stability of the scheme (54), we consider the question of its accuracy. Let us
define the global error, e, as before,

ei,j := u(xi, yj)− Ui,j, 0 ≤ i, j ≤ N.

Clearly,

Aei,j = Au(xi, yj)−AUi,j

= Au(xi, yj)− Tfi,j

= −(D+
xD

−
x u(xi, yj) +D+

y D
−
y u(xi, yj)) + c(xi, yj)u(xi, yj)

+

(
T

(
∂2u

∂x2

)
(xi, yj) + T

(
∂2u

∂y2

)
(xi, yj)− T (cu)(xi, yj)

)
. (56)

By noting that

T

(
∂2u

∂x2

)
(xi, yj) =

1

h

∫ yj+h/2

yj−h/2

∂u
∂x(xi + h/2, y) − ∂u

∂x(xi − h/2, y)

h
dy

=
1

h

∫ yj+h/2

yj−h/2
D+

x

∂u

∂x
(xi − h/2, y) dy

= D+
x

[
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y) dy

]
,
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and similarly,

T

(
∂2u

∂y2

)
(xi, yj) = D+

y

[
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2) dx

]
,

the equality (56) can be rewritten as

Ae = D+
x ϕ1 +D+

y ϕ2 + ψ,

where

ϕ1(xi, yj) :=
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y) dy −D−

x u(xi, yj),

ϕ2(xi, yj) :=
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2) dx −D−

y u(xi, yj),

ψ(xi, yj) := (cu)(xi, yj)− T (cu)(xi, yj).

Thus,

Ae = D+
x ϕ1 +D+

y ϕ2 + ψ in Ωh,

e = 0 on Γh.
(57)

As the stability of the difference scheme would only imply the crude bound

‖e‖1,h ≤ 1

c0
‖D+

x ϕ1 +D+
y ϕ2 + ψ‖h,

which makes no use of the special form of the consistency error

ϕ := D+
x ϕ1 +D+

y ϕ2 + ψ,

we shall proceed in a different way. According to the inequality (48) and because Ae = ϕ, we have that

c0‖e‖21,h ≤ (Ae, e)h

= (D+
x ϕ1, e)h + (D+

y ϕ2, e)h + (ψ, e)h. (58)

Let us focus on the first two terms on the right-hand side of (58). Our plan is to use summations by
parts to pass the difference operators D+

x and D+
y from ϕ1 and ϕ2, respectively, onto e. Recalling that

e = 0 on Γh, we then have that

(D+
x ϕ1, e)h =

N−1∑

j=1

h

(
N−1∑

i=1

h
ϕ1(xi+1, yj)− ϕ1(xi, yj)

h
ei,j

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj)
ei,j − ei−1,j

h

)

= −
N−1∑

j=1

h

(
N∑

i=1

hϕ1(xi, yj)D
−
x ei,j

)

= −
N∑

i=1

N−1∑

j=1

h2ϕ1(xi, yj)D
−
x ei,j

≤




N∑

i=1

N−1∑

j=1

h2|ϕ1(xi, yj)|2



1/2


N∑

i=1

N−1∑

j=1

h2|D−
x ei,j |2




1/2

= ‖ϕ1]|x‖D−
x e]|x.
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Thus,

(D+
x ϕ1, e)h ≤ ‖ϕ1]|x‖D−

x e]|x. (59)

Similarly,

(D+
y ϕ2, e)h ≤ ‖ϕ2]|y‖D−

y e]|y (60)

(see page 25 for the definitions of the mesh-dependent norms ‖·]|x and ‖·]|y). By the Cauchy–Schwarz
inequality we also have that

(ψ, e)h ≤ ‖ψ‖h‖e‖h. (61)

By substituting the inequalities (59)–(61) into the inequality (58) we obtain

c0‖e‖21,h ≤ ‖ϕ1]|x‖D−
x e]|x + ‖ϕ2]|y‖D−

y e]|y + ‖ψ‖h‖e‖h
≤
(
‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2h

)1/2 (‖D−
x e]|2x + ‖D−

y e]|2y + ‖e‖2h
)1/2

=
(
‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2h

)1/2 ‖e‖1,h.
Dividing both sides by ‖e‖1,h yields the following result.

Lemma 7 The global error, e, of the finite difference scheme (54) satisfies the inequality

‖e‖1,h ≤ 1

c0
(‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2h)1/2, (62)

where ϕ1, ϕ2, and ψ are defined by

ϕ1(xi, yj) :=
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y) dy −D−

x u(xi, yj), (63)

for i = 1, . . . , N , j = 1, . . . , N − 1;

ϕ2(xi, yj) :=
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x, yj − h/2) dx −D−

y u(xi, yj), (64)

for i = 1, . . . , N − 1, j = 1, . . . , N ; and

ψ(xi, yj) := (cu)(xi, yj)−
1

h2

∫ xi+h/2

xi−h/2

∫ yj+h/2

yj−h/2
(cu)(x, y) dxdy, (65)

for i, j = 1, . . . , N − 1.

To complete the error analysis, it remains to bound ϕ1, ϕ2 and ψ. Using Taylor series expansions it
is easily seen that

|ϕ1(xi, yj)| ≤
h2

24

(∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)
, (66)

|ϕ2(xi, yj)| ≤
h2

24

(∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)
, (67)

|ψ(xi, yj)| ≤
h2

24

(∥∥∥∥
∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)
, (68)

and by using these to bound ‖ϕ1]|x, ‖ϕ2]|y and ‖ψ]|h on the right-hand side of the inequality (62) we
arrive at the following theorem.

31



Theorem 10 Let f ∈ L2(Ω), c ∈ C2(Ω) with c(x, y) ≥ 0, (x, y) ∈ Ω, and suppose that the corresponding
weak solution, u, of the boundary-value problem (37) belongs to C3(Ω); then,

‖u− U‖1,h ≤ 5

96
h2M3, (69)

where

M3 =

{(∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂3u

∂x3

∥∥∥∥
C(Ω)

)2

+

(∥∥∥∥
∂3u

∂x2y

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂3u

∂y3

∥∥∥∥
C(Ω)

)2

+

(∥∥∥∥
∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+

∥∥∥∥
∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)2




1/2

.

Proof. By recalling that 1/c0 = 5/4 and substituting the bounds (66)–(68) into the right-hand side of
the inequality (62), the inequality (69) immediately follows. �

4.1.2 Convergence in the class of weak solutions that belong to H3(Ω)

Comparing (69) with (52), we see that while the smoothness requirement on the solution has been relaxed
from u ∈ C4(Ω) to u ∈ C3(Ω), second-order convergence has been retained.

The hypothesis u ∈ C3(Ω) can be further relaxed by using integral representations of ϕ1, ϕ2 and ψ
instead of Taylor series expansions. We show how this is done for ϕ1; ϕ2 and ψ are handled analogously.
The key idea is to use the Newton–Leibniz formula (also known as the fundamental theorem of calculus):

w(b)− w(a) =

∫ b

a
w′(x) dx.

Thus, by denoting xi±1/2 := xi ± h/2 and yj±1/2 := yj ± h/2, we have that

ϕ1(xi, yj) =
1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y)−

∂u

∂x
(x, yj)

]
dxdy

=
1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(xi−1/2, y)−

∂u

∂x
(x, y)

]
dxdy

+
1

h2

∫ xi

xi−1

∫ yj+1/2

yj−1/2

[
∂u

∂x
(x, y)− ∂u

∂x
(x, yj)

]
dxdy

=
1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

(+1)

∫ xi−1/2

x

∂2u

∂x2
(ξ, y) dξ

]
dxdy

+
1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

(+1)

∫ y

yj

∂2u

∂x∂y
(x, η) dη

]
dxdy

=
1

h2

∫ yj+1/2

yj−1/2

[
x

∫ xi−1/2

x

∂2u

∂x2
(ξ, y) dξ

∣∣∣∣
xi

xi−1

+

∫ xi

xi−1

x
∂2u

∂x2
(x, y) dx

]
dy

+
1

h2

∫ xi

xi−1


y
∫ y

yj

∂2u

∂x∂y
(x, η) dη

∣∣∣∣∣

yj+1/2

yj−1/2

−
∫ yj+1/2

yj−1/2

y
∂2u

∂x∂y
(x, y) dy


 dx

=
1

h2

∫ yj+1/2

yj−1/2

[∫ xi−1/2

xi−1

(x− xi−1)
∂2u

∂x2
(x, y) dx+

∫ xi

xi−1/2

(x− xi)
∂2u

∂x2
(x, y) dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj

yj−1/2

(y − yj−1/2)
∂2u

∂x∂y
(x, y) dy +

∫ yj+1/2

yj

(y − yj+1/2)
∂2u

∂x∂y
(x, y) dy

]
dx.
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We define the functions

A(x) =

{
1
2(x− xi−1)

2, x ∈ [xi−1, xi−1/2],

1
2(x− xi)

2, x ∈ [xi−1/2, xi],

B(y) =

{
1
2(y − yj−1/2)

2, y ∈ [yj−1/2, yj],

1
2(y − yj+1/2)

2, y ∈ [yj, yj+1/2].

Note that A and B are continuous functions, A(xi−1) = A(xi) = 0, and B(yj−1/2) = B(yj+1/2) = 0.
Thus, upon integration by parts,

ϕ1(xi, yj) =
1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

A′(x)
∂2u

∂x2
(x, y) dx

]
dy

− 1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

B′(y)
∂2u

∂x∂y
(x, y) dy

]
dx

= − 1

h2

∫ yj+1/2

yj−1/2

[∫ xi

xi−1

A(x)
∂3u

∂x3
(x, y) dx

]
dy

+
1

h2

∫ xi

xi−1

[∫ yj+1/2

yj−1/2

B(y)
∂3u

∂x∂y2
(x, y) dy

]
dx.

However, since

|A(x)| ≤ h2

8
, |B(y)| ≤ h2

8
,

it follows that

|ϕ1(xi, yj)| ≤
1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x3
(x, y)

∣∣∣∣ dxdy +
1

8

∫ xi

xi−1

∫ yj+1/2

yj−1/2

∣∣∣∣
∂3u

∂x∂y2
(x, y)

∣∣∣∣ dxdy.

Consequently,

‖ϕ1]|2x ≤ h4

32

(∥∥∥∥
∂3u

∂x3

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂3u

∂x∂y2

∥∥∥∥
2

L2(Ω)

)
. (70)

Analogously,

‖ϕ2]|2y ≤ h4

32

(∥∥∥∥
∂3u

∂y3

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂3u

∂x2∂y

∥∥∥∥
2

L2(Ω)

)
. (71)

In order to estimate ψ, we note that

ψ(xi, yj) =
1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∂w

∂x
(s, y) ds+

∫ yj

y

∂w

∂y
(x, t) dt+

∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t) ds dt

)
dxdy

= − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

C(x)
∂2w

∂x2
(x, y) dxdy − 1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

D(y)
∂2w

∂y2
dxdy

+
1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

(∫ xi

x

∫ yj

y

∂2w

∂x∂y
(s, t) ds dt

)
dxdy,

33



where w(x, y) := c(x, y)u(x, y),

C(x) =

{
1
2(x− xi−1/2)

2, x ∈ [xi−1/2, xi],

1
2(x− xi+1/2)

2, x ∈ [xi, xi+1/2],

and

D(y) =

{
1
2(y − yj−1/2)

2, y ∈ [yj−1/2, yj],

1
2(y − yj+1/2)

2, y ∈ [yj, yj+1/2].

Hence,

|ψ(xi, yj)| ≤
1

8

(∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂x2
(x, y)

∣∣∣∣ dxdy

+

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂y2

∣∣∣∣ dxdy

+ 2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

∣∣∣∣
∂2w

∂x∂y

∣∣∣∣ dxdy
)
,

so that, with w = cu, we have that

‖ψ‖2h ≤ 3h4

64

(∥∥∥∥
∂2w

∂x2

∥∥∥∥
2

L2(Ω)

+

∥∥∥∥
∂2w

∂y2

∥∥∥∥
2

L2(Ω)

+ 4

∥∥∥∥
∂2w

∂x∂y

∥∥∥∥
2

L2(Ω)

)
. (72)

By substituting the bounds (70)–(72) into the right-hand side of the inequality (62), noting that 1/c0 =
4/5 and recalling the definition of the Sobolev norm ‖ · ‖H3(Ω), we obtain the following result.

Theorem 11 Let f ∈ L2(Ω), c ∈ C2(Ω), with c(x, y) ≥ 0, (x, y) ∈ Ω, and suppose that the corresponding
weak solution of the boundary-value problem (37) belongs to H3(Ω); then,

‖u− U‖1,h ≤ Ch2‖u‖H3(Ω), (73)

where C is a positive constant (computable from (70)–(72)).

It can be shown that the error estimate (73) is best possible in the sense that further weakening of
the regularity hypothesis on u leads to a loss of second-order convergence. Error estimates where the
highest possible order of accuracy has been attained with the minimum hypotheses on the smoothness of
the solution are called optimal error estimates. Thus, for example, (73) is an optimal error estimate for
the finite difference scheme (54), but (69) is not.

We have used integral representations of differences to show the bounds (70)–(72). Alternatively one
can use the following abstract device. Start of

optional

materialLemma 8 (The Bramble–Hilbert Lemma) Suppose Φ : Hk(Ω) → R is a linear functional, i.e., for all
u, v ∈ Hk(Ω), and all α, β ∈ R,

Φ(αu+ βv) = αΦ(u) + βΦ(v),

and assume that:

(a) Φ(p) = 0 for every polynomial p of degree ≤ k − 1, and
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(b) there exists a positive constant C such that

|Φ(u)| ≤ C‖u‖Hk(Ω) ∀u ∈ Hk(Ω).

Then, there exists a constant C1 = C1(Ω, C, k) such that

|Φ(u)| ≤ C1 |u|Hk(Ω) ∀u ∈ Hk(Ω).

Here | · |Hk(Ω) and ‖ · ‖Hk(Ω) are the Sobolev semi-norm and Sobolev norm, defined in Section 1.3.

Proof. See P. Ciarlet: The Finite Element Method for Elliptic Problems, SIAM, Philadelphia, 2002. The
digital version of the book is available from https://epubs.siam.org/doi/book/10.1137/1.9780898719208
for details. �

We shall use the Bramble–Hilbert lemma to re-derive the bound (70) for ϕ1. Let K = [−1/2, 1/2] ×
[−1/2, 1/2], and consider the affine mapping

{
x = xi − h/2 + sh, −1/2 ≤ s ≤ 1/2,
y = yj + th, −1/2 ≤ t ≤ 1/2,

of K onto K−
i,j = [xi−1, xi]× [yj−1/2, yj+1/2]. We define

ū(s, t) := u(x, y).

In terms of ū, ϕ1 can be rewritten as follows:

ϕ1(xi, yj) =
1

h
Φ(ū),

where

Φ(ū) =

∫ 1/2

−1/2

∂ū

∂s
(0, t) dt−

{
ū(

1

2
, 0) − ū(−1

2
, 0)

}
.

Clearly Φ : ū 7→ Φ(ū) is a linear functional, and Φ(p) = 0 for every polynomial p of the form

p(s, t) = a0 + a1s+ a2t+ a3s
2 + a4st+ a5t

2

(i.e., Φ(p) = 0 if p is a bivariate polynomial of degree ≤ 2). In addition,

|Φ(ū)| ≤
∫ 1/2

−1/2

∣∣∣∣
∂ū

∂s
(0, t)

∣∣∣∣ dt+ 2 max
(s,t)∈K

|ū(s, t)| . (74)

Lemma 9 Let v ∈ H2(K); then

(a)

∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(0, t)

∣∣∣∣ dt ≤
√
2 ‖v‖H2(K),

(b) max
(s,t)∈K

|v(s, t)| ≤ 2 ‖v‖H2(K).

Proof. We begin by proving the inequality stated in (a); we shall then prove the inequality under (b).
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(a) Note that, for any s ∈ [−1/2, 1/2],

∣∣∣∣
∂v

∂s
(0, t)

∣∣∣∣ ≤
∣∣∣∣
∂v

∂s
(s, t)

∣∣∣∣+
∣∣∣∣
∫ 0

s

∂2v

∂s2
(σ, t) dσ

∣∣∣∣ .

Thus,

∣∣∣∣
∂v

∂s
(0, t)

∣∣∣∣ ≤
∣∣∣∣
∂v

∂s
(s, t)

∣∣∣∣+
∫ 1/2

−1/2

∣∣∣∣
∂2v

∂s2
(σ, t)

∣∣∣∣ dσ.

Integrating both sides on the last inequality with respect to s and t we have that

∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(0, t)

∣∣∣∣ dt ≤
∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(s, t)

∣∣∣∣ ds dt+
∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂2v

∂s2
(σ, t)

∣∣∣∣ dσ dt,

≤
(∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(s, t)

∣∣∣∣
2

ds dt

)1/2

+

(∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂2v

∂s2
(σ, t)

∣∣∣∣
2

dσ dt

)1/2

=

∥∥∥∥
∂v

∂s

∥∥∥∥
L2(K)

+

∥∥∥∥
∂2v

∂s2

∥∥∥∥
L2(K)

.

Finally, using the inequality

a+ b ≤
√
2(a2 + b2)1/2, a, b ≥ 0,

and the definition of ‖ · ‖H2(K), we get the inequality stated under (a).

(b) Let (x, y) ∈ K and (s, t) ∈ K. Then

v(x, y) = v(s, t) +

∫ x

s

∂v

∂s
(σ, t) dσ +

∫ y

t

∂v

∂t
(s, τ) dτ

+

∫ x

s

∫ y

t

∂2v

∂s ∂t
(σ, τ) dσ dτ,

and therefore

|v(x, y)| ≤ |v(s, t)|+
∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(σ, t)

∣∣∣∣ dσ +

∫ 1/2

−1/2

∣∣∣∣
∂v

∂t
(s, τ)

∣∣∣∣ dτ

+

∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂2v

∂s ∂t
(σ, τ)

∣∣∣∣ dσ dτ.

Integrating both sides with respect to s and t it follows that

|v(x, y)| ≤
∫ 1/2

−1/2

∫ 1/2

−1/2
|v(s, t)| ds dt+

∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂v

∂s
(σ, t)

∣∣∣∣ dσ dt

+

∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂v

∂t
(s, τ)

∣∣∣∣ ds dτ +
∫ 1/2

−1/2

∫ 1/2

−1/2

∣∣∣∣
∂2v

∂s ∂t
(σ, τ)

∣∣∣∣ dσ dτ

≤ ‖v‖L2(K) +

∥∥∥∥
∂v

∂s

∥∥∥∥
L2(K)

+

∥∥∥∥
∂v

∂t

∥∥∥∥
L2(K)

+

∥∥∥∥
∂2v

∂s ∂t

∥∥∥∥
L2(K)

≤ 2‖v‖H2(K) ∀(x, y) ∈ K.

Taking the maximum over all (x, y) in K, we obtain (b). �

36



Equipped with the inequalities (a) and (b) we now return to the inequality (74). It follows that

|Φ(ū)| ≤ (
√
2 + 4)‖ū‖H2(K).

Since ‖ū‖H2(K) ≤ ‖ū‖H3(K), we also have

|Φ(ū)| ≤ (
√
2 + 4)‖ū‖H3(K).

Thus we have shown that the mapping Φ satisfies the hypotheses of the Bramble–Hilbert lemma with
k = 3 and Ω = K.

Hence, there exists a constant C1 such that

|Φ(ū)| ≤ C1 |ū|H3(K) ∀ū ∈ H3(K).

Returning from (s, t) ∈ K to our original variables (x, y) ∈ K−
i,j, we deduce that

|Φ(ū)| ≤ C1h
3−1 |u|H3(K−

i,j)
,

and therefore,

|ϕ1(xi, yj)| =
1

h
|Φ(ū)| ≤ C1h |u|H3(K−

i,j)
.

Consequently,

‖ϕ1]|2x =
N∑

i=1

N−1∑

j=1

h2 |ϕ1(xi, yj)|2

≤ C2
1h

4
N∑

i=1

N−1∑

j=1

|u|2
H3(K−

i,j)

≤ C2
1h

4 |u|2H3(Ω) .

Therefore,

‖ϕ1]|x ≤ C1h
2 |u|H3(Ω) . (75)

Similarly,

‖ϕ2]|y ≤ C2h
2 |u|H3(Ω) (76)

and

‖ψ‖h ≤ C3h
2 |u|H2(Ω) . (77)

The bounds (75)–(77) derived by using the Bramble–Hilbert lemma are essentially the same as those
obtained earlier by integral representations, and stated in (70)–(72). There is, however, an important
practical difference: while the constants involved in (70)–(72) are known, those which appear in (75)–(77)
(namely, C1, C2, C3) are unknown because the Bramble–Hilbert lemma does not tell us what these are,
so the constant in the resulting error estimate is not ‘computable’. We note, however, that in recent
years several constructive proofs of the Bramble–Hilbert lemma have been derived for restricted classes
of Ω. (e.g. Ω convex or star-shaped). These constructive proofs give an explicit expression for C1 (see
the statement of the Bramble–Hilbert lemma) in terms of C, k and the area (volume) of Ω. End of

optional

material
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4.2 Nonaxiparallel domains and nonuniform meshes

Lecture 6We have carried out an error analysis of finite difference schemes for the partial differential equation

−∆u+ c(x, y)u = f(x, y)

on a square domain Ω. The error analysis of difference schemes for more general elliptic equations would
proceed along similar lines. Consider, for example,

−
[
∂

∂x

(
a1(x, y)

∂u

∂x

)
+

∂

∂y

(
a2(x, y)

∂u

∂y

)]
+ b1(x, y)

∂u

∂x
+ b2(x, y)

∂u

∂y
+ c(x, y)u = f(x, y)

on the unit square Ω in R
2. We approximate this partial differential equation by

− 1

h

[
a1(xi+1/2, yj)

Ui+1,j − Ui,j

h
− a1(xi−1/2, yj)

Ui,j − Ui−1,j

h

]

− 1

h

[
a2(xi, yj+1/2)

Ui,j+1 − Ui,j

h
− a2(xi, yj−1/2)

Ui,j − Ui,j−1

h

]

+ b1(xi, yj)
Ui+1,j − Ui−1,j

2h
+ b2(xi, yj)

Ui,j+1 − Ui,j−1

2h

+ c(xi, yj)Ui,j =
1

h2

∫ xi+1/2

xi−1/2

∫ yj+1/2

yj−1/2

f(x, y) dxdy.

This is still a five point difference scheme that is second order consistent.
When Ω has a curved boundary, a nonuniform mesh has to be used near ∂Ω to avoid a loss of accuracy.

To be more precise, let us introduce the following notation: let hi+1 := xi+1 − xi, hi := xi− xi−1, and let

~i :=
1

2
(hi+1 + hi).

We define

D+
x Ui :=

Ui+1 − Ui

~i
, D−

x Ui :=
Ui − Ui−1

hi
,

D+
xD

−
x Ui :=

1

~i

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
.

Similarly, let kj+1 := yj+1 − yj , kj := yj − yj−1, and let

kj :=
1

2
(kj+1 + kj).

Let

D+
y Uj :=

Uj+1 − Uj

kj
, D−

y Uj :=
Uj − Uj−1

kj
,

D+
y D

−
y Uj :=

1

kj

(
Uj+1 − Uj

kj+1
− Uj − Uj−1

kj

)
.

Note that, whereas on a uniform mesh D−
x Ui+1 = D+

x Ui and D
−
y Uj+1 = D+

y Uj, on nonuniform meshes
this is no longer the case. For the same reason, on a nonuniform mesh D+

xD
−
x Ui 6= D−

xD
+
x Ui and

D+
y D

−
y Uj 6= D−

y D
+
y Uj .

On a general nonuniform mesh

Ωh := {(xi, yj) ∈ Ω : xi+1 − xi = hi+1, yj+1 − yj = kj+1},

38



the Laplace operator, ∆, can be approximated by D+
xD

−
x +D+

y D
−
y , with the difference operators D+

xD
−
x ,

D+
y D

−
y defined above.

Consider, for example, the Dirichlet problem

−∆u = f(x, y) in Ω,

u = 0 on ∂Ω,

where Ω and the nonuniform mesh Ωh are depicted in Fig. 4.

• Ωh; ⊙ Γh, Ωh = Ωh ∪ Γh.
Figure 4: Nonuniform mesh Ωh.

The finite difference approximation of this boundary-value problem is

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = 0 on Γh.

Equivalently,

− 1

~i

(
Ui+1,j − Ui,j

hi+1
− Ui,j − Ui−1,j

hi

)
− 1

kj

(
Ui,j+1 − Ui,j

kj+1
− Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = 0 on Γh.

A typical difference stencil is shown in Fig 5; clearly we still have a five-point difference scheme.
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✉

✉ ✉

✉

✉

(xi, yj−1)

(xi−1, yj) (xi+1, yj)

(xi, yj+1)

(xi, yj)

hi hi+1

kj

kj+1

Figure 5: Five-point stencil on a nonuniform mesh.

4.3 The discrete maximum principle

The maximum principle is a key property of elliptic equations. Under suitable sign-conditions imposed
on the source term in the equation and the coefficients of the differential operator, it (roughly speaking)
ensures that the maximum value of the solution is attained at the boundary of the domain rather than
at an interior point, and if the maximum value of the solution is attained at an interior point, then the
solution must be constant.

To motivate the discussion that will follow, let us begin by considering the two-point boundary-value
problem

−u′′(x) = f(x), x ∈ (a, b); u(a) = A, u(b) = B.

By integrating twice and imposing the boundary conditions in order to fix the integration constants, one
finds that

u(x) =
b− x

b− a

∫ x

a
(t− a)f(t) dt+

x− a

b− a

∫ b

x
(b− t)f(t) dt+

(
1− x− a

b− a

)
A+

x− a

b− a
B, a ≤ x ≤ b.

Hence, if f(x) ≤ 0 for all x ∈ [a, b], then

u(x) ≤
(
1− x− a

b− a

)
A+

x− a

b− a
B, a ≤ x ≤ b,

i.e., the solution curve is below the line connecting the points with coordinates (a,A) and (b,B), and
therefore, in particular

u(x) ≤ max(A,B), a ≤ x ≤ b.

Hence the maximum value of u is attained at the boundary, — a property that is usually referred to as
maximum principle.

Analogously, if f(x) ≥ 0 for all x ∈ [a, b], then

u(x) ≥
(
1− x− a

b− a

)
A+

x− a

b− a
B, a ≤ x ≤ b,

i.e., the solution curve is above the line connecting the points with coordinates (a,A) and (b,B), and
therefore, in particular

u(x) ≥ min(A,B), a ≤ x ≤ b.

Hence the minimum value of u is attained at the boundary, — a property that is usually referred to as
minimum principle.
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It would be far too tedious to use a direct calculation to prove a maximum principle for the multidi-
mensional counterpart of the two-point boundary-value problem considered above: i.e., for

−∆u = f(x), x ∈ Ω, u|∂Ω = g,

where Ω ⊂ R
n is a bounded open set, f ∈ C(Ω) and g ∈ C(∂Ω). We shall therefore show the maximum

principle for this problem by an indirect, contradiction-based, argument.
Suppose first that f(x) < 0 for all x ∈ Ω and that u ∈ C2(Ω) ∩ C(Ω) is a (classical) solution to the

above boundary-value problem, i.e., −∆u(x) = f(x) for all x ∈ Ω and u|∂Ω = g. We shall prove that the
maximum value of u is then attained on ∂Ω. Suppose otherwise, that u attains its maximum value at
x0 ∈ Ω. Then,

∂u

∂xi
(x0) = 0, i = 1, . . . , n

and
∂2u

∂x2i
(x0) ≤ 0, i = 1, . . . , n.

Hence,

−∆u(x0) = −
n∑

i=1

∂2u

∂x2i
(x0) ≥ 0,

which contradicts the assumption that f(x) < 0 for all x ∈ Ω. The maximum value of u must be therefore
attained on ∂Ω.

Let us now show that a maximum principle still holds under the weaker assumption f(x) ≤ 0 for all
x ∈ Ω. To this end, we consider the auxiliary function v ∈ C2(Ω) ∩ C(Ω) defined by

v(x) := u(x) +
ε

2n
(x21 + · · ·+ x2n),

where ε > 0. Then, −∆v(x) = −∆u(x) − ε = f(x) − ε < 0 for all x ∈ Ω. Hence, by what we have
previously proved, v attains its maximum value on the boundary ∂Ω of Ω. Consequently,

max
x∈∂Ω

u(x) = max
x∈∂Ω

[
v(x)− ε

2n
(x21 + · · ·+ x2n)

]

≥ max
x∈∂Ω

v(x)− max
x∈∂Ω

[ ε
2n

(x21 + · · ·+ x2n)
]

= max
x∈Ω

v(x)− max
x∈∂Ω

[ ε
2n

(x21 + · · ·+ x2n)
]

= max
x∈Ω

v(x)− ε

2n
max
x∈∂Ω

|x|2.

As v(x) = u(x) + ε
2n |x|2 ≥ u(x), it then follows that

max
x∈∂Ω

u(x) ≥ max
x∈Ω

u(x)− ε

2n
max
x∈∂Ω

|x|2

for all ε > 0. Since the expression on the left-hand side of this inequality is independent of ε, as is the
first term on the right-hand side, by passing to the limit ε→ 0+ we deduce that

max
x∈∂Ω

u(x) ≥ max
x∈Ω

u(x).

As ∂Ω ⊂ Ω, trivially maxx∈Ω u(x) ≥ maxx∈∂Ω u(x). Therefore, these two inequalities yield that

maxx∈∂Ω u(x) = maxx∈Ω u(x).
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Thus we have shown that, if f(x) ≤ 0 in Ω, then the maximum value of u is attained on the boundary
∂Ω of the domain Ω, which completes the proof of the maximum principle.

Analogously, if −∆u = f in Ω, u|∂Ω = g, and f(x) ≥ 0 in Ω, then −u is the solution of the partial
differential equation −∆(−u) = −f ≤ 0. Therefore −u attains its maximum value on the boundary ∂Ω of
the domain Ω. Equivalently, u attains its minimum value on ∂Ω; hence, u satisfies a minimum principle
in this case, i.e.,

minx∈∂Ω u(x) = minx∈Ω u(x).

Our objective is now to construct a finite difference approximation of the elliptic boundary-value
problem −∆u = f , u|∂Ω = g, and show that a discrete counterpart of the maximum principle satisfied
by the function u holds for its finite difference approximation U . For ease of exposition we shall confine
ourselves to the case of two space dimensions and consider a general nonaxiparallel domain, such as the
one depicted in Fig. 4, and a general nonuniform mesh

Ωh = {(xi, yj) ∈ Ω : xi+1 − xi = hi, yj+1 − yj = kj}.

The Laplace operator, ∆, is approximated by D+
xD

−
x + D+

y D
−
y , with the difference operators D+

xD
−
x ,

D+
y D

−
y defined as in Section 4.2. The finite difference approximation of the Dirichlet problem

−∆u = f in Ω,

u = g on ∂Ω

is then given by

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) = f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh.
(78)

Equivalently,

− 1

~i

(
Ui+1,j − Ui,j

hi+1
− Ui,j − Ui−1,j

hi

)
− 1

kj

(
Ui,j+1 − Ui,j

kj+1
− Ui,j − Ui,j−1

kj

)
= f(xi, yj) in Ωh,

Ui,j = g(xi, yj) on Γh.

Suppose that f(xi, yj) < 0 for all (xi, yj) ∈ Ωh and that the maximum value of U is attained at a
point (xi0 , yj0) ∈ Ωh. Clearly,

(
1

~i

(
1

hi+1
+

1

hi

)
+

1

kj

(
1

kj+1
+

1

kj

))
Ui,j =

Ui+1,j

~i hi+1
+
Ui−1,j

~i hi
+

Ui,j+1

kj kj+1
+
Ui,j−1

kj kj
+ f(xi, yj)

for any (xi, yj) ∈ Ωh. Therefore, because Ui0±1,j0 ≤ Ui0,j0 and Ui0,j0±1 ≤ Ui0,j0 , and f(xi0 , yj0) < 0, it
follows that

(
1

~i0

(
1

hi0+1
+

1

hi0

)
+

1

kj0

(
1

kj0+1
+

1

kj0

))
Ui0j0 <

Ui0j0

~i0 hi0+1
+

Ui0j0

~i0 hi0
+

Ui0j0

kj0 kj0+1
+

Ui0j0

kj0 kj0
.

Note, however, that the expressions on the two sides of this inequality are equal, which means that we
have run into a contradiction. Thus we have shown that if f(xi, yj) < 0 for all (xi, yj) ∈ Ωh then the
maximum value of U is attained on the boundary Γh of Ωh, which completes the proof of the discrete
maximum principle in this case:

max(xi,yj)∈Γh
Ui,j = max(xi,yj)∈Ωh

Ui,j .
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Now suppose that f(xi, yj) ≤ 0 for all (xi, yj) ∈ Ωh. We define the auxiliary mesh function V by

Vi,j := Ui,j +
ε

4
(x2i + y2j ) for (xi, yj) ∈ Ωh.

Hence,

−(D+
xD

−
x Vi,j +D+

y D
−
y Vi,j) = −(D+

xD
−
x Ui,j +D+

y D
−
y Ui,j)− ε = f(xi, yj)− ε < 0 in Ωh,

which then implies that the maximum value of V is attained on Γh. Therefore,

max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

[
Vi,j −

ε

4
(x2i + y2j )

]

≥ max
(x,y)∈Γh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2i + y2j )

= max
(xi,yj)∈Ωh

Vi,j −
ε

4
max

(xi,yj)∈Γh

(x2i + y2j ).

As, by definition, Vi,j ≥ Ui,j for (xi, yj) ∈ Ωh, it follows that

max
(xi,yj)∈Γh

Ui,j ≥ max
(xi,yj)∈Ωh

Ui,j −
ε

4
max

(xi,yj)∈Γh

(x2i + y2j ) ∀ ε > 0.

By passing to the limit ε→ 0+ it then follows that

max
(xi,yj)∈Γh

Ui,j ≥ max
(xi,yj)∈Ωh

Ui,j.

As Γh ⊂ Ωh, trivially max(xi,yj)∈Ωh
Ui,j ≥ max(xi,yj)∈Γh

Ui,j, and therefore we deduce from these two

inequalities that if f(xi, yj) ≤ 0 for all (xi, yj) ∈ Ωh, then the discrete maximum principle holds:

max(xi,yj)∈Γh
Ui,j = max(xi,yj)∈Ωh

Ui,j .

Analogously, if f(xi, yj) ≥ 0 for all (xi, yj) ∈ Ωh, then a discrete minimum principle holds:

min(xi,yj)∈Γh
Ui,j = min(xi,yj)∈Ωh

Ui,j.

Our objective in the next section is to use the discrete maximum/minimum principle we have established
to prove the stability of the finite difference scheme (78) with respect to perturbations in the boundary
data.

4.4 Stability in the discrete maximum norm

Consider the finite difference scheme (78) on the nonuniform mesh formulated in Section 4.2. Our first
result asserts the existence of a solution to (78) as well as its uniqueness.

Lemma 10 The finite difference scheme (78) has a unique solution.

Proof. We note that (78) is, in fact, a system of linear algebraic equations for the values Ui,j such
that (xi, yj) ∈ Ωh, so if the total number of mesh-points contained in Ωh is denoted by Mh, then the
system of linear algebraic equations concerned has an Mh ×Mh matrix, and showing the existence of a
unique solution to the finite difference scheme (78) is therefore equivalent to showing that this system of
linear algebraic equations has a unique solution, which amounts to proving that the matrix of the linear
system is invertible. The matrix of the linear system associated with (78) is invertible if, and only if, the
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corresponding homogeneous system of linear algebraic equation has the zero vector as its only solution,
which is, in turn, equivalent to showing that the finite difference scheme (78) with f(xi, yj) = 0 for all
(xi, yj) ∈ Ωh and g(xi, yj) = 0 for all (xi, yj) ∈ Γh has the trivial solution as its only solution, i.e., that
Ui,j = 0 for all (xi, yj) ∈ Ωh. Let us therefore consider

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh,

Ui,j = 0 on Γh.
(79)

The existence of a solution to (79) is obvious: the mesh-function U , with Ui,j = 0 for all (xi, yj) ∈ Ωh is
clearly a solution. According to the discrete maximum principle, for any solution U of the finite difference
scheme (79),

0 = max
(xi,yj)∈Ωh

Ui,j ,

while according to the discrete minimum principle

0 = min
(xi,yj)∈Ωh

Ui,j .

Therefore the only solution is the trivial solution. This then implies the existence of a unique solution to
(78). �

We are now ready to embark on the analysis of the stability of the scheme (78) with respect to
perturbations in the boundary data.

Consider the mesh functions U (1) and U (2), which satisfy, respectively:

−(D+
xD

−
x U

(1)
i,j +D+

y D
−
y U

(1)
i,j ) = f(xi, yj) in Ωh,

U
(1)
i,j = g(1)(xi, yj) on Γh

(80)

and

−(D+
xD

−
x U

(2)
i,j +D+

y D
−
y U

(2)
i,j ) = f(xi, yj) in Ωh,

U
(2)
i,j = g(2)(xi, yj) on Γh

(81)

for given boundary data g(1) and g(2). Let U := U (1) − U (2) and g := g(1) − g(2). Then, by subtracting
(81) from (80) we find that U solves

−(D+
xD

−
x Ui,j +D+

y D
−
y Ui,j) = 0 in Ωh,

Ui,j = g(xi, yj) on Γh.
(82)

By the discrete maximum principle we have from (82) that

max
(xi,yj)∈Ωh

Ui,j = max
(xi,yj)∈Γh

Ui,j = max
(xi,yj)∈Γh

g(xi, yj) ≤ max
(xi,yj)∈Γh

|g(xi, yj)|.

In other words, for all (xi, yj) ∈ Ωh,

Ui,j ≤ max
(xi,yj)∈Γh

|g(xi, yj)|. (83)

It follows from (82) that −U solves

−(D+
xD

−
x (−U)i,j +D+

y D
−
y (−U)i,j) = 0 in Ωh,

(−U)i,j = −g(xi, yj) on Γh,
(84)
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where (−U)i,j = −Ui,j. Hence, also,

−Ui,j = (−U)i,j ≤ max
(xi,yj)∈Γh

| − g(xi, yj)| = max
(xi,yj)∈Γh

|g(xi, yj)| (85)

for all (xi, yj) ∈ Ωh. By combining (83) and (85) we have the inequality

|Ui,j | ≤ max
(xi,yj)∈Γh

|g(xi, yj)|

for all (xi, yj) ∈ Ωh. and hence,

max
(xi,yj)∈Ωh

|Ui,j | ≤ max
(xi,yj)∈Γh

|g(xi, yj)|.

By recalling the definitions of U and g, we have thereby shown that

max
(xi,yj)∈Ωh

|U (1)
i,j − U

(2)
i,j | ≤ max

(xi,yj)∈Γh

|g(1)(xi, yj)− g(2)(xi, yj)|. (86)

The inequality (86) expresses continuous dependence of the solution U to the finite difference scheme
with respect to the boundary data g: it ensures that small perturbations in the boundary data result in
small perturbations of the associated solution, a property that is referred to as stability of the solution
with respect to perturbations in the boundary data (in the discrete maximum norm, in this case).

4.5 Iterative solution of linear systems: linear stationary iterative methods

Lecture 7

Before embarking on our discussion of the main topic of this section, we require a few technical tools.
Let us start by considering the finite difference approximation of the eigenvalue problem:

−u′′(x) + c u(x) = λu(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where c ≥ 0 is a real number. A nontrivial solution u(x) 6≡ 0 of this boundary-value problem is called
an eigenfunction, and the corresponding λ ∈ C for which such a nontrivial solution exists is called
an eigenvalue. A simple calculation reveals that there is an infinite sequence of eigenfunctions uk and
eigenvalues λk, k = 1, 2, . . . , where

uk(x) := sin(kπx) and λk := c+ k2π2, k = 1, 2, . . . .

Clearly, c+ π2 ≤ λk for all k = 1, 2, . . ., and λk → +∞ as k → +∞.
The finite difference approximation of this eigenvalue problem on the mesh {xi := ih : i = 0, . . . , N}

of uniform spacing h := 1/N , with N ≥ 2, is given by

−Ui+1 − 2Ui + Ui−1

h2
+ cUi = ΛUi, i = 1, . . . , N − 1,

U0 = 0, UN = 0.

Again, we seek nontrivial solutions, and a simple calculation yields that Ui := Uk(xi), where

Uk(x) := sin(kπx), x ∈ {x0, x1, . . . , xN} and Λk := c+
4

h2
sin2

kπh

2
, k = 1, 2, . . . , N − 1.

This can be verified by inserting

Ui = Uk(xi) = sin(kπxi) and Ui±1 = Uk(xi±1) = sin(kπxi±1)
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into the finite difference scheme and noting that

sin(kπxi±1) = sin(kπ(xi±h)) = sin(kπxi) cos(kπh)±cos(kπxi) sin(kπh) and 1−cos(kπh) = 2 sin2
kπh

2

for k = 1, 2, . . . , N − 1 and i = 1, 2, . . . , N − 1.
Using matrix notation the finite difference approximation of the eigenvalue problem becomes




2
h2 + c − 1

h2 0
− 1

h2
2
h2 + c − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + c − 1

h2

0 − 1
h2

2
h2 + c







U1

U2
...

UN−2

UN−1




= Λ




U1

U2
...

UN−2

UN−1



,

or, more compactly, AU = ΛU , where A is the symmetric tridiagonal (N − 1)× (N − 1) matrix displayed
above, and U = (U1, . . . , UN−1)

T is a column vector of size N − 1. The calculation performed above
implies that the eigenvalues of the matrix A are

Λk = c+
4

h2
sin2

kπh

2
, k = 1, 2, . . . , N − 1

and the corresponding eigenvectors are, respectively, (Uk(x1), . . . , U
k(xN−1))

T, k = 1, . . . , N − 1.
Clearly, c+8 ≤ Λk ≤ c+ 4

h2 for all k = 1, 2, . . . , N −1. The first of these inequalities follows by noting

that Λk ≥ Λ1 for k = 1, . . . , N − 1 and sinx ≥ 2
√
2

π x for x ∈ [0, π4 ] (recall that h ∈ [0, 12 ] because N ≥ 2,

whereby 0 < πh
2 ≤ π

4 ); the second inequality is the consequence of 0 ≤ sin2 x ≤ 1 for all x ∈ R.

Example 1 Suppose that Ω = (0, 1)2, the open unit square in R
2, and consider the problem

−∆u+ cu = λu in Ω,

u = 0 on Γ := ∂Ω,

where c ≥ 0 is a given real number. A simple calculation shows that there is, once again, an infinite
sequence of eigenfunctions and associated eigenvalues:

uk,m(x, y) = sin(kπx) sin(mπy), λk,m = c+ (k2 +m2)π2, k,m = 1, 2, . . . .

The finite difference approximation of this eigenvalue problem posed on a uniform finite difference mesh
{(xi, yj) := (ih, jh) : i, j = 0, . . . , N} of spacing h = 1/N , N ≥ 2, in the x and y directions, is

−Ui+1,j − 2Ui,j + Ui−1,j

h2
− Ui,j+1 − 2Ui,j + Ui,j−1

h2
+ cUi,j = ΛUi,j, i, j = 1, . . . , N − 1,

Ui,j = 0 for (xi, yj) ∈ Γh,

where, Γh is the set of mesh-points on Γ. This can be rewritten as an algebraic eigenvalue problem of the
form AU = ΛU , where now A is a symmetric (N − 1)2 × (N − 1)2 matrix with positive eigenvalues

Λk,m = c+
4

h2

(
sin2

kπh

2
+ sin2

mπh

2

)
,

with c+ 16 ≤ Λk,m ≤ c+ 8
h2 , and eigenvectors/(discrete) eigenfunctions Ui,j = Uk,m(xi, yj), where

Uk,m(x, y) = sin(kπx) sin(mπy),

for i, j = 1, . . . , N − 1 and k,m = 1, . . . , N − 1.

46



Let us consider now the boundary-value problem:

−u′′(x) + c u(x) = f(x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where c ≥ 0 and f ∈ C([0, 1]). The finite difference approximation of this boundary-value problem on
the mesh {xi := ih : i = 0, . . . , N} of uniform spacing h := 1/N , with N ≥ 2, is given by

−Ui+1 − 2Ui + Ui−1

h2
+ cUi = f(xi), i = 1, . . . , N − 1,

U0 = 0, UN = 0.
(87)

In terms of matrix notation, this can be rewritten as a system of linear algebraic equations of the form

AU = F (88)

where A is the same (N − 1)× (N − 1) symmetric tridiagonal matrix as in the univariate case considered
above, with distinct positive eigenvalues Λk, k = 1, . . . , N −1, as above, F := (f(x1), . . . , f(xN−1))

T, and
U := (U1, . . . , UN−1)

T is the associated vector of unknowns.
Similarly, if one considers the elliptic boundary-value problem

−∆u+ cu = f(x, y) in Ω,

u = 0 on Γ := ∂Ω,

where c ≥ 0 is a given real number and f ∈ C(Ω), whose finite difference approximation posed on a
uniform mesh {(xi, yj) := (ih, jh) : i, j = 0, . . . , N} of spacing h := 1/N , N ≥ 2, in the x and y
directions, is

−Ui+1,j − 2Ui,j + Ui−1,j

h2
− Ui,j+1 − 2Ui,j + Ui,j−1

h2
+ cUi,j = f(xi, yj), i, j = 1, . . . , N − 1,

Ui,j = 0 for (xi, yj) ∈ Γh,
(89)

where, Γh is the set of mesh-points on Γ, then this, too, can be rewritten as a system of linear algebraic
equations of the form AU = F , where now A is a symmetric (N − 1)2 × (N − 1)2 matrix with positive
eigenvalues, Λk,m, k,m = 1, . . . , N − 1, given in Example 1 above.

Motivated by these examples, we shall be interested in developing a simple iterative method for the
approximate solution of systems of linear algebraic equations of the form AU = F , where A ∈ R

M×M is
a symmetric matrix with positive eigenvalues, which are contained in a nonempty closed interval [α, β],
with 0 < α < β, U ∈ R

M is the vector of unknowns and F ∈ R
M is a given vector. To this end, we

consider the following iteration for the approximate solution of the linear system AU = F .

U (j+1) := U (j) − τ(AU (j) − F ), j = 0, 1, . . . , (90)

where U (0) ∈ R
M is a given initial guess, and τ > 0 is a parameter to be chosen so as to ensure that

the sequence of iterates {U (j)}∞j=0 ⊂ R
M converges to U ∈ R

M as j → ∞. We begin by observing that
U = U − τ(AU − F ). Therefore, upon subtraction of (90) from this equality we find that

U − U (j+1) = U − U (j) − τA(U − U (j)) = (I − τA)(U − U (j)), j = 0, 1, . . . , (91)

where I ∈ R
M×M is the identity matrix. Consequently,

U − U (j) = (I − τA)j(U − U (0)), j = 1, 2, . . . .
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Recall that if ‖·‖ is a(ny) norm on R
M , then the induced matrix norm is defined, for a matrix B ∈ R

M×M ,
by

‖B‖ := sup
V ∈RM\{0}

‖BV ‖
‖V ‖ .

Thanks to this definition, ‖BV ‖ ≤ ‖B‖‖V ‖ for all V ∈ R
M , and hence, by induction ‖BjV ‖ ≤ ‖B‖j‖V ‖

for all j = 1, 2 . . . and all V ∈ R
M . Therefore, with B := I − τA and V := U − U (0), we have that

‖U − U (j)‖ = ‖(I − τA)j(U − U (0))‖ ≤ ‖I − τA‖j‖U − U (0)‖. (92)

In order to continue, we need to bound ‖I − τA‖, and to this end we need a few tools from linear
algebra; we shall therefore make a brief detour. Our first observation is that RM is a finite-dimensional
linear space, and in a finite-dimensional linear spaces all norms are equivalent.6 Therefore, if the sequence
{U (j)}∞j=0 converges to U in one particular norm on R

M , it will also converge to U in any other norm on

R
M . For the sake of simplicity of the exposition we shall therefore assume that the norm ‖ · ‖ on R

M

appearing in the inequality above is the Euclidean norm:

‖V ‖ :=

(
M∑

i=1

V 2
i

)1/2

, V = (V1, . . . , VM )T ∈ R
M .

A symmetric matrix B ∈ R
M×M has real eigenvalues, and the associated set of orthonormal eigenvectors

spans the whole of RM . Denoting by {ei}Mi=1 the (orthonormal) eigenvectors of B and by λi, i = 1, . . . ,M ,
the corresponding eigenvalues, for any vector V = α1e1 + · · · + αMeM , expanded in terms of the eigen-
vectors of B, thanks to orthonormality the Euclidean norms of V and BV can be expressed, respectively,
as follows:

‖V ‖ =

(
M∑

i=1

α2
i

)1/2

and ‖BV ‖ =

(
M∑

i=1

α2
i λ

2
i

)1/2

.

Clearly, ‖BV ‖ ≤ maxi=1,...,M |λi| ‖V ‖ for all V ∈ R
M , and the inequality becomes an equality if V happens

to be the eigenvector of B associated with the largest in absolute value eigenvalue of B. Therefore,
‖B‖ = maxi=1,...,M |λi|, where now ‖ · ‖ is the matrix norm induced by the Euclidean norm.

We are now ready to return to (92) to find that ‖I − τA‖ appearing on the right-hand side of (92),
where again ‖ · ‖ denotes the matrix norm induced by the Euclidean norm, is equal to the largest in
absolute value eigenvalue of the symmetric matrix I− τA. As the eigenvalues of A are assumed to belong
to the interval [α, β], where 0 < α < β, and the parameter τ is by assumption positive, the eigenvalues
of I − τA are contained in the interval [1− τβ, 1− τα], whereby ‖I − τA‖ ≤ max{|1− τβ|, |1− τα|}. As
τ > 0 is a free parameter, to be suitably chosen, we would like to select it so that the iterative method
(90) converges as fast as possible, and to this end we see from (92) that it is desirable to choose τ so that
‖I − τA‖ is as small as possible, and less than 1. We shall therefore seek τ > 0 so as to ensure that

min
τ>0

max{|1− τβ|, |1 − τα|} < 1.

By plotting the nonnegative piecewise linear functions τ 7→ |1 − τβ| and τ 7→ |1 − τα| for τ ∈ [0,∞),
we see that they vanish at τ = 1/β and τ = 1/α, respectively; their graphs intersect at τ = 0 and at
τ = 2

α+β . As 0 < α < β, clearly 0 < 1/β < 1/α. Next, by plotting the continuous piecewise linear

6Suppose that V is a linear space and ‖ · ‖1 and ‖ · ‖2 are two norms on V; then ‖ · ‖1 and ‖ · ‖2 are said to be equivalent

if there exist positive constants C1 and C2 such that C1‖V ‖1 ≤ ‖V ‖2 ≤ C2‖V ‖1 for all V ∈ V. For the details of the proof
of the assertion that any two norms on a finite-dimensional linear space are equivalent, see, for example, the webpage
http://mathonline.wikidot.com/equivalence-of-norms-in-a-finite-dimensional-linear-space#toc0
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function τ 7→ max{|1− τβ|, |1 − τα|} for τ ∈ [0,∞), we observe that it attains its minimum at τ = 2
α+β

where 1− τβ = τα− 1. Thus,

min
τ>0

max{|1 − τβ|, |1 − τα|} = max{|1− τβ|, |1 − τα|}|τ= 2
α+β

=
β − α

β + α
< 1.

In summary then, the iterative method proposed for the approximate solution of the linear system
AU = F is the one stated in (90), with τ := 2

β+α , and [α, β] being a closed subinterval of (0,∞) that

contains all eigenvalues of the symmetric matrix A ∈ R
M×M .

Example 2 In the case of the finite difference scheme (87), α = c+8 and β = c+ 4
h2 , while in the case

of (89), α = c+ 16 and β = c+ 8
h2 . In both cases

β − α

β + α
= 1− Const.h2;

thus, while the sequence of iterates {U (j)}∞j=0 defined by the iterative method (90) is guaranteed to converge
to the exact solution U of the linear system AU = F , the right-hand side in the inequality

‖U − U (j)‖ ≤
(
β − α

β + α

)j

‖U − U (0)‖ (93)

will gradually deteriorate as h→ 0. By ‘deteriorate’ we mean that the smaller the value of the mesh-size
h, the closer the fraction (β − α)/(β + α) ∈ (0, 1) will be to 1, and therefore the slower the convergence
of the sequence appearing on the right-hand side of the inequality (93) will be to 0 as j → ∞. The
deceleration of the convergence to 0 of the right-hand side of the inequality (93) as j → ∞ with decreasing
h does not, of course, automatically imply a corresponding deceleration of the convergence of ‖U − U (j)‖
to 0 as j → ∞ with decreasing h, as the right-hand side of the inequality (93) is merely an upper bound on
the left-hand side. That this is however the case can be verified by numerical experiments, which indicate
that the smaller the mesh-size h the slower the convergence of ‖U − U (j)‖ to 0 will be as j → ∞.

We note that by multiplying (91) by the matrix A and recalling that AU = F , one has that

F −AU (j+1) = (I − τA)(F −AU (j)),

and therefore, by proceeding as above,

‖F −AU (j)‖ ≤ ‖I − τA‖j‖F −AU (0)‖ ≤
(
β − α

β + α

)j

‖F −AU (0)‖. (94)

As α and β are available (in the case of the simple boundary-value problems considered here, at least) as
are F , A and the initial guess U (0), it is possible to quantify the number of iterations required to ensure
that the Euclidean norm of the so-called residual F − AU (j) of the j-th iterate becomes smaller than a
chosen tolerance TOL > 0: a sufficient condition for this is that the right-hand side of (94) is smaller than
TOL, which will hold as soon as

j > log
‖F −AU (0)‖

TOL

[
log

(
β + α

β − α

)]−1

. (95)

In the case of the two boundary-value problems considered above,

β − α

β + α
= 1− Const.h2

and therefore (because log(1 − Const.h2) ∼ −Const.h2 as h → 0) the right-hand side of the inequality
(95) is ∼ Const. h−2 log(1/TOL). We see in particular that the smaller the value of the mesh-size h the
larger the number of iterations j will need to be to ensure that ‖F −AU (j)‖ < TOL.
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5 Finite difference approximation of parabolic equations

Lecture 8This penultimate section of the lecture notes is concerned with the construction and mathematical
analysis of finite difference methods for the numerical solution of parabolic equations. As a simple yet
representative model problem we shall focus on the unsteady diffusion equation (heat equation) in one
space dimension:

∂u

∂t
=
∂2u

∂x2
, (96)

which we shall consider for x ∈ (−∞,∞) and t ≥ 0, subject to the initial condition

u(x, 0) = u0(x), x ∈ (−∞,∞),

where u0 is a given function.
The solution of this initial-value problem can be expressed explicitly in terms of the initial datum u0.

As the expression for the solution of the initial-value problem provides helpful insight into the behaviour
of solutions of parabolic partial differential equations, which we shall try to mimic in the course of their
numerical approximation, we shall summarize here briefly the derivation of this explicit expression for
the analytical solution of the initial-value problem (96).

We recall that the Fourier transform of a function v is defined by

v̂(ξ) = F [v](ξ) :=

∫ ∞

−∞
v(x) e−ıxξ dx.

We shall assume henceforth that the functions under consideration are sufficiently smooth and that they
decay to 0 as x→ ±∞ sufficiently quickly in order to ensure that our formal manipulations make sense.

By Fourier-transforming the partial differential equation (96) we obtain

∫ ∞

−∞

∂u

∂t
(x, t) e−ıxξ dx =

∫ ∞

−∞

∂2u

∂x2
(x, t) e−ıxξ dx.

After (formal) integration by parts on the right-hand side and ignoring ‘boundary terms’ at ±∞, we
obtain

∂

∂t
û(ξ, t) = (ıξ)2û(ξ, t),

whereby
û(ξ, t) = e−tξ2 û(ξ, 0),

and therefore
u(x, t) = F−1

(
e−tξ2 û0

)
.

The inverse Fourier transform of a function is defined by

v(x) = F−1[v̂](x) :=
1

2π

∫ ∞

−∞
v̂(ξ)eıxξ dξ.

Thus, after some lengthy calculations whose details we omit, we find that

u(x, t) = F−1
(
e−tξ2 û0(ξ)

)
=

∫ ∞

−∞
w(x− y, t)u0(y) dy,

where the function w, defined by

w(x, t) :=
1√
4πt

e−x2/(4t),
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is called the heat kernel. So, finally,

u(x, t) =
1√
4πt

∫ ∞

−∞
e−(x−y)2/(4t)u0(y) dy. (97)

This formula gives an explicit expression for the solution of the heat equation (96) in terms of the
initial datum u0. Because w(x, t) > 0 for all x ∈ (−∞,∞) and all t > 0, and

∫ ∞

−∞
w(y, t) dy = 1 for all t > 0,

we deduce from (97) that if u0 is a bounded continuous function, then

supx∈(−∞,+∞)|u(x, t)| ≤ supx∈(−∞,∞)|u0(x)|, t > 0. (98)

In other words, the ‘largest’ and ‘smallest’ values of u(·, t) at t > 0 cannot exceed those of u0(·). Similar
bounds on the ‘magnitude’ of the solution at future times in terms of the ‘magnitude’ of the initial datum
can be obtained in other norms as well, and we shall focus here on the L2 norm in particular. We will
show, using Parseval’s identity stated below, that the L2 norm of the solution, at any time t > 0, is
bounded by the L2 norm of the initial datum. We shall then try to mimic this property when using
various numerical approximations of the initial-value problem for the heat equation.

Lemma 11 (Parseval’s identity) Let L2((−∞,∞)) denote the set of all complex-valued square-integrable
functions defined on the real line. Suppose that u ∈ L2((−∞,∞)). Then, û ∈ L2((−∞,∞)), and the
following equality holds:

‖u‖L2((−∞,∞)) :=
1√
2π

‖û‖L2(−∞,∞),

where

‖u‖L2((−∞,∞)) =

(∫ ∞

−∞
|u(x)|2 dx

)1/2

.

Proof. We begin by observing that

∫ ∞

−∞
û(ξ) v(ξ) dξ =

∫ ∞

−∞

(∫ ∞

−∞
u(x) e−ıxξ dx

)
v(ξ) dξ

=

∫ ∞

−∞

(∫ ∞

−∞
v(ξ) e−ıxξ dξ

)
u(x) dx

=

∫ ∞

−∞
u(x) v̂(x) dx.

We then take (where, for a complex-valued function w, we denote by w the complex conjugate of w)

v(ξ) = û(ξ) = 2πF−1[u](ξ), ξ ∈ (−∞,∞),

and substitute this into the identity above to complete the proof. �

Returning to the equation (96), we thus have by Parseval’s identity that

‖u(·, t)‖L2((−∞,∞)) =
1√
2π

‖û(·, t)‖L2((−∞,∞)), t > 0,
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and therefore

‖u(·, t)‖L2((−∞,∞)) =
1√
2π

‖e−tξ2 û0(·)‖L2((−∞,∞))

≤ 1√
2π

‖û0‖L2((−∞,∞))

= ‖u0‖L2((−∞,∞)), t > 0.

Thus we have shown that

‖u(·, t)‖L2((−∞,∞)) ≤ ‖u0‖L2((−∞,∞)) for all t > 0. (99)

This is a useful result as it can be used to deduce stability of the solution of the equation (96) with
respect to perturbations of the initial datum in a sense which we shall now explain. Suppose that u0 and
ũ0 are two functions contained in L2((−∞,∞)) and denote by u and ũ the solutions to (96) resulting
from the initial functions u0 and ũ0, respectively. Then u− ũ solves the heat equation with initial datum
u0 − ũ0, and therefore, by (99), we have that

‖u(·, t)− ũ(·, t)‖L2((−∞,∞)) ≤ ‖u0 − ũ0‖L2((−∞,∞)) for all t > 0. (100)

This inequality implies continuous dependence of the solution on the initial function: small perturbations
in u0 in the L2((−∞,∞)) norm will result in small perturbations in the associated analytical solution
u(·, t) in the L2((−∞,∞)) norm for all t > 0.

The inequality (99) is therefore a relevant property, which we shall try to mimic with our numerical
approximations of the equation (96).

5.1 Finite difference approximation of the heat equation

We take our computational domain to be

{(x, t) ∈ (−∞,∞)× [0, T ]},

where T > 0 is a given final time. We then consider a finite difference mesh with spacing ∆x > 0 in
the x-direction and spacing ∆t := T/M in the t-direction, with M ≥ 1, and we approximate the partial
derivatives appearing in the differential equation using divided differences as follows. Let xj := j∆x and
tm := m∆t, and note that

∂u

∂t
(xj , tm) ≈ u(xj , tm+1)− u(xj , tm)

∆t

and
∂2u

∂x2
(xj , tm) ≈ u(xj+1, tm)− 2u(xj , tm) + u(xj−1, tm)

(∆x)2
.

This then motivates us to approximate the heat equation (96) at the point (xj , tm) by the following
numerical method, called the explicit Euler scheme:

Um+1
j − Um

j

∆t
=
Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . .

Equivalently, we can write this as

Um+1
j = Um

j + µ(Um
j+1 − 2Um

j + Um
j−1), j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,
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U0
j := u0(xj), j = 0,±1,±2, . . . ,

where µ = ∆t
(∆x)2

. Thus, Um+1
j can be explicitly calculated, for all j = 0,±1,±2, . . . , from the values

Um
j+1, U

m
j , and Um

j−1 from the previous time level.
Alternatively, if instead of time level m the expression on the right-hand side of the explicit Euler

scheme is evaluated on the time level m+ 1, we arrive at the implicit Euler scheme:

Um+1
j − Um

j

∆t
=
Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . .

The explicit and implicit Euler schemes are special cases of a more general one-parameter family of
numerical methods for the heat equation, called the θ-method, which is a convex combination of the two
Euler schemes, with a parameter θ ∈ [0, 1]. The θ-method is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

{
j = 0,±1,±2, . . . ,
m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . ,

where θ ∈ [0, 1] is a parameter. For θ = 0 the θ-scheme coincides with the explicit Euler scheme, for θ = 1
it is the implicit Euler scheme, and for θ = 1/2 it is the arithmetic average of the two Euler schemes, and
is called the Crank–Nicolson scheme.

Numerical methods of this kind are called fully-discrete approximations. An alternative approach is to
approximate the spatial partial derivative only in the heat equation, resulting in the following initial-value
problem for a system of ordinary differential equations:

dUj(t)

dt
=
Uj+1(t)− 2Uj(t) + Uj−1(t)

(∆x)2
, j = 0,±1,±2, . . . ,

Uj(0) := u0(xj), j = 0,±1,±2, . . . .

This is called a spatially semi-discrete approximation, because no discretization with respect to the
temporal variable t has taken place. Because an initial-value problem for the heat equation is considered
for x ∈ (−∞,∞), the spatially semidiscrete approximation consists of an infinite system of ordinary
differential equations. Had the range of x been limited to a bounded interval (a, b) of the real line
instead, and had, in conjunction with the initial condition, boundary conditions been supplied at x = a
and x = b, spatial semi-discretization of such an initial-boundary-value problem for the heat equation
would have resulted in a system consisting of a finite number of ordinary differential equations, coupled
to algebraic equation that stem from the spatial discretization of the boundary conditions. Such a system
of differential-algebraic equations (DAEs) could then have been solved approximately by any standard
method for the numerical solution of DAEs (such as, for example, the Matlab solvers ode15s and ode23t).
Because no discretization in time was performed in the first place, this approach is usually referred to as
the method of lines.

5.1.1 Accuracy of the θ-method

Our aim in this section is to assess the accuracy of the θ-method for the initial-value problem for the
heat equation. The consistency error of the θ-method is defined by

Tm
j :=

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

{
j = 0,±1,±2, . . . ,
m = 0, . . . ,M − 1,
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where
umj := u(xj , tm).

We shall explore the size of the consistency error by performing a Taylor series expansion about a suitable
point. We begin by noting that

um+1
j =

[
u+

1

2
∆tut +

1

2

(
1

2
∆t

)2

utt +
1

6

(
1

2
∆t

)3

uttt + · · ·
]m+1/2

j

,

umj =

[
u− 1

2
∆tut +

1

2

(
1

2
∆t

)2

utt −
1

6

(
1

2
∆t

)3

uttt + · · ·
]m+1/2

j

.

Therefore,
um+1
j − umj

∆t
=

[
ut +

1

24
(∆t)2 uttt + · · ·

]m+1/2

j

.

Similarly,

(1− θ)
umj+1 − 2umj + umj−1

(∆x)2
+ θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2

=

[
uxx +

1

12
(∆x)2 uxxxx +

2

6!
(∆x)4 uxxxxxx + · · ·

]m+1/2

j

+

(
θ − 1

2

)
∆t

[
uxxt +

1

12
(∆x)2 uxxxxt + · · ·

]m+1/2

j

+
1

8
(∆t)2 [uxxtt + · · · ]m+1/2

j .

Combining these, we deduce that

Tm
j = [ut − uxx]

m+1/2
j

+

[(
1

2
− θ

)
∆t uxxt −

1

12
(∆x)2 uxxxx

]m+1/2

j

+

[
1

24
(∆t)2 uttt −

1

8
(∆t)2 uxxtt

]m+1/2

j

+

[
1

12

(
1

2
− θ

)
∆t (∆x)2 uxxxxt −

2

6!
(∆x)4 uxxxxxx

]m+1/2

j

+ · · · .

Note however that the term contained in the box vanishes, as u is a solution to the heat equation. Hence,

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
for θ = 1/2,

O
(
(∆x)2 +∆t

)
for θ 6= 1/2.

Thus, in particular, the explicit and implicit Euler schemes have consistency error

Tm
j = O

(
(∆x)2 +∆t

)
,

while the Crank–Nicolson scheme has consistency error

Tm
j = O

(
(∆x)2 + (∆t)2

)
.

54



5.2 Stability of finite difference schemes

Lecture 9In order to be able to replicate the stability property (99) at the discrete level, we require an appro-
priate notion of stability. We shall say that a finite difference scheme for the unsteady heat equation is
(practically) stable in the ℓ2 norm, if

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, . . . ,M,

where

‖Um‖ℓ2 :=


∆x

∞∑

j=−∞
|Um

j |2



1/2

.

We shall use the semidiscrete Fourier transform, defined below, to explore the stability of the finite
difference schemes under consideration. In order to avoid complicating the discussion with the inclusion of
technical details that concern the convergence of various infinite sums, we shall simply assume throughout
that all infinite sums considered converge.

Definition 2 The semidiscrete Fourier transform of a function U defined on the infinite mesh with
mesh-points xj = j∆x, j = 0,±1,±2, . . ., is:

Û(k) := ∆x
∞∑

j=−∞
Uj e

−ıkxj , k ∈ [−π/∆x, π/∆x].

We shall also require the inverse semidiscrete Fourier transform, as well as the discrete counterpart
of Parseval’s identity that connect these transforms, analogously as in the case of the Fourier transform
and its inverse considered earlier.

Definition 3 Let Û be defined on the interval [−π/∆x, π/∆x]. The inverse semidiscrete Fourier trans-
form of Û is defined by

Uj :=
1

2π

∫ π/∆x

−π/∆x
Û(k) eıkj∆x dk.

We then have the following result.

Lemma 12 (Discrete Parseval’s identity) Let

‖U‖ℓ2 :=


∆x

∞∑

j=−∞
|Uj |2




1/2

and ‖Û‖L2 :=

(∫ π/∆x

−π/∆x
|Û (k)|2 dk

)1/2

.

If ‖U‖ℓ2 is finite, then so is ‖Û‖L2 , and

‖U‖ℓ2 =
1√
2π

‖Û‖L2 .

The proof of this result is very similar to the proof of Lemma 11, and we shall therefore leave the
proof to the reader as an exercise.

With all technical prerequisites in place, we are now ready to discuss the stability of the various
finite difference schemes under consideration. We begin by exploring the practical stability of the explicit
and implicit Euler schemes. We shall prove in particular that the explicit Euler scheme is conditionally
practically stable (the condition required for stability being that µ := ∆t/(∆x)2 ≤ 1), while the implicit
Euler scheme will be shown to be unconditionally practically stable.
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5.2.1 Stability analysis of the explicit Euler scheme

We are now ready to embark on the stability analysis of the explicit Euler scheme for the heat equation
(96). By inserting

Um
j =

1

2π

∫ π/∆x

−π/∆x
eıkj∆xÛm(k) dk

into the explicit Euler scheme we deduce that

1

2π

∫ π/∆x

−π/∆x
eıkj∆x Û

m+1(k)− Ûm(k)

∆t
dk =

1

2π

∫ π/∆x

−π/∆x

eık(j+1)∆x − 2eıkj∆x + eık(j−1)∆x

(∆x)2
Ûm(k) dk.

Therefore, we have that

1

2π

∫ π/∆x

−π/∆x
eıkj∆x Û

m+1(k)− Ûm(k)

∆t
dk =

1

2π

∫ π/∆x

−π/∆x
eıkj∆x eık∆x − 2 + e−ık∆x

(∆x)2
Ûm(k) dk.

By comparing the left-hand side with the right-hand side we deduce that the two integrands are identically
equal,7 and therefore

Ûm+1(k) = Ûm(k) + µ(eık∆x − 2 + e−ık∆x)Ûm(k)

for all wave numbers k ∈ [−π/∆x, π/∆x], and we thus deduce that

Ûm+1(k) = λ(k)Ûm(k),

where
λ(k) := 1 + µ(eık∆x − 2 + e−ık∆x)

is the amplification factor and

µ :=
∆t

(∆x)2

is called the CFL number (after Richard Courant, Kurt Friedrichs, and Hans Lewy, who first performed
an analysis of this kind).8 By the discrete Parseval identity stated in Lemma 12 we have that

‖Um+1‖ℓ2 =
1√
2π

‖Ûm+1‖L2

=
1√
2π

‖λÛm‖L2

≤ 1√
2π

max
k

|λ(k)| ‖Ûm‖L2

= max
k

|λ(k)| ‖Um‖ℓ2 .

In order to mimic the bound (99) we would like to ensure that

‖Um+1‖ℓ2 ≤ ‖Um‖ℓ2 , m = 0, 1, . . . ,M − 1.

Thus we demand that
max
k

|λ(k)| ≤ 1,

7This is a consequence of the fact that the semidiscrete Fourier transform and its inverse are injective (one-to-one)
mappings.

8Richard Courant, Kurt Friedrichs, and Hans Lewy (Über die partiellen Differenzengleichungen der mathematischen

Physik. Mathematische Annalen, 100:32–74, 1928).

56



i.e., that
max
k

|1 + µ(eık∆x − 2 + e−ık∆x)| ≤ 1.

Using Euler’s formula
eıϕ = cosϕ+ ı sinϕ

and the trigonometric identity

1− cosϕ = 2 sin2
ϕ

2

we can restate this as follows:

max
k

∣∣∣∣1− 4µ sin2
(
k∆x

2

)∣∣∣∣ ≤ 1.

Equivalently, we need to ensure that

−1 ≤ 1− 4µ sin2
(
k∆x

2

)
≤ 1 ∀ k ∈ [−π/∆x, π/∆x].

This holds if, and only if, µ = ∆t
(∆x)2

≤ 1
2 . Thus we have shown the following result.

Theorem 12 Suppose that Um
j is the solution of the explicit Euler scheme

Um+1
j − Um

j

∆t
=
Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . ,

and µ = ∆t
(∆x)2

≤ 1
2 . Then,

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, 2, . . . ,M. (101)

In other words the explicit Euler scheme is conditionally practically stable, the condition for stability
being that µ = ∆t/(∆x)2 ≤ 1/2. One can also show that if µ > 1/2, then (101) will fail. In other words,
once ∆x has been chosen, one must choose ∆t so that ∆t/(∆x)2 ≤ 1/2 in order to ensure that the bound
(101) holds.

5.2.2 Stability analysis of the implicit Euler scheme

We shall now perform a similar analysis for the implicit Euler scheme for the heat equation (96), which
is defined as follows:

Um+1
j − Um

j

∆t
=
Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . .

Equivalently,

Um+1
j − µ(Um+1

j+1 − 2Um+1
j + Um+1

j−1 ) = Um
j , j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . ,

where, again,

µ :=
∆t

(∆x)2
.
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Using an identical argument as for the explicit Euler scheme, we find that the amplification factor is
now

λ(k) :=
1

1 + 4µ sin2
(
k∆x
2

) .

Clearly,
max
k

|λ(k)| ≤ 1

for all values of

µ =
∆t

(∆x)2
.

Thus we have the following result.

Theorem 13 Suppose that Um
j is the solution of the implicit Euler scheme

Um+1
j − Um

j

∆t
=
Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j = 0,±1,±2, . . . , m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . .

Then, for all ∆t > 0 and ∆x > 0,

‖Um‖ℓ2 ≤ ‖U0‖ℓ2 , m = 1, 2, . . . ,M. (102)

In other words, the implicit Euler scheme is unconditionally practically stable, meaning that the bound
(102) holds without any restrictions on ∆x and ∆t.

5.3 Von Neumann stability

Lecture 10In certain situations, practical stability is too restrictive and we need a less demanding notion of
stability. The one below, due to John von Neumann, is called von Neumann stability.

Definition 4 We shall say that a finite difference scheme for the unsteady heat equation on the time
interval [0, T ] is von Neumann stable in the ℓ2 norm, if there exists a positive constant C = C(T ) such
that

‖Um‖ℓ2 ≤ C‖U0‖ℓ2 , m = 1, . . . ,M =
T

∆t
,

where

‖Um‖ℓ2 =


∆x

∞∑

j=−∞
|Um

j |2



1/2

.

Clearly, practical stability implies von Neumann stability, with stability constant C = 1. As the
stability constant C in the definition of von Neumann stability may dependent on T , and when it does
then, typically, C(T ) → +∞ as T → +∞, it follows that, unlike practical stability which is meaningful
for m = 1, 2, . . . , von Neumann stability makes sense on finite time intervals [0, T ] (with T <∞) and for
the limited range of 0 ≤ m ≤ T/∆t, only.

Von Neumann stability of a finite difference scheme can be easily verified by using the following result.

Lemma 13 Suppose that the semidiscrete Fourier transform of the solution {Um
j }∞j=−∞, m = 0, 1, . . . , T

∆t ,
of a finite difference scheme for the heat equation satisfies

Ûm+1(k) = λ(k)Ûm(k)

and there exists a nonnegative constant C0 such that

|λ(k)| ≤ 1 + C0∆t ∀ k ∈ [−π/∆x, π/∆x].
Then the scheme is von Neumann stable. In particular, if C0 = 0 then the scheme is practically stable.
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Proof: By Parseval’s identity for the semidiscrete Fourier transform we have that

‖Um+1‖ℓ2 =
1√
2π

‖Ûm+1‖L2

=
1√
2π

‖λÛm‖L2

≤ 1√
2π

max
k

|λ(k)| ‖Ûm‖L2

= max
k

|λ(k)| ‖Um‖ℓ2 .

Hence,
‖Um+1‖ℓ2 ≤ (1 + C0∆t)‖Um‖ℓ2 , m = 0, 1, . . . ,M − 1.

Therefore,
‖Um‖ℓ2 ≤ (1 + C0∆t)

m‖U0‖ℓ2 , m = 1, . . . ,M.

As 1 + C0∆t ≤ eC0∆t and (1 + C0∆t)
m ≤ eC0m∆t ≤ eC0T for all M = 1, . . . ,M , it follows that

‖Um‖ℓ2 ≤ eC0T ‖U0‖ℓ2 , m = 1, 2, . . . ,M,

meaning that von Neumann stability holds, with stability constant C = eC0T . In particular if C0 = 0,
then C = 1, and practical stability follows. �

5.4 Stability of the θ-scheme

The explicit and implicit Euler schemes are special cases of a more general one-parameter family of
numerical methods for the heat equation, called the θ-scheme, which is a convex combination of the two
Euler schemes, with a parameter θ ∈ [0, 1]. The θ-scheme is defined as follows:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

{
j = 0,±1,±2, . . . ,
m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0,±1,±2, . . . ,

where θ ∈ [0, 1] is a parameter. As we have noted in Section 5.1, for θ = 0 the θ-scheme coincides with
the explicit Euler scheme, for θ = 1 it is the implicit Euler scheme, and for θ = 1/2 it is the arithmetic
average of the two Euler schemes and is then called the Crank–Nicolson scheme.

To analyze the practical stability of the θ-scheme in the ℓ2 norm, we shall use Lemma 13 with C0 = 0.
Suppose that

Um
j = [λ(k)]m eıkxj .

Substitution of this ‘Fourier mode’ into the θ-scheme gives the equality

λ(k)− 1 = −4(1 − θ)µ sin2
(
k∆x

2

)
− 4θ µ λ(k) sin2

(
k∆x

2

)
.

Therefore the amplification factor of the scheme is

λ(k) =
1− 4(1 − θ)µ sin2

(
k∆x
2

)

1 + 4θµ sin2
(
k∆x
2

) .

For practical stability, we demand that

|λ(k)| ≤ 1 ∀ k ∈ [−π/∆x, π/∆x],
which holds if, and only if,

2(1− 2θ)µ ≤ 1.

Thus we have shown that:
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• For θ ∈ [1/2, 1] the θ-scheme is unconditionally practically stable;

• For θ ∈ [0, 1/2) the θ-scheme is conditionally practically stable, the stability condition being that

µ ≤ 1

2(1 − 2θ)
.

5.5 Boundary-value problems for parabolic problems

When a parabolic partial differential equation is considered on a bounded spatial domain, one needs to
impose boundary conditions at the boundary of the domain. Here we shall concentrate on the simplest
case, when a Dirichlet boundary is imposed at both endpoints of the spatial domain, which we take to
be the nonempty bounded open interval (a, b) of R. We shall therefore consider the following Dirichlet
initial-boundary-value problem for the heat equation:

∂u

∂t
=
∂2u

∂x2
, a < x < b, 0 < t ≤ T,

subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the following Dirichlet boundary conditions at x = a and x = b:

u(a, t) = A(t), u(b, t) = B(t), t ∈ (0, T ].

It will be assumed throughout this section that the boundary conditions are compatible with the initial
condition in the sense that A(0) = u0(a) and B(0) = u0(b).

Remark 3 We note in passing that the Neumann initial-boundary-value problem for the heat equation
is:

∂u

∂t
=
∂2u

∂x2
, a < x < b, 0 < t ≤ T,

subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the Neumann boundary conditions

∂u

∂x
(a, t) = A(t),

∂u

∂x
(b, t) = B(t), t ∈ (0, T ].

An example of a mixed Dirichlet–Neumann initial-boundary-value problem for the heat equation is

∂u

∂t
=
∂2u

∂x2
, a < x < b, 0 < t ≤ T,

subject to the initial condition
u(x, 0) = u0(x), x ∈ [a, b],

and the mixed Dirichlet–Neumann boundary conditions

u(a, t) = A(t),
∂u

∂x
(b, t) = B(t), t ∈ (0, T ].
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5.5.1 θ-scheme for the Dirichlet initial-boundary-value problem

Our aim in this section is to construct a numerical approximation of the Dirichlet initial-boundary-value
problem based on the θ-scheme. Let ∆x := (b− a)/J and ∆t := T/M , and define

xj := a+ j∆x, j = 0, . . . , J, tm := m∆t, m = 0, . . . ,M.

We approximate the Dirichlet initial-boundary-value problem with the following θ-scheme:

Um+1
j − Um

j

∆t
= (1− θ)

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
+ θ

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
,

for j = 1, . . . , J − 1, m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0, . . . , J,

Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m = 0, . . . ,M − 1.

In order to implement this scheme it is helpful to rewrite it as a system of linear algebraic equations to
compute the values of the approximate solution on time-level m+1 from those on time-level m. We have
that

[1− θµδ2]Um+1
j = [1 + (1− θ)µδ2]Um

j , j = 1, . . . , J − 1, m = 0, . . . ,M − 1,

U0
j := u0(xj), j = 0, . . . , J,

Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m = 0, . . . ,M − 1,

where
δ2Uj := Uj+1 − 2Uj + Uj−1.

The matrix form of this system of linear equations is therefore the following. We consider the sym-
metric tridiagonal (J − 1)× (J − 1) matrix:

A :=




−2 1 0 0 0 . . . 0 0 0
1 −2 1 0 0 . . . 0 0 0
0 1 −2 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 1 −2 1
0 0 0 0 0 . . . 0 1 −2



.

Let I be the (J − 1) × (J − 1) identity matrix I := diag(1, 1, 1, . . . , 1, 1). Then, the θ-scheme can be
written as

(I − θµA)Um+1 = (I + (1− θ)µA)Um + θµFm+1 + (1− θ)µFm

for m = 0, 1, . . . ,M − 1, where

Um := (Um
1 , U

m
2 , . . . , U

m
J−2, U

m
J−1)

T

and
Fm := (A(tm), 0, . . . , 0, B(tm))T.

Thus, for each m = 0, . . . ,M − 1, we are required to solve a system of linear algebraic equations with
(the same) tridiagonal matrix I − θµA in order to compute Um+1 from Um.
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Matlab code for the Crank–Nicolson scheme

% cn.m - Crank--Nicolson scheme for the heat equation.

% Save this file as cn.m

% Run the program by typing cn at the Matlab command line, and choose the value of N when prompted.

%

N = input(’N? ’);

dx = 1/N; x = dx:dx:1-dx; N1 = N-1;

dt = dx/2; mu = dt/dx^2;

% u = max([1-2.*abs(0.5-x); 0*x])’;

u = (sin(pi*x).*exp(3*x))’;

x1 = [0, x, 1];

u1 = [0, u’, 0];

hold off; plot(x1,u1,’linewidth’,2)

text(0.71,0.75,’t = 0’,’fontsize’,15)

A = (-2.) * eye(N1);

for i = 1:N1-1

A(i,i+1) = 1; A(i+1,i) = 1;

end

A1 = eye(N1) - (1/2) * mu * A;

A2 = eye(N1) + (1/2) * mu * A;

grid;

hold on;

pause;

for i = 1:50

u = A1\(A2 * u);

u1 = [0, u’, 0];

plot(x1,u1,’b’,’linewidth’,2);

text(.41,0.45,’t=20*dt’,’fontsize’,15)

end

5.5.2 The discrete maximum principle

Lecture 11We shall now try to prove a bound for the θ-scheme in the discrete maximum norm, analogous to (98)
satisfied by the solution of the heat equation. Recall that the CFL number is defined by µ := ∆t/(∆x)2.

Theorem 14 (Discrete maximum principle for the θ-scheme)
The θ-scheme for the Dirichlet initial-boundary-value problem for the heat equation, with 0 ≤ θ ≤ 1 and
µ(1− θ) ≤ 1

2 , yields a sequence of numerical approximations {Um
j }j=0,...,J ; m=0,...,M satisfying

Umin ≤ Um
j ≤ Umax

where
Umin := min

{
min{Um

0 }Mm=0, min{U0
j }Jj=0, min{Um

J }Mm=0

}

and
Umax := max

{
max{Um

0 }Mm=0, max{U0
j }Jj=0, max{Um

J }Mm=0

}
.

Proof: We rewrite the θ-scheme as

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j , (103)

and recall that, by hypothesis,

θµ ≥ 0 (1− θ)µ ≥ 0, 1− 2(1− θ)µ ≥ 0.
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Suppose that U attains its maximum value at an interior mesh-point Um+1
j , 1 ≤ j ≤ J−1, 0 ≤ m ≤M−1.

If this is not the case, the proof is complete. We define

U⋆ = max{Um+1
j+1 , U

m+1
j−1 , U

m
j+1, U

m
j−1, U

m
j }.

Then,

(1 + 2θµ)Um+1
j ≤ 2θµU⋆ + 2(1− θ)µU⋆+ [1− 2(1− θ)µ]U⋆ = (1 + 2θµ)U⋆, (104)

and therefore
Um+1
j ≤ U⋆.

However, also,

U⋆ ≤ Um+1
j ,

as Um+1
j is assumed to be the overall maximum value. Hence,

Um+1
j = U⋆.

Thus the maximum value is also attained at the points neighbouring (xj , tm+1) present in the scheme.9

The same argument applies to these neighbouring points, and we can then repeat this process until
the boundary at x = a or x = b or at t = 0 is reached, and this will happen in a finite number of
steps. The maximum is therefore attained at a boundary point. Similarly, the minimum is attained at a
boundary point. �

In summary then, for

µ(1− θ) ≤ 1

2
with θ ∈ [0, 1]

the θ-scheme satisfies the discrete maximum principle. Clearly, this condition is more demanding than
the ℓ2-stability condition:

µ(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

For example, the Crank–Nicolson scheme (θ = 1/2) is unconditionally stable in the ℓ2 norm, yet it
only satisfies the discrete maximum principle when µ = ∆t

(∆x)2
≤ 1. More generally, for θ ∈ [12 , 1] the

θ-scheme is unconditionally stable in the ℓ2 norm, but it will only satisfy the discrete maximum principle
unconditionally when θ = 1 (implicit Euler scheme); for θ ∈ [12 , 1) the validity of the discrete maximum
principle is only guaranteed when µ(1 − θ) ≤ 1

2 . Concerning the values of θ ∈ [0, 12 ], except for θ = 0
when the conditions for the validity of the discrete maximum principle and discrete ℓ2-stability coincide
(both require that µ ≤ 1

2 ), for θ ∈ (0, 12 ] the inequality µ(1−θ) ≤ 1
2 is more restrictive than µ(1−2θ) ≤ 1

2
because, for such θ, 1− θ > 1− 2θ.

9To see that the maximum value Um+1
j = U∗ is attained at each of points neighbouring (xj , tm+1) present in the scheme,

first observe that if: (a) θ = 0, then Um+1
j+1 and Um+1

j−1 are absent from the right-hand side of (103); (b) if θ = 1 then Um
j+1

and Um
j−1 are absent from the right-hand side of (103); (c) if 2(1 − θ)µ = 1, then Um

j is absent from the right-hand side of
(103), and (d) if θ /∈ {0, 1, 1− 1

2µ
}, then Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, and Um

j are all present on the right-hand side of (103).
There are therefore four different cases to be discussed: (a), (b), (c) and (d). Suppose that we are in case (d) (the cases (a),
(b) and (c) being dealt with identically); if one of Um+1

j+1 , Um+1
j−1 , Um

j+1, U
m
j−1, and Um

j were strictly smaller than Um+1
j = U∗,

then, by returning to the transition from (103) to (104), we would deduce (104) from (103), but now with the ≤ symbol in
(104) replaced by <, which would then imply that Um+1

j < U∗. This would, however, contradict the equality Um+1
j = U∗

we have already proved. Thus the value Um+1 = U∗ is attained at each of the five point neighbouring (xj , tm+1).
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5.5.3 Convergence analysis of the θ-scheme in the maximum norm

We close our discussion of finite difference schemes for the heat equation (96) in one space-dimension
with the convergence analysis of the θ-scheme for the Dirichlet initial-boundary-value problem. We begin
by rewriting the scheme as follows:

(1 + 2θµ)Um+1
j = θµ

(
Um+1
j+1 + Um+1

j−1

)
+ (1− θ)µ

(
Um
j+1 + Um

j−1

)
+ [1− 2(1− θ)µ]Um

j ,

for j = 1, . . . , J − 1 and m = 0, . . . ,M − 1. The scheme is considered subject to the initial condition

U0
j := u0(xj), j = 0, . . . , J,

and the boundary conditions

Um+1
0 := A(tm+1), Um+1

J := B(tm+1), m = 0, . . . ,M − 1.

The consistency error for the θ-scheme is defined by

Tm
j :=

um+1
j − umj

∆t
− (1− θ)

umj+1 − 2umj + umj−1

(∆x)2
− θ

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
,

where umj := u(xj , tm), and therefore

(1 + 2θµ)um+1
j = θµ

(
um+1
j+1 + um+1

j−1

)
+ (1− θ)µ

(
umj+1 + umj−1

)
+ [1− 2(1 − θ)µ]umj +∆t Tm

j .

Let us define the global error, that is the discrepancy at a mesh-point between the exact solution and
its numerical approximation, by

emj := u(xj , tm)− Um
j .

It then follows that
em+1
0 = 0, em+1

J = 0, e0j = 0, j = 0, . . . , J ,

and

(1 + 2θµ) em+1
j = θµ

(
em+1
j+1 + em+1

j−1

)
+ (1− θ)µ

(
emj+1 + emj−1

)
+ [1− 2(1− θ)µ] emj +∆t Tm

j .

We define,
Em := max

0≤j≤J
|emj | and Tm := max

1≤j≤J−1
|Tm

j |.

As, by hypothesis,
θµ ≥ 0, (1− θ)µ ≥ 0, 1− 2(1 − θ)µ ≥ 0,

we have that
(1 + 2θµ)Em+1 ≤ 2θµEm+1 + Em +∆tTm, m = 0, . . . ,M − 1.

Hence,
Em+1 ≤ Em +∆t Tm, m = 0, . . . ,M − 1.

As E0 = 0, upon summation,

Em ≤ ∆t

m−1∑

n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M−1

max
1≤j≤J−1

|Tm
j |, m = 1, . . . ,M,
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which then implies that

max
0≤m≤M

max
0≤j≤J

|u(xj , tm)− Um
j | ≤ T max

0≤m≤M−1
max

1≤j≤J−1
|Tm

j |.

Recall that, assuming that u is sufficiently smooth, the consistency error of the θ-scheme is

Tm
j =

{
O
(
(∆x)2 + (∆t)2

)
for θ = 1/2,

O
(
(∆x)2 +∆t

)
for θ 6= 1/2.

It therefore follows that for the explicit and implicit Euler schemes, which have consistency error

Tm
j = O

(
(∆x)2 +∆t

)
,

one has the following bound on the global error:

max
0≤m≤M

max
0≤j≤J

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 +∆t

)
,

while for the Crank–Nicolson scheme, which has consistency error

Tm
j = O

(
(∆x)2 + (∆t)2

)
,

one has
max

0≤m≤M
max
0≤j≤J

|u(xj , tm)− Um
j | ≤ Const.

(
(∆x)2 + (∆t)2

)
.

The results developed in this section can be easily extended to multidimensional axiparallel domains,
such as rectangular or L-shaped domains in two space-dimensions whose edges are parallel with the x and
y, axes, or cuboid-shaped domains in three space-dimensions whose faces are parallel with the coordinate
planes. For more complicated computational domains, such as those with nonaxiparallel or curved faces,
finite difference meshes with uneven spacing need to be used for points inside the computational domain
that are closest to the boundary of the domain, or if a mesh with even spacing is used, then ‘ghost-
points’, which lie outside the computational domain, need to be introduced. For further details, we refer,
for example, to R. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations.
SIAM, 2007. ISBN: 978-0-898716-29-0; or to K.W. Morton and D.F. Mayers, Numerical Solution of
Partial Differential Equations: An Introduction, 2nd Edition, CUP, 2005. ISBN: 978-0-521607-93-3.

In the next section we shall confine ourselves to discussing the construction of finite difference schemes
for the unsteady heat-equation in two space-dimensions on a rectangular spatial domain.

5.6 Finite difference approximation of parabolic equations in two space-dimensions

Consider the heat equation

∂u

∂t
=
∂2u

∂x2
+
∂2u

∂y2
, (x, y) ∈ Ω := (a, b)× (c, d), t ∈ (0, T ],

subject to the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ [a, b] × [c, d],

and the Dirichlet boundary condition

u|∂Ω = B(x, y, t), (x, y) ∈ ∂Ω, t ∈ (0, T ],

where ∂Ω is the boundary of Ω. We begin by considering the explicit Euler finite difference approximation
of this problem.
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5.6.1 The explicit Euler scheme

Let
δ2xUi,j := Ui+1,j − 2Ui,j + Ui−1,j,

and
δ2yUi,j := Ui,j+1 − 2Ui,j + Ui,j−1.

Let, further, ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M , and define

xi := a+ i∆x, i = 0, . . . , Jx,

yj := c+ j∆y, j = 0, . . . , Jy,

tm := m∆t, m = 0, . . . ,M.

The explicit Euler finite difference approximation of the unsteady heat equation on the space-time domain
Ω× [0, T ] is then the following:

Um+1
i,j − Um

i,j

∆t
=
δ2xU

m
i,j

(∆x)2
+
δ2yU

m
i,j

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m = 1, . . . ,M .

5.6.2 The implicit Euler scheme

The implicit Euler scheme is defined analogously. Let ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M ,
and define

xi := a+ i∆x, i = 0, . . . , Jx,

yj := b+ j∆y, j = 0, . . . , Jy,

tm := m∆t, m = 0, . . . ,M.

The implicit Euler finite difference scheme for the problem under consideration is then

Um+1
i,j − Um

i,j

∆t
=
δ2xU

m+1
i,j

(∆x)2
+
δ2yU

m+1
i,j

(∆y)2
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um+1
i,j := B(xi, yj , tm+1), at the boundary mesh-points, for m = 0, . . . ,M − 1.
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5.6.3 The θ-scheme

By taking the convex combination of the explicit and implicit Euler schemes, with a parameter θ ∈ [0, 1],
with θ = 0 corresponding to the explicit Euler scheme and θ = 1 to the implicit Euler scheme, we obtain
a one-parameter family of schemes, called the θ-scheme. It is defined as follows.

Let ∆x := (b− a)/Jx, ∆y := (d− c)/Jy , ∆t := T/M , and, for θ ∈ [0, 1], consider the finite difference
scheme

Um+1
i,j − Um

i,j

∆t
= (1− θ)

(
δ2xU

m
i,j

(∆x)2
+
δ2yU

m
i,j

(∆y)2

)
+ θ

(
δ2xU

m+1
i,j

(∆x)2
+
δ2yU

m+1
i,j

(∆y)2

)
,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um+1
i,j := B(xi, yj , tm+1), at the boundary mesh-points, for m = 0, . . . ,M − 1.

The practical stability of the θ-scheme (in the absence of boundary conditions now, i.e., for the pure
initial-value problem rather than the initial-boundary-value problem) in the ℓ2 norm is easily assessed by
inserting the Fourier mode

Um
i,j = [λ(kx, ky)]

m eı(kxxi+kyyj)

into the scheme. This gives the following expression for the amplification factor λ = λ(kx, ky):

λ− 1 = −4(1− θ)

[
µx sin

2

(
kx∆x

2

)
+ µy sin

2

(
ky∆y

2

)]
− 4θλ

[
µx sin

2

(
kx∆x

2

)
+ µy sin

2

(
ky∆y

2

)]
,

where

µx :=
∆t

(∆x)2
, µy :=

∆t

(∆y)2
.

Hence,

λ = λ(kx, ky) =
1− 4(1 − θ)

[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(
ky∆y

2

)]

1 + 4θ
[
µx sin

2
(
kx∆x

2

)
+ µy sin

2
(
ky∆y

2

)] .

For practical stability in the ℓ2 norm, we require that

|λ(kx, ky)| ≤ 1 ∀ (kx, ky) ∈
[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
.

Thus, we demand that

−1 ≤ 1− 4(1 − θ) [µx + µy]

1 + 4θ [µx + µy]
≤ 1,

which can be restated in the following equivalent form:

2(1− 2θ)(µx + µy) ≤ 1.

For example, the implicit Euler scheme (θ = 1) and the Crank–Nicolson scheme (θ = 1/2) are
unconditionally practically stable, while the explicit Euler scheme (θ = 0) is only conditionally practically
stable, the stability condition being that ∆x, ∆y, and ∆t satisfy the following inequality:

µx + µy ≡ ∆t

(
1

(∆x)2
+

1

(∆y)2

)
≤ 1

2
.
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Under a suitable condition the θ-scheme for the initial-boundary-value problem also satisfies a discrete
maximum principle. To see this, we rewrite the θ-scheme as

(1 + 2θ(µx + µy))U
m+1
i,j = (1− 2(1− θ)(µx + µy))U

m
i,j

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j) + (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j) + θµy(U
m+1
i,j+1 + Um+1

i,j−1),

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m = 1, . . . ,M.

Theorem 15 Suppose that

(µx + µy)(1− θ) ≤ 1

2
, θ ∈ [0, 1].

Then, the θ-scheme satisfies the following discrete maximum principle:

Umin ≤ Um
i,j ≤ Umax,

where
Umin := min

{
min{U0

i,j}
Jx,Jy
i,j=0 , min{Um

i,j}Mm=0|(xi,yj)∈∂Ω
}

and
Umax := max

{
max{U0

i,j}
Jx,Jy
i,j=0 , max{Um

i,j}Mm=0|(xi,yj)∈∂Ω
}
.

Proof: The proof proceeds by an obvious modification of the proof of the discrete maximum principle
for the θ-scheme in one space-dimension. �

In summary, then, for

(µx + µy)(1 − θ) ≤ 1

2

the θ-scheme satisfies the discrete maximum principle. This condition is more demanding than the one
for the practical stability of the scheme in the ℓ2 norm, which requires that

(µx + µy)(1− 2θ) ≤ 1

2
for 0 ≤ θ ≤ 1

2 .

For example, the Crank–Nicolson scheme is unconditionally practically stable in the ℓ2 norm, but for the
discrete maximum principle to hold we had to assume that

µx + µy =
∆t

(∆x)2
+

∆t

(∆y)2
≤ 1.

We close our discussion by returning to the θ-scheme for the initial-boundary-value problem, and
discussing its error analysis. The starting point is to rewrite the scheme as follows:

(1 + 2θ(µx + µy))U
m+1
i,j = (1− 2(1− θ)(µx + µy))U

m
i,j

+ (1− θ)µx(U
m
i+1,j + Um

i−1,j) + (1− θ)µy(U
m
i,j+1 + Um

i,j−1)

+ θµx(U
m+1
i+1,j + Um+1

i−1,j) + θµy(U
m+1
i,j+1 + Um+1

i,j−1),
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for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m = 1, . . . ,M.

Suppose further that

(µx + µy)(1− θ) ≤ 1

2
, θ ∈ [0, 1].

The consistency error of the θ-scheme is defined as follows:

Tm
i,j :=

um+1
i,j − umi,j

∆t
− (1− θ)

(
δ2xu

m
i,j

(∆x)2
+
δ2yu

m
i,j

(∆y)2

)
− θ

(
δ2xu

m+1
i,j

(∆x)2
+
δ2yu

m+1
i,j

(∆y)2

)
,

where
umi,j := u(xi, yj , tm).

By performing some elementary but tedious Taylor series expansions, one can deduce that

Tm
i,j =

{
O
(
(∆x)2 + (∆y)2 + (∆t)2

)
θ = 1/2,

O
(
(∆x)2 + (∆y)2 +∆t

)
θ 6= 1/2.

It follows from the definition of the consistency error Tm
i,j for the θ-scheme that

(1 + 2θ(µx + µy))u
m+1
i,j = (1− 2(1− θ)(µx + µy))u

m
i,j

+ (1− θ)µx(u
m
i+1,j + umi−1,j) + (1− θ)µy(u

m
i,j+1 + umi,j−1)

+ θµx(u
m+1
i+1,j + um+1

i−1,j) + θµy(u
m+1
i,j+1 + um+1

i,j−1)

+ ∆t Tm
i,j,

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1. We define the global error as

emi,j := u(xi, yj, tm)− Um
i,j .

Then, e0i,j = 0 and emi,j = 0 for (xi, yj) ∈ ∂Ω, and

(1 + 2θ(µx + µy))e
m+1
i,j = (1− 2(1 − θ)(µx + µy))e

m
i,j

+ (1− θ)µx(e
m
i+1,j + emi−1,j) + (1− θ)µy(e

m
i,j+1 + emi,j−1)

+ θµx(e
m+1
i+1,j + em+1

i−1,j) + θµy(e
m+1
i,j+1 + em+1

i,j−1)

+ ∆t Tm
i,j for i = 1, . . . , Jx − 1 and j = 1, . . . , Jy − 1.

We further define,
Em := max

i,j
|emi,j | and Tm := max

i,j
|Tm

i,j|.

As, by hypothesis,
1− 2(1− θ)(µx + µy) ≥ 0,

we have that

(1 + 2θ(µx + µy))E
m+1 ≤ 2θ(µx + µy)E

m+1 + Em +∆tTm, m = 0, . . . ,M − 1.

Hence,
Em+1 ≤ Em +∆t Tm, m = 0, 1, . . . ,M − 1.
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As E0 = 0, upon summation we deduce that

Em ≤ ∆t

m−1∑

n=0

T n

≤ m∆t max
0≤n≤m−1

T n

≤ T max
0≤m≤M−1

max
1≤i≤Jx−1, 1≤j≤Jy−1

|Tm
i,j|, m = 1, . . . ,M,

and we have that

max
0≤i≤Jx, 0≤j≤Jy

max
0≤m≤M

|u(xi, yj, tm)− Um
i,j | ≤ T max

1≤i≤Jx−1, 1≤j≤Jy−1
max

0≤m≤M−1
|Tm

i,j|.

The explicit and implicit Euler schemes therefore satisfy the error bound

max
0≤i≤Jx, 0≤j≤Jy

max
0≤m≤M

|u(xi, yj, tm)− Um
i,j | ≤ Const.

(
(∆x)2 + (∆y)2 +∆t

)
,

where in the case of the explicit Euler scheme we are assuming that µx + µy ≤ 1
2 .

For the Crank–Nicolson scheme, on the other hand, we have that

max
0≤i≤Jx, 0≤j≤Jy

max
0≤m≤M

|u(xi, yj, tm)− Um
i,j | ≤ Const.

(
(∆x)2 + (∆y)2 + (∆t)2

)
,

assuming that µx + µy ≤ 1.

5.6.4 The alternating direction (ADI) method

Start of
optional
material

Except for θ = 0 corresponding to the explicit Euler scheme, for all other values of θ ∈ (0, 1] the
θ-scheme is an implicit scheme, and its implementation therefore involves the solution of a large system
of linear algebraic equations at each time level. This is true, in particular, in the case of the Crank–
Nicolson scheme corresponding to θ = 1

2 . Our objective here is to propose a more economical scheme,
which replaces the tedious task of solving such large systems of algebraic equations with the successive
solution of smaller linear systems in the x and y coordinate directions respectively, alternating between
solves in the x and y coordinate directions. The resulting finite difference scheme is called the alternating
direction (or ADI) scheme. We describe its construction starting from the Crank–Nicolson scheme, which
has the form:

(
1− 1

2
µxδ

2
x − µy

1

2
δ2y

)
Um+1
i,j =

(
1 +

1

2
µxδ

2
x + µy

1

2
δ2y

)
Um
i,j, (105)

for i = 1, . . . , Jx − 1, j = 1, . . . , Jy − 1, m = 0, 1, . . . ,M − 1, subject to the initial condition

U0
i,j := u0(xi, yj), i = 0, . . . , Jx, j = 0, . . . , Jy,

and the boundary condition

Um
i,j := B(xi, yj , tm), at the boundary mesh-points, for m = 1, . . . ,M.

Let us modify this scheme (subject to the same initial and boundary conditions) to:

(
1− 1

2
µxδ

2
x

)(
1− µy

1

2
δ2y

)
Um+1
i,j =

(
1 +

1

2
µxδ

2
x

)(
1 + µy

1

2
δ2y

)
Um
i,j. (106)
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As the expressions on the left-hand side and the right-hand side of (106) differ from those in the Crank–
Nicolson scheme (105) above, the numerical solution computed from (106) will also differ from the one
obtained from the Crank–Nicolson scheme (105). It can be shown however that the consistency error of
(106) is still O((∆x)2+(∆y)2+(∆t)2) as in the case of the Crank–Nicolson scheme; there is therefore no
significant loss of accuracy resulting from the replacement of (105) with (106). The benefits of replacing
(105) with (106) will be made clear below.

By introducing the intermediate level Um+1/2, we can rewrite the last equality in the following equiv-
alent form

(
1− 1

2
µxδ

2
x

)
U

m+1/2
i,j =

(
1 +

1

2
µyδ

2
y

)
Um
i,j, (107)

(
1− 1

2
µyδ

2
y

)
Um+1
i,j =

(
1 +

1

2
µxδ

2
x

)
U

m+1/2
i,j . (108)

The equivalence of the system (107), (108) to the scheme (106) is seen by applying the finite difference
operator

(
1 +

1

2
µxδ

2
x

)
to eq. (107) and the finite difference operator

(
1− 1

2
µxδ

2
x

)
to eq. (108),

and noting that these two finite difference operators commute. Given Um
i,j, the equation (107) amounts

to solving, for each j, a one-dimensional problem in the x-direction to compute U
m+1/2
i,j ; and then, by

using the computed values U
m+1/2
i,j one solves, for each i, a one-dimensional problem in the y-direction

using (108) to determine Um+1
i,j . Thus, by starting from the information at time level m = 0, where U0

i,j is
specified by the initial datum, one proceeds from time level m to time level m+1, alternating successively
between the x and y directions and advancing from time level m to time level m+1 for m = 0, . . . ,M−1.

The practical stability in the ℓ2 norm of the ADI scheme (for the pure initial-value problem now, i.e.,
with no boundary conditions assumed) is easily seen by substituting the Fourier mode

Um
i,j = [λ(kx, ky)]

meı(kxxi+kyyj)

into the scheme. Hence,

λ(kx, ky) =

(
1− 2µx sin

2 1
2kx∆x

) (
1− 2µy sin

2 1
2kx∆y

)
(
1 + 2µx sin

2 1
2kx∆x

) (
1 + 2µy sin

2 1
2kx∆y

) .

Clearly,

|λ(kx, ky)| ≤ 1 ∀ (kx, ky) ∈
[
− π

∆x
,
π

∆x

]
×
[
− π

∆y
,
π

∆y

]
.

Consequently, the ADI scheme is unconditionally practically stable in the ℓ2 norm. The consistency error
of the ADI scheme can be shown (again, by tedious Taylor series expansions) to be

Tm
i,j = O

(
(∆x)2 + (∆y)2 + (∆t)2

)
.

The ADI scheme satisfies a discrete maximum principle for µx ≤ 1 and µy ≤ 1. The proof of this is
similar to the case of the θ-scheme in one space-dimension (cf. the textbook by K.W. Morton and D.F.
Mayers, Numerical Solution of Partial Differential Equations: An Introduction, 2nd Edition, CUP, 2005.
ISBN: 978-0-521607-93-3. pp. 64, 65).

End of
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material
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6 Finite difference approximation of hyperbolic equations

Lecture 12In this section we shall be concerned with the finite difference approximation of the simplest example
of a second-order linear hyperbolic equation, the linear wave equation

∂2u

∂t2
− c2

∂2u

∂x2
= f(x, t),

where c > 0 is the wave speed and f is a given source term.
In the special case when f is identically zero and the equation is considered on the whole real line,

−∞ < x <∞, by supplying two initial conditions

u(x, 0) = u0(x) for x ∈ R,

∂u

∂t
(x, 0) = u1(x) for x ∈ R,

where u0 and u1 are defined on R, u0 is twice continuously differentiable and u1 is once continuously
differentiable on R, the solution is given by d’Alembert’s formula

u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

∫ x+ct

x−ct
u1(ξ) dξ.

More generally, if f is a continuous function on R × [0,∞) such that ∂f
∂x is a continuous function on

R× [0,∞), then there is still an explicit formula for the solution:

u(x, t) =
1

2
[u0(x− ct) + u0(x+ ct)] +

1

2c

∫ x+ct

x−ct
u1(ξ) dξ +

1

2c

∫ t

0

∫ x+c(t−τ)

x−c(t−τ)
f(s, τ) ds dτ.

In this section, we shall be interested in a problem of the above form, but in the physically more
realistic setting where x is confined to a nonempty bounded closed spatial interval [a, b] of the real line,
with a < b, and where t ∈ [0, T ], with T > 0. In this case, in addition to the two initial conditions
stated above, boundary conditions need to be prescribed at x = a and x = b, and the problem under
consideration thus becomes an initial-boundary-value problem.

6.1 Second-order hyperbolic equations: initial-boundary-value problem and energy

estimate

Consider the closed interval [a, b] of the real line, with a < b, and let T > 0. We shall be concerned with
the finite difference approximation of the initial-boundary-value problem

∂2u

∂t2
− c2

∂2u

∂x2
= f(x, t) for (x, t) ∈ (a, b) × (0, T ],

u(x, 0) = u0(x) for x ∈ [a, b],

∂u

∂t
(x, 0) = u1(x) for x ∈ [a, b],

u(a, t) = 0 and u(b, t) = 0 for t ∈ [0, T ].

(109)

Here, f is assumed to be a continuous real-valued function defined on (a, b)×[0, T ], u0 and u1 are supposed
to be continuous real-valued functions defined on [a, b], and we shall assume compatibility of the initial
data with the boundary conditions, in the sense that u0 and u1 will be required to vanish at both x = a
and x = b. As before, c > 0 is the wave speed.

Before embarking on the construction and the analysis of the finite difference approximation of (109),
it is worth emphasizing that our key analytical tools will be ‘discrete energy inequalities’, which will imply
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the stability of the finite difference schemes under consideration, and which will also play a key role in
their convergence analysis. We shall consider two finite difference schemes — an implicit scheme and an
explicit scheme — and the derivations of the corresponding discrete energy inequalities for these will be
guided by the derivation of an energy inequality for the initial-boundary-value problem (109). We shall
therefore begin by describing the derivation of the ‘energy inequality’ (or ‘energy estimate’) satisfied by
the solution of the initial-boundary-value problem (109). As the proof of the existence of a solution to
the initial-boundary-value problem (109) is not within the scope of these lecture notes, we shall simply
suppose here that a solution u to (109) exists and that u is sufficiently smooth, so that the calculations
to be performed below are meaningful.

We begin by multiplying the partial differential equation (109)1 by the time derivative of u, and we
then integrate the resulting expression over the interval [a, b]; thus,

∫ b

a

∂2u

∂t2
(x, t)

∂u

∂t
(x, t) dx− c2

∫ b

a

∂2u

∂x2
(x, t)

∂u

∂t
(x, t) dx =

∫ b

a
f(x, t)

∂u

∂t
(x, t) dx. (110)

As u(a, t) = 0 and u(b, t) = 0 for all t ∈ [0, T ], it follows that

∂u

∂t
(a, t) = 0 and

∂u

∂t
(b, t) = 0 for all t ∈ [0, T ].

Thus, by performing partial integration with respect to x in the second term on the left-hand side of
(110), we arrive at the following equality:

∫ b

a

∂

∂t

(
∂u

∂t
(x, t)

)
∂u

∂t
(x, t) dx+ c2

∫ b

a

∂u

∂x
(x, t)

∂

∂t

(
∂u

∂x
(x, t)

)
dx =

∫ b

a
f(x, t)

∂u

∂t
(x, t) dx. (111)

Clearly,
∂

∂t

(
∂u

∂t

)
∂u

∂t
=

1

2

∂

∂t

(
∂u

∂t

)2

and
∂u

∂x

∂

∂t

(
∂u

∂x

)
=

1

2

∂

∂t

(
∂u

∂x

)2

,

and therefore, by interchanging integration over the spatial interval (a, b) and differentiation with respect
to t, we have that

1

2

d

dt

∫ b

a

(
∂u

∂t

)2

(x, t) dx+
c2

2

d

dt

∫ b

a

(
∂u

∂x

)2

(x, t) dx =

∫ b

a
f(x, t)

∂u

∂t
(x, t) dx. (112)

In the special case when f is identically zero, the right-hand side of (112) vanishes, and after inte-
grating the resulting expression from 0 to t, for any t ∈ (0, T ], we deduce that

1

2

∫ b

a

(
∂u

∂t

)2

(x, t) dx+
c2

2

∫ b

a

(
∂u

∂x

)2

(x, t) dx =
1

2

∫ b

a

(
∂u

∂t

)2

(x, 0) dx+
c2

2

∫ b

a

(
∂u

∂x

)2

(x, 0) dx.

(113)

If we view the expression on the left-hand side of the equality (113) as the ‘total energy’ at time t and the
right-hand side as the ‘initial total energy’, then the equality (113) can be understood to be expressing
conservation of the total energy during the course of the evolution of the solution from time 0 to time
t ∈ (0, T ], in the absence of a source term.

After multiplying (112) by 2 and defining

L2(u(·, t)) :=
∫ b

a

(
∂u

∂t

)2

(x, t) dx+ c2
∫ b

a

(
∂u

∂x

)2

(x, t) dx

for t ∈ [0, T ], the equality (113) can be rewritten as

L2(u(·, t)) = L2(u(·, 0)) for all t ∈ [0, T ].
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It is this argument that we shall try to mimic in our stability analysis of the finite difference approxima-
tions of the initial-boundary-value problem (112) when f is identically 0. We note in passing that the
mapping u 7→ maxt∈[0,T ][L2(u(·, t))]1/2 is a norm on the linear space of continuous functions u defined
on [a, b] × [0, T ] such that u(a, t) = u(b, t) = 0 for all t ∈ [0, T ], and whose first partial derivatives with
respect to x and t are continuous functions defined on [a, b]× [0, T ].

More generally, if f is not identically zero, then (112) implies that

L2(u(·, t)) = L2(u(·, 0)) + 2

∫ t

0

∫ b

a
f(x, τ)

∂u

∂t
(x, τ) dxdτ.

As
2αβ ≤ α2 + β2, for all α, β ∈ R,

it follows that

L2(u(·, t)) ≤ L2(u(·, 0)) +
∫ t

0

∫ b

a
f2(x, τ) dxdτ +

∫ t

0

∫ b

a

(
∂u

∂t

)2

(x, τ) dxdτ

≤ L2(u(·, 0)) +
∫ t

0

∫ b

a
f2(x, τ) dxdτ +

∫ t

0
L2(u(·, τ)) dτ.

(114)

To proceed, we require the following result, called Gronwall’s Lemma.

Lemma 14 (Gronwall’s Lemma) Suppose that A and B are continuous real-valued nonnegative functions
defined on [0, T ], and B is a nondecreasing function of its argument. Suppose further that

A(t) ≤ B(t) +

∫ t

0
A(s) ds

for all t ∈ [0, T ]; then
A(t) ≤ etB(t)

for all t ∈ [0, T ].

Proof: Clearly,

e−tA(t)− e−t

∫ t

0
A(s) ds ≤ e−tB(t),

and therefore, equivalently,
d

dt

[
e−t

∫ t

0
A(s) ds

]
≤ e−tB(t).

Hence, by integrating and observing that the expression in the square brackets on the left-hand side of
the last inequality vanishes at t = 0 we find that

e−t

∫ t

0
A(s) ds ≤

∫ t

0
e−sB(s) ds.

Multiplying this inequality by et, and because B is by hypothesis a nondecreasing nonnegative function,
whereby B(s) ≤ B(t) for all s ∈ [0, t], we have that

∫ t

0
A(s) ds ≤ etB(t)

∫ t

0
e−s ds = etB(t) (1− e−t) = etB(t)−B(t).

By substituting this into the right-hand side of the inequality assumed in the statement of the lemma, it
follows that A(t) ≤ B(t) + etB(t)−B(t) = etB(t), as has been asserted. That completes the proof. �
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We now return to (114) and set

A(t) := L2(u(·, t)) and B(t) := L2(u(·, 0)) +
∫ t

0

∫ b

a
f2(x, τ) dxdτ

It then follows from Gronwall’s lemma that A(t) ≤ etB(t), that is

L2(u(·, t)) ≤ et
(
L2(u(·, 0)) +

∫ t

0

∫ b

a
f2(x, τ) dxdτ

)
,

with

L2(u(·, t)) :=
∫ b

a

(
∂u

∂t

)2

(x, t) dx+ c2
∫ b

a

(
∂u

∂x

)2

(x, t) dx

and

L2(u(·, 0)) :=
∫ b

a

(
∂u

∂t

)2

(x, 0) dx+ c2
∫ b

a

(
∂u

∂x

)2

(x, 0) dx = ‖u1‖2L2((a,b))
+ c2 |u0|2H1((a,b)),

which is the desired energy inequality satisfied by the solution. It provides a bound on the (square of
the) norm of the solution in terms of the (square of the) norm of the initial data and the (square of the)
L2 norm of the source term f . We shall mimic the derivation of this energy inequality in the stability
analysis of the implicit and explicit finite difference approximations of the initial-boundary-value problem
(109) in the general case when f is not identically zero.

6.2 The implicit scheme: stability, consistency and convergence

Lecture 13For M ≥ 2, we define ∆t := T/M , and for J ≥ 2 the spatial step is taken to be ∆x := (b − a)/J .
We let xj := a + j∆x for j = 0, 1, . . . , J and tm := m∆t for m = 0, 1, . . . ,M . On the space-time mesh
{(xj , tm) : 0 ≤ j ≤ J, 0 ≤ m ≤M} we consider the finite difference scheme

Um+1
j − 2Um

j + Um−1
j

(∆t)2
− c2

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
= f(xj, tm+1) for

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

U0
j := u0(xj) for j = 0, 1, . . . , J,

U1
j := U0

j +∆t u1(xj) for j = 1, 2, . . . , J − 1,

Um
0 := 0 and Um

J := 0 for m = 1, . . . ,M.

(115)

The second numerical initial condition, featuring in equation (115)3, stems from the observation that if
∂2u
∂t2 ∈ C([a, b]× [0, T ]) then

u(xj ,∆t)− U0
j

∆t
=
u(xj ,∆t)− u(xj , 0)

∆t
=
∂u

∂t
(xj , 0) +O(∆t) = u1(xj) +O(∆t);

thus, by ignoring the O(∆t) term and replacing u(xj ,∆t) by its numerical approximation U1
j we arrive

at the numerical initial condition (115)3.
Once the values of Um−1

j and Um
j , for j = 0, . . . , J , have been computed (or have been specified by

the initial data, in the case of m = 1), the subsequent values Um+1
j , j = 0, . . . , J , need to be computed

by solving a system of J −1 linear algebraic equations for the J −1 unknowns Um+1
j , j = 0, . . . , J −1, for

each m = 0, . . . ,M − 1. The finite difference scheme (115) is therefore usually referred to as the implicit
scheme for the initial-boundary-value problem (109).
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Stability of the implicit scheme. We shall consider the inner products

(U, V ) :=
J−1∑

j=1

∆xUj Vj ,

(U, V ] :=

J∑

j=1

∆xUj Vj ,

and the associated norms, respectively, ‖ · ‖ and ‖·]|, defined by ‖U‖ := (U,U)
1
2 and ‖U ]| := (U,U ]

1
2 .

Note that for two mesh functions A and B defined on the computational mesh {xj : j = 1, . . . , J−1}
one has that

(A−B,A) =
1

2
(‖A‖2 − ‖B‖2) + 1

2
‖A−B‖2.

Thus, by taking A = Um+1 − Um and B = Um − Um−1, we have that

(Um+1 − 2Um+Um−1, Um+1 −Um) =
1

2
(‖Um+1 −Um‖2 −‖Um−Um−1‖2)+ 1

2
‖Um+1 − 2Um+Um−1‖2.

We note further that, similarly as above, for two mesh functions A and B defined on the computational
mesh {xj : j = 1, . . . , J} we have that

(A−B,A] =
1

2
(‖A]|2 − ‖B]|2) + 1

2
‖A−B]|2.

Hence, by performing a summation by parts and then taking A = D−
x U

m+1 and B = D−
x U

m we have

(
−D+

xD
−
x U

m+1, Um+1 − Um
)
= (D−

x U
m+1,D−

x (U
m+1 − Um)]

= (D−
x U

m+1 −D−
x U

m,D−
x U

m+1]

=
1

2
(‖D−

x U
m+1]|2 − ‖D−

x U
m]|2) + 1

2
‖D−

x (U
m+1 − Um)]|2.

By taking the (·, ·) inner product of (115)1 with Um+1 −Um and using the identities stated above we
therefore obtain:

1

2

(∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥
2

−
∥∥∥∥
Um − Um−1

∆t

∥∥∥∥
2
)

+
1

2
(∆t)2

∥∥∥∥
Um+1 − 2Um + Um−1

(∆t)2

∥∥∥∥
2

+
1

2
c2(‖D−

x U
m+1]|2 − ‖D−

x U
m]|2) + 1

2
c2 (∆t)2

∥∥∥∥D−
x

(
Um+1 − Um

∆t

)]∣∣∣∣
2

= (f(·, tm+1), U
m+1 − Um).

(116)

In the special case when f is identically zero the equality (116) implies that

∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥
2

+ c2‖D−
x U

m+1]|2 ≤
∥∥∥∥
Um − Um−1

∆t

∥∥∥∥
2

+ c2‖D−
x U

m]|2. (117)

Let us define the nonnegative expression

M2(Um) :=

∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥
2

+ c2‖D−
x U

m+1]|2.

With this notation (117) becomes

M2(Um) ≤ M2(Um−1), for all m = 1, . . . ,M − 1,
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and therefore
M2(Um) ≤ M2(U0), for all m = 1, . . . ,M − 1.

One can verify that the mapping U 7→ maxm∈{0,...,M−1}[M2(Um)]1/2 is a norm on the linear space of
mesh functions U defined on the space-time mesh {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M} such that
Um
0 = Um

J = 0 for all m = 0, 1, . . . ,M . Thus we have shown that when f is identically zero the implicit
scheme (115) is (unconditionally) stable in this norm.

We now return to the general case when f is not identically zero. Our starting point is the equality
(116) and we focus our attention on the term on its right-hand side. By the Cauchy–Schwarz inequality,

(f(·, tm+1), U
m+1 − Um) ≤ ‖f(·, tm+1)‖ ‖Um+1 − Um‖

=
√
∆t T ‖f(·, tm+1)‖

√
∆t

T

∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥

≤ ∆t T

2
‖f(·, tm+1)‖2 +

∆t

2T

∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥
2

,

(118)

where in the transition to the last line we have made use of the elementary inequality

αβ ≤ 1

2
α2 +

1

2
β2, for α, β ∈ R.

By substituting (118) into (116) we deduce that

(
1− ∆t

T

)(∥∥∥∥
Um+1 − Um

∆t

∥∥∥∥
2

+ c2‖D−
x U

m+1]|2
)

≤
∥∥∥∥
Um − Um−1

∆t

∥∥∥∥
2

+ c2‖D−
x U

m]|2 +∆t T ‖f(·, tm+1)‖2.

(119)

By recalling the definition of M2(Um) we can rewrite (119) in the following compact form:

(
1− ∆t

T

)
M2(Um) ≤ M2(Um−1) + ∆t T ‖f(·, tm+1)‖2.

As, by assumption, M ≥ 2, it follows that ∆t := T/M ≤ T/2, whereby ∆t/T ≤ 1/2. By noting that

1− x ≥ 1

1 + 2x
∀x ∈

[
0, 12
]
,

it follows with x = ∆t/T that, for m = 1, 2, . . . ,M − 1,

M2(Um) ≤
(
1 +

2∆t

T

)
M2(Um−1) + ∆t T

(
1 +

2∆t

T

)
‖f(·, tm+1)‖2

≤
(
1 +

2∆t

T

)
M2(Um−1) + 2∆t T ‖f(·, tm+1)‖2.

To proceed, we require the following result, which is easily proved by induction.

Lemma 15 Suppose that M ≥ 2 is an integer, {am}M−1
m=0 and {bm}M−1

m=1 are nonnegative real numbers,
α > 0, and

am ≤ αam−1 + bm for m = 1, 2, . . . ,M − 1.

Then,

am ≤ αma0 +
m∑

k=1

αm−kbk for m = 1, 2, . . . ,M − 1.
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We shall apply Lemma 15 with

am = M2(Um), bm = 2∆t T ‖f(·, tm+1)‖2, α = 1 +
2∆t

T

to deduce that

M2(Um) ≤
(
1 +

2∆t

T

)m

M2(U0) + 2∆t T

m∑

k=1

(
1 +

2∆t

T

)m−k

‖f(·, tk+1)‖2 for m = 1, 2, . . . ,M − 1.

We note that (
1 +

2∆t

T

)m

≤
(
1 +

2∆t

T

)M

=

(
1 +

2∆t

T

) T
∆t

≤ e2,

where the last inequality follows from the inequality

(1 + 2x)
1
x ≤ e2 ∀x ∈

(
0, 12
]
,

with x = ∆t/T , which, in turn, follows by noting that 1 + 2x ≤ e2x for all x ≥ 0. Thus we deduce the
following stability result for the implicit scheme (115).

Theorem 16 The implicit finite difference approximation (115) of the initial-boundary-value problem
(109), on a finite difference mesh of spacing ∆x := (b−a)/J with J ≥ 2 in the x-direction and ∆t := T/M
with M ≥ 2 in the t-direction, is (unconditionally) stable in the sense that

M2(Um) ≤ e2 M2(U0) + 2 e2 T

m∑

k=1

∆t ‖f(·, tk+1)‖2 , for m = 1, . . . ,M − 1,

independently of the choice of ∆x and ∆t.

Consistency of the implicit scheme. We define the consistency error of the scheme by

Tm+1
j :=

um+1
j − 2umj + um−1

j

(∆t)2
− c2

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
− f(xj, tm+1),

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

and

T 1
j :=

u1j − u0j
∆t

− u1(xj), j = 1, . . . , J − 1,

where umj := u(xj , tm). As

f(xj , tm+1) =
∂2u

∂t2
(xj , tm+1)− c2

∂2u

∂x2
(xj , tm+1) and u1(xj) =

∂u

∂t
(xj , 0),

it follows that

Tm+1
j :=

(
um+1
j − 2umj + um−1

j

(∆t)2
− ∂2u

∂t2
(xj , tm+1)

)
− c2

(
um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
− ∂2u

∂x2
(xj, tm+1)

)

for j = 1, . . . , J − 1 and m = 1, . . . ,M − 1 and

T 1
j =

u1j − u0j
∆t

− ∂u

∂t
(xj , 0)
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for j = 1, . . . , J − 1. Hence, by Taylor series expansion of umj = u(xj , tm) and um−1
j = u(xj, tm−1) about

the point (xj , tm+1) we have that

um+1
j − 2umj + um−1

j

(∆t)2
− ∂2u

∂t2
(xj , tm+1) =

1

3
∆t

(
∂3u

∂t3
(xj , ηm)− 4

∂3u

∂t3
(xj , ζm)

)
,

where ηm ∈ [tm, tm+1] and ζm ∈ [tm−1, tm+1] and, provided that the third partial derivative of u with
respect to t is a continuous function on [a, b] × [0, T ]. Similarly, by Taylor series expansion of um+1

j+1 =

u(xj+1, tm+1) and u
m+1
j−1 = u(xj−1, tm+1) about the point (xj , tm+1) we find that

um+1
j+1 − 2um+1

j + um+1
j−1

(∆x)2
− ∂2u

∂x2
(xj , tm+1) =

1

12
(∆x)2

∂4u

∂x4
(ξj , tm+1),

where ξj ∈ [xj−1, xj+1], provided that the fourth partial derivative of u with respect to x is a continuous
function on [a, b] × [0, T ]. Hence,

|Tm+1
j | ≤ 1

12
c2(∆x)2M4x +

5

3
∆tM3t,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

(120)

where

M4x := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂4u

∂x4
(x, t)

∣∣∣∣ and M3t := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂3u

∂t3
(x, t)

∣∣∣∣ .

It remains to bound T 1
j . This time, by performing a Taylor series expansion, but now with an integral

remainder term, we get that

T 1
j =

1

∆t

∫ ∆t

0
(∆t− t)

∂2u

∂t2
(xj , t) dt, (121)

and therefore

|T 1
j | ≤

1

2
∆tM2t, j = 1, . . . , J − 1,

where

M2t := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂2u

∂t2
(x, t)

∣∣∣∣ .

Having bounded the consistency error we are now ready to investigate the convergence of the implicit
scheme.

Convergence of the implicit scheme. In the rest of the section we shall explore the convergence
of the finite difference scheme (115). To this end, we define the global error

emj := u(xj , tm)− Um
j ,

{
j = 0, . . . , J,
m = 0, . . . ,M.

It follows from the definitions of Tm+1
j and T 1

j that

em+1
j − 2emj + em−1

j

(∆t)2
− c2

em+1
j+1 − 2em+1

j + em+1
j−1

(∆x)2
= Tm+1

j ,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

and
e1j = e0j +∆t T 1

j , j = 1, . . . , J − 1.

Furthermore, e0j = 0 for j = 0, 1, . . . , J , and em0 = emJ = 0 for m = 1, . . . ,M . Hence, the global error e

satisfies an identical finite difference scheme as U , but with f(xj, tm+1) replaced by Tm+1
j , U0

j = u0(xj)
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replaced by e0j = 0, and u1(xj) replaced by T 1
j . It therefore follows from Theorem 16 with Um replaced

by em, U0 replaced by e0 and f(xj , tk+1) replaced by T k+1
j for j = 1, . . . , J − 1 and k = 1, . . . ,M − 1,

that

M2(em) ≤ e2 M2(e0) + 2 e2 T

m∑

k=1

∆t
∥∥∥T k+1

∥∥∥
2
, for m = 1, . . . ,M − 1.

Now, because (J − 1)∆x ≤ (b− a), it follows from (120) that

max
1≤k≤m

∥∥∥T k+1
∥∥∥
2
= max

1≤k≤m

J−1∑

j=1

∆x |T k+1
j |2 ≤ (b− a)

[
1

12
c2(∆x)2M4x +

5

3
∆tM3t

]2
.

On the other hand,

M2(e0) =

∥∥∥∥
e1 − e0

∆t

∥∥∥∥
2

+ c2‖D−
x e

1]|2 = ‖T 1‖2 + c2‖D−
x e

1]|2 ≤ (b− a)

[
1

2
∆tM2t

]2
+ c2‖D−

x e
1]|2.

As, by recalling (121),

D−
x e

1
j = D−

x e
0
j +∆tD−

x T
1
j = ∆tD−

x T
1
j =

∫ ∆t

0
(∆t− t)D−

x

∂2u

∂t2
(xj , t) dt

=
1

∆x

∫ ∆t

0
(∆t− t)

∫ xj

xj−1

∂3u

∂x ∂t2
(x, t) dxdt,

we have that

|D−
x e

1
j | ≤

1

2
(∆t)2M1x2t, where M1x2t := max

(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂3u

∂x∂t2

∣∣∣∣ ,

whereby

‖D−
x e

1]|2 ≤ (b− a)

[
1

2
(∆t)2M1x2t

]2
.

Therefore,

M2(e0) ≤ (b− a)

[
1

2
∆tM2t

]2
+ c2(b− a)

[
1

2
(∆t)2M1x2t

]2
.

Hence, finally,

M2(em) ≤ e2(b−a)
[
1

2
∆tM2t

]2
+c2e2(b−a)

[
1

2
(∆t)2M1x2t

]2
+2e2 T 2(b−a)

[
1

12
c2(∆x)2M4x +

5

3
∆tM3t

]2

for m = 1, . . . ,M − 1. Thus, provided that M2t, M1x2t, M4x and M3t are all finite, we have that

max
m∈{1,...,M−1}

[M2(um − Um)]
1
2 = O((∆x)2 +∆t),

meaning that the implicit scheme exhibits second order convergence with respect to the spatial discretiza-
tion step ∆x and first-order convergence with respect to the temporal discretization step ∆t in the norm
maxm∈{1,...,M−1}[M2(·)] 12 . Thanks to the unconditional stability of the implicit scheme, its convergence
is also unconditional in the sense that there is no limitation on the size of the time step ∆t in terms of
the spatial mesh-size ∆x for convergence of the sequence of numerical approximations to the solution of
the wave equation to occur as ∆x and ∆t tend to 0.

Next we shall investigate the explicit finite difference approximation of the wave equation. It will be
shown that, in contrast with the implicit scheme, the explicit scheme is only conditionally stable, and its
convergence will therefore also shown to be conditional; specifically, we shall require that

c∆t

∆x
≤ 1,

where c > 0 is the wave speed, appearing as the coefficient of ∂2u
∂x2 in the wave equation.
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6.3 The explicit scheme: stability, consistency and convergence

Lecture 14For M ≥ 2, we define ∆t := T/M , and for J ≥ 2 the spatial step is taken to be ∆x := (b − a)/J .
We let xj := a + j∆x for j = 0, 1, . . . , J and tm := m∆t for m = 0, 1, . . . ,M . On the space-time mesh
{(xj , tm) : 0 ≤ j ≤ J, 0 ≤ m ≤M} we consider the finite difference scheme

Um+1
j − 2Um

j + Um−1
j

(∆t)2
− c2

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
= f(xj, tm) for

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

U0
j := u0(xj) for j = 0, 1, . . . , J ,

U1
j := U0

j +∆t u1(xj) for j = 1, 2, . . . , J − 1,

Um
0 := 0 and Um

J := 0 for m = 1, . . . ,M.

(122)

As in the case of the implicit scheme (115), the second numerical initial condition, appearing in (122)3,
stems from the observation that

u(xj ,∆t)− U0
j

∆t
=
u(xj ,∆t)− u(xj , 0)

∆t
=
∂u

∂t
(xj , 0) +O(∆t) = u1(xj) +O(∆t),

upon replacing u(xj ,∆t) by its numerical approximation U1
j at the cost of ignoring the O(∆t) term.

Instead of (122)3, a more accurate second numerical initial condition can be obtained by observing

that, if f is assumed to be a continuous real-valued function defined on [a, b]×[0, T ], ∂3u
∂t3 ∈ C([a, b]×[0, T ])

and u1 ∈ C4([a, b]), then

u(xj ,∆t)− U0
j

∆t
=
u(xj ,∆t)− u(xj , 0)

∆t
=
∂u

∂t
(xj , 0) +

1

2
∆t

∂2u

∂t2
(xj , 0) +O((∆t)2)

= u1(xj) +
1

2
∆t

(
c2
∂2u

∂x2
(xj , 0) + f(xj, 0)

)
+O((∆t)2)

= u1(xj) +
1

2
∆t

(
c2D+

xD
−
x u1(xj) + f(xj, 0)

)
+O(∆t (∆x)2 + (∆t)2).

One could therefore, instead of (122)3, use the following more accurate second initial condition:

U1
j := U0

j +∆t u1(xj) +
1

2
(∆t)2

(
c2D+

xD
−
x u1(xj) + f(xj, 0)

)
. (123)

Once the values of Um−1
j and Um

j , for j = 0, . . . , J , have been computed (or have been specified by

the initial data, in the case of m = 1), the subsequent values Um+1
j , j = 0, . . . , J , for m = 1, . . . ,M − 1,

can be computed explicitly from (122), without having to solve systems of linear algebraic equations;
hence the terminology explicit scheme.

Stability of the explicit scheme. We begin our exploration of the properties of the finite difference
scheme (122) by investigating its stability. It will transpire from the analysis that will follow that the
explicit scheme is, unlike the implicit scheme, which was shown to be unconditionally stable, now only
conditionally stable: we shall prove its stability in a certain ‘energy norm’, whose precise definition will
emerge during the course of our analysis, — the stability condition for the explicit scheme being that
c∆t/∆x ≤ 10.

We begin by noting that, for any j ∈ {0, . . . , J} and m ∈ {1, . . . ,M −1}, the following identities hold:

Um+1
j − Um−1

j = (Um+1
j − Um

j ) + (Um
j − Um−1

j ) = (Um+1
j + Um

j )− (Um
j + Um−1

j ),

Um+1
j − 2Um

j + Um−1
j = (Um+1

j − Um
j )− (Um

j − Um−1
j ),

Um+1
j + 2Um

j + Um−1
j = (Um+1

j + Um
j ) + (Um

j + Um−1
j ).

(124)
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The left-hand side of equality (122)1 can be rewritten as

Um+1
j − 2Um

j + Um−1
j

(∆t)2
− c2D+

xD
−
x U

m
j

=
Um+1
j − 2Um

j + Um−1
j

(∆t)2
+
c2(∆t)2

4
D+

xD
−
x

Um+1
j − 2Um

j + Um−1
j

(∆t)2
− c2D+

xD
−
x

Um+1
j + 2Um

j + Um−1
j

4

for j = 1, . . . , J − 1. Insertion of this into (122)1 then yields

(
I +

1

4
c2(∆t)2D+

xD
−
x

)
Um+1
j − 2Um

j + Um−1
j

(∆t)2
= c2D+

xD
−
x

Um+1
j + 2Um

j + Um−1
j

4
+ f(xj, tm) (125)

for j = 1, . . . , J − 1, m = 1, . . . ,M − 1, where I signifies the identity operator, which maps any mesh
function defined on the spatial mesh {xj : j = 1, . . . , J − 1} into itself. We shall consider the inner
products

(U, V ) :=

J−1∑

j=1

∆xUj Vj ,

(U, V ] :=
J∑

j=1

∆xUj Vj ,

and the associated norms, respectively, ‖ · ‖ and ‖·]|, defined by ‖U‖ := (U,U)
1
2 and ‖U ]| := (U,U ]

1
2 . We

then take the (·, ·) inner product of (125) with Um+1 − Um−1, making use of (124)3 and (124)1 on the
left-hand side, and (124)4 and (124)2 on the right-hand side, together with the equalities

(D(A−B), A+B) = (DA,A)− (DB,B),

(D(A+B), A−B) = (DA,A)− (DB,B),

on the left-hand side and the right-hand side, respectively, where the finite difference operator D satisfies
the symmetry property (DA,B) = (DB,A); in our case,

D = I +
1

4
c2(∆t)2D+

xD
−
x and D = c2D+

xD
−
x

on the left-hand side and right-hand side of (125), respectively, satisfy this symmetry property, which can
be verified using summation by parts thanks to the fact that the mesh functions A = Um+1 ± Um and
B = Um ± Um−1 vanish at x0 and xJ because of the homogeneous Dirichlet boundary condition (122)4.
Thus we obtain the following equality:

((
I +

1

4
c2(∆t)2D+

x
D−

x

)
Um+1 − Um

∆t
,
Um+1 − Um

∆t

)
−
((

I +
1

4
c2(∆t)2D+

x
D−

x

)
Um − Um−1

∆t
,
Um − Um−1

∆t

)

= −c2
(
−D+

x
D−

x

Um+1 + Um

2
,
Um+1 + Um

2

)
+ c2

(
−D+

x
D−

x

Um + Um−1

2
,
Um + Um−1

2

)

+ (f(·, tm), Um+1 − Um−1).

Next, we shall perform summations by parts in the first two terms on the right-hand side, using that,
for any mesh-function V defined on {xj : j = 0, . . . , J} and such that V0 = VJ = 0, one has

(−D+
xD

−
x V, V ) = (D−

x V,D
−
x V ] = ‖D−

x V ]|2.

Using these equalities with V = 1
2(U

m+1 + Um) and V = 1
2(U

m + Um−1), we deduce that
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((
I +

1

4
c2(∆t)2D+

x
D−

x

)
Um+1 − Um

∆t
,
Um+1 − Um

∆t

)
−
((

I +
1

4
c2(∆t)2D+

x
D−

x

)
Um − Um−1

∆t
,
Um − Um−1

∆t

)

= −c2
(
D−

x

Um+1 + Um

2
, D−

x

Um+1 + Um

2

]
+ c2

(
D−

x

Um + Um−1

2
, D−

x

Um + Um−1

2

]

+ (f(·, tm), Um+1 − Um−1)

= −c2
∥∥∥∥D−

x

Um+1 + Um

2

]∣∣∣∣
2

+ c2
∥∥∥∥D−

x

Um + Um−1

2

]∣∣∣∣
2

+ (f(·, tm), Um+1 − Um−1).

This implies, following a minor rearrangement of terms, that

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
Um+1 − Um

∆t
,
Um+1 − Um

∆t

)
+ c2

∥∥∥∥D−
x

Um+1 + Um

2

]∣∣∣∣
2

=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
Um − Um−1

∆t
,
Um − Um−1

∆t

)
+ c2

∥∥∥∥D−
x

Um + Um−1

2

]∣∣∣∣
2

+ (f(·, tm), Um+1 − Um−1).

(126)

The second term on the left-hand side of (126) is nonnegative, as is the second term on the right-hand
side. We would therefore like to ensure that first term on the left-hand side of (126) and the first term on
the right-hand side are also nonnegative. In order to do so we shall make a small diversion to investigate
this question. Letting

V m
j :=

Um+1
j − Um

j

∆t
, j = 0, . . . , J,

and noting that V m
0 = V m

J = 0, it follows that

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
V m, V m

)
= ‖V m‖2 + 1

4
c2(∆t)2(D+

xD
−
x V

m, V m)

= ‖V m‖2 − 1

4
c2(∆t)2(D−

x V
m,D−

x V
m]

= ‖V m‖2 − 1

4
c2(∆t)2‖D−

x V
m]|2.

The left-most expression in this chain of equalities will be nonnegative if and only if

‖V m‖2 − 1

4
c2(∆t)2‖D−

x V
m]|2 ≥ 0.

Our objective is to show that this can be guaranteed by requiring that c∆t/∆x ≤ 1. Noting that for any
nonnegative real numbers α and β one has (α− β)2 ≤ 2α2 + 2β2, it follows that

‖D−
x V

m]|2 =
J∑

j=1

∆x |D−
x V

m
j |2 = (∆x)−1

J∑

j=1

(V m
j − V m

j−1)
2

≤ 2 (∆x)−1
J∑

j=1

(V m
j )2 + (V m

j−1)
2 = 4 (∆x)−1

J−1∑

j=1

(V m
j )2

= 4 (∆x)−2
J−1∑

j=1

∆x (V m
j )2 =

(
2

∆x

)2

‖V ‖2.
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Thus we deduce that
((

I +
1

4
c2(∆t)2D+

xD
−
x

)
V m, V m

)
≥
(
1−

(
c∆t

∆x

)2
)
‖V m‖2. (127)

We shall therefore suppose that the following condition holds, referred to as a Courant–Friedrichs–Lewy
(or CFL) condition:

c∆t

∆x
≤ 1. (128)

Assuming that (128) holds, we then have from (127) that
((

I +
1

4
c2(∆t)2D+

xD
−
x

)
Um+1 − Um

∆t
,
Um+1 − Um

∆t

)
≥ 0. (129)

We shall therefore proceed by assuming that (128) holds, and define the nonnegative expression

N 2(Um) :=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
Um+1 − Um

∆t
,
Um+1 − Um

∆t

)
+ c2

∥∥∥∥D−
x

Um+1 + Um

2

]∣∣∣∣
2

.

With this notation (126) becomes

N 2(Um) = N 2(Um−1) + (f(·, tm), Um+1 − Um−1). (130)

In the special case when f is identically zero (130) guarantees the stability of the explicit scheme
under the CFL condition (128); indeed, (130) implies that

N 2(Um) = N 2(U0), for all m = 1, . . . ,M − 1.

One can check that the mapping U 7→ maxm∈{0,...,M−1}
[
N 2(Um)

]1/2
is a norm on the linear space of

all mesh functions U defined on the space-time mesh {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M} such
that Um

0 = Um
J = 0 for all m = 0, 1, . . . ,M.10 Thus we have shown that, provided that the CFL condition

(128) holds and f is identically zero, the explicit scheme (122) is (conditionally) stable in this norm.

10If is straightforward to check that the mapping U 7→ maxm∈{0,...,M−1}

[

N 2(Um)
]1/2

=: |||U ||| is a seminorm on the
linear space V of all mesh functions U defined on the space-time mesh {(xj , tm) : j = 0, 1, . . . , J, m = 0, 1, . . . ,M} such that
Um

0 = Um
J = 0 for all m = 0, 1, . . . ,M . Indeed, |||U ||| ≥ 0 for all U ∈ V, |||0||| = 0, |||λU ||| = |λ| |||U ||| for all λ ∈ R and all

U ∈ V, and |||U +V ||| ≤ |||U |||+ |||V ||| for all U, V ∈ V. To show that ||| · ||| is in fact a norm, one needs to check in addition
that if |||U ||| = 0 for some U ∈ V then U = 0. When c∆t/∆x < 1 this is an immediate consequence of (127), which implies
that ‖Um+1−Um‖ = 0 for all m = 0, 1, . . . ,M −1, and therefore Um+1

j −Um
j = 0 for all j = 0, 1, . . . , J , m = 0, 1, . . . ,M−1;

and this, together with 0 = ‖D−
x (Um+1 +Um)]|2 ≥ 2 ‖Um+1 +Um‖2 (by the discrete Poincaré–Friedrichs inequality), which

yields Um+1
j + Um

j = 0 for all j = 0, 1, . . . , J , m = 0, 1, . . . ,M − 1, then implies that Um
j = 0 for all j = 0, . . . , J and all

m = 0, 1, . . . ,M , as required. Thus, when c∆t/∆x < 1, ||| · ||| is indeed a norm on V. On the other hand, when c∆t/∆x = 1
the inequality (127) can no longer be used to repeat this argument. It can be shown, however, that (127) can be improved:

((

I +
1

4
c2(∆t)2D+

x D−
x

)

V m, V m

)

=

((

I +
1

4
(∆x)2D+

x D−
x

)

V m, V m

)

−
1

4
(∆x)2

(

1−

(

c∆t

∆x

)2
)

(D+
x D−

x V m, V m)

≥ 4 sin2

(

π∆x

2

)

‖V m‖2 +
1

4
(∆x)2

(

1−

(

c∆t

∆x

)2
)

‖D−
x V m]|2

≥ 4 sin2

(

π∆x

2

)

‖V m‖2 +

(

1−

(

c∆t

∆x

)2
)

‖V m‖2. (131)

Using this inequality instead of (127) one can now show that ||| · ||| is a norm on V as long as c∆t/∆x ≤ 1. We note however
that when c∆t/∆x = 1 the right-hand side of the inequality (131) reduces to 4 sin2

(

π∆x
2

)

‖V m‖2. Since 4 sin2
(

π∆x
2

)

≍
π2(∆x)2 as ∆x → 0, and π2(∆x)2 → 0 as ∆x → 0, the prefactor of ‖V m‖2 on the right-hand side of the inequality (131)
gradually deteriorates when c∆t/∆x = 1 and ∆x → 0. In particular when c∆t/∆x = 1 there is a no constant c0 > 0,
independent of ∆x, such that the left-hand side of the inequality (131) is bounded below by c0‖V

m‖2.
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material

We now return to the general case when f is not identically zero, under the following assumption,
which is slightly more restrictive than the CFL condition (128):

∃ c0 ∈ (0, 1) such that
c∆x

∆t
≤ c0, (132)

and we focus our attention on the second term on the right-hand side of (130). For m ∈ {1, . . . ,M}, let
Zm be the solution of the problem

(
I +

1

4
c2(∆t)2D+

xD
−
x

)
Zm
j = f(xj, tm), j = 1, . . . , J − 1.

Zm
0 = Zm

J = 0.

(133)

To show the existence of a unique solution Zm to this problem we note that (133) is in fact a system of
J − 1 linear algebraic equations for the J − 1 unknowns Zm

1 , . . . , Z
m
J−1. Therefore (133) will possess a

unique solution if, and only if, the corresponding homogeneous problem (i.e., the problem with f(xj, tm)
replaced by 0 for all j ∈ {1, . . . , J − 1} on the right-hand side of (133)) has Zm

j = 0, j = 0, . . . , J , as its
unique solution. Clearly, the homogeneous counterpart of (133) does indeed have Zm

j = 0, j = 0, . . . , J ,
as a solution. The fact that this is the unique solution to the homogeneous counterpart of (133) follows by
noting that, thanks to the inequality (127) with V m = Zm and the assumed CFL condition (132), we have
that ‖Zm‖2 = 0. Therefore Zm

j = 0 for all j = 0, . . . , J . In other words, the homogeneous counterpart
of (133) has the trivial solution as its unique solution; therefore the nonhomogeneous problem (133)
possesses a unique solution.

Having shown the existence of unique solution to (133), it makes sense to write

Zm =

(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

f(·, tm). (134)

With this, we return to the second term on the right-hand side of (130) and decompose it as follows:

(f(·, tm), Um+1 − Um−1) = (f(·, tm), Um+1 − Um) + (f(·, tm), Um − Um−1)

=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
Zm, Um+1 − Um

)
+

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
Zm, Um − Um−1

)
.

We would now like to transfer, in each of the two inner products appearing in the last line, the finite
difference operator featuring there from the first entry of the inner product to the second entry in the inner
product. To this end, note that for any two mesh functions V ,W , defined on the mesh {xj : j = 0, . . . , J}
and such that V0 = VJ = 0 and W0 =WJ = 0, one has, by summation by parts,

(D+
x D

−
x V,W ) = (V,D+

x D
−
xW ). (135)

As Zm
0 = Zm

J = 0, Um+1
0 − Um

0 = Um+1
J − Um

J = 0, and Um
0 − Um−1

0 = Um
J − Um−1

J = 0, it follows that

(f(·, tm), Um+1 − Um−1) = (f(·, tm), Um+1 − Um) + (f(·, tm), Um − Um−1)

=

(
Zm,

(
I +

1

4
c2(∆t)2D+

xD
−
x

)(
Um+1 − Um

))
+

(
Zm,

(
I +

1

4
c2(∆t)2D+

xD
−
x

)(
Um − Um−1

))

=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)(
Um+1 − Um

)
, Zm

)
+

((
I +

1

4
c2(∆t)2D+

xD
−
x

)(
Um − Um−1

)
, Zm

)
.

To simplify our notation, for mesh functions V , W defined on the mesh {xj : j = 0, . . . , J} and such
that V0 = VJ = 0 and W0 =WJ = 0, we shall write

[V,W ] :=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
V,W

)
.
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We leave it as an exercise to the reader to verify that [·, ·] is an inner product: note, to this end, that
[·, ·] is linear in both of its entries; thanks to (135), [V,W ] = [W,V ]; and, by virtue of (127) and (132), if
[V, V ] = 0 then V = 0.

Let |[·]| denote the norm induced by this inner product, i.e., let |[V ]| := [V, V ]
1
2 . One then has the

following Cauchy–Schwarz inequality:
[V,W ] ≤ |[V ]| |[W ]|.

With these preparations in place, we are now ready to continue the stability analysis of the explicit
scheme. In terms of this newly introduced notation we have

(f(·, tm), Um+1 − Um−1) = (f(·, tm), Um+1 − Um) + (f(·, tm), Um − Um−1)

= [Um+1 − Um, Zm] + [Um − Um−1, Zm]

≤ |[Um+1 − Um]| |[Zm]|+ |[Um − Um−1]| |[Zm]|.

We substitute this into the right-hand side of (130) and, after dividing and multiplying by ∆t, we find
that

N 2(Um) ≤ N 2(Um−1) + ∆t

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣ |[Zm]|+∆t

∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣ |[Zm]|. (136)

By recalling the definition of N 2(Um) and the definition of the norm |[·]| the last inequality can be
rewritten as follows

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣
2

+ c2
∥∥∥∥D−

x

Um+1 + Um

2

]∣∣∣∣
2

≤
∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣
2

+ c2
∥∥∥∥D−

x

Um + Um−1

2

]∣∣∣∣
2

+∆t

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣ |[Zm]|+∆t

∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣ |[Zm]|.
(137)

Next we shall make use of the elementary inequality

αβ ≤ α2 +
1

4
β2, for α, β ∈ R.

in the last two terms on the right-hand side of (137):

∆t

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣ |[Zm]| =
√

∆t

T

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣
√
∆t T |[Zm]|

≤ ∆t

T

∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣
2

+
∆t T

4
|[Zm]|2;

analogously,

∆t

∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣ |[Zm]| ≤ ∆t

T

∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣
2

+
∆t T

4
|[Zm]|2.

We then substitute these inequalities into the right-hand side of (137) and, after a rearrangement of terms
and by noting that 1− ∆t

T ≤ 1 ≤ 1 + ∆t
T , we arrive at the following inequality:

(
1− ∆t

T

)(∣∣∣∣
[
Um+1 − Um

∆t

]∣∣∣∣
2

+ c2
∥∥∥∥D−

x

Um+1 + Um

2

]∣∣∣∣
2
)

≤
(
1 +

∆t

T

)(∣∣∣∣
[
Um − Um−1

∆t

]∣∣∣∣
2

+ c2
∥∥∥∥D−

x

Um + Um−1

2

]∣∣∣∣
2
)

+
∆t T

2
|[Zm]|2.

(138)
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By recalling the definition of N 2(Um) we can rewrite (138) in the following compact form:

N 2(Um) ≤ T +∆t

T −∆t
N 2(Um−1) +

T 2

2(T −∆t)
∆t |[Zm]|2, m = 1, . . . ,M − 1.

As, by assumption, M ≥ 2, it follows that ∆t := T/M ≤ T/2, whereby T − ∆t ≥ T/2; using this the
second term on the right-hand side of the last inequality can be simplified, resulting in

N 2(Um) ≤ T +∆t

T −∆t
N 2(Um−1) + T ∆t |[Zm]|2, m = 1, . . . ,M − 1.

To proceed, we shall appeal to Lemma 15 with

am = N 2(Um), bm = T ∆t |[Zm]|2, α =
T +∆t

T −∆t

to deduce that

N 2(Um) ≤
(
T +∆t

T −∆t

)m

N 2(U0) + T ∆t
m∑

k=1

(
T +∆t

T −∆t

)m−k

|[Zk]|2, m = 1, . . . ,M − 1.

Note that
(
T +∆t

T −∆t

)m

≤
(
T +∆t

T −∆t

)M

=

(
1 + ∆t

T

1− ∆t
T

) T
∆t

for all m ∈ {0, 1, . . . ,M}, with ∆t ≤ T
2 , and one has

1 + x

1− x
≤ 1 + 4x ∀x ∈

[
0, 12
]

and
(1 + 4x)

1
x ≤ e4 ∀x ∈

(
0, 12
]
,

where the second inequality follows by noting that 1 + 4x ≤ e4x for all x ≥ 0. Hence,

N 2(Um) ≤ e4 N 2(U0) + e4 T

m∑

k=1

∆t |[Zk]|2 for m = 1, . . . ,M − 1.

Finally, by recalling the definition of Zm from (134), we deduce the following stability result for the
explicit finite difference scheme under consideration.

Theorem 17 Suppose that the CFL condition (132) is satisfied. Then, the explicit finite difference
approximation (122) of the initial-boundary-value problem (109), on a finite difference mesh of spacing
∆x := (b − a)/J with J ≥ 2 in the x-direction and ∆t := T/M with M ≥ 2 in the t-direction, is
(conditionally) stable in the sense that

N 2(Um) ≤ e4 N 2(U0) + e4 T
m∑

k=1

∆t

∣∣∣∣∣

[(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

f(·, tk)
]∣∣∣∣∣

2

, for m = 1, . . . ,M − 1.

Consistency of the explicit scheme. We define the consistency error of the explicit scheme by

Tm
j :=

um+1
j − 2umj + um−1

j

(∆t)2
− c2

umj+1 − 2umj + umj−1

(∆x)2
− f(xj, tm) for

{
m = 1, . . . ,M − 1,
j = 1, . . . , J − 1,
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and

T 0
j :=

u1j − u0j
∆t

− u1(xj), for j = 1, . . . , J − 1,

where umj := u(xj , tm), j = 0, . . . , J , m = 0, . . . ,M . Hence, similarly as in the case of the implicit scheme,

Tm
j =

(
um+1
j − 2umj + um−1

j

(∆t)2
− ∂2u

∂t2
(xj , tm)

)
− c2

(
umj+1 − 2umj + umj−1

(∆x)2
− ∂2u

∂x2
(xj , tm)

)

for m = 1, . . . ,M − 1 and j = 1, . . . , J − 1, and

T 0
j :=

u1j − u0j
∆t

− ∂u

∂t
(xj , 0), for j = 1, . . . , J − 1.

By performing Taylor series expansions with respect to t about the point mesh-point (xj , tm) and then
with respect to x about the same mesh-point we deduce that

Tm
j =

1

12
(∆t)2

∂4u

∂t4
(xj , τm)− 1

12
c2(∆x)2

∂4u

∂t4
(ξj, tm), (139)

where τm ∈ [tm−1, tm+1] and ξj ∈ [xj−1, xj+1], provided that the fourth partial derivative of u with respect
to t is a continuous function on [a, b]× [0, T ] and the fourth partial derivative of u with respect to x is a
continuous function on [a, b] × [0, T ]. Also,

T 0
j =

1

2
∆t

∂2u

∂t2
(xj , τ0),

where τ0 ∈ [0,∆t], provided that the second partial derivative of u with respect to t is a continuous
function on [a, b] × [0, T ]. Hence,

|Tm
j | ≤ 1

12
c2(∆x)2M4x +

1

12
(∆t)2M4t,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

where

M4x := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂4u

∂x4
(x, t)

∣∣∣∣ and M4t := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂4u

∂t4
(x, t)

∣∣∣∣ ,

and

|T 0
j | ≤

1

2
∆tM2t,

where

M2t := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂2u

∂t2
(x, t)

∣∣∣∣ .

If the more accurate second initial condition (123) is used instead of (122)3, then

T 0
j :=

u1j − u0j
∆t

− u1(xj)−
1

2
∆t
(
c2D+

xD
−
x u1(xj) + f(xj, 0)

)
.

In this case, again by Taylor series expansion,

|T 0
j | ≤

1

6
(∆t)2M3t +

1

24
c2∆t (∆x)2M4x.

Convergence of the explicit scheme. The global error of the finite difference scheme (122) is
defined by

emj := u(xj , tm)− Um
j ,

{
j = 0, . . . , J,
m = 1, . . . ,M − 1.
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Thus, thanks to the definition of the consistency error, we have that

em+1
j − 2emj + em−1

j

(∆t)2
− c2

em+1
j+1 − 2em+1

j + 2em+1
j−1

(∆x)2
= Tm

j ,

{
j = 1, . . . , J − 1,
m = 1, . . . ,M − 1,

and
e1j = e0j +∆t T 0

j , j = 1, . . . , J − 1.

Furthermore, e0j = 0 for j = 0, 1, . . . , J , and em0 = emJ = 0 for m = 1, . . . ,M . Hence, the global error e
satisfies an identical finite difference scheme as U , but with f(xj, tm) replaced by Tm

j and u1(xj) replaced

by T 0
j . It therefore follows from Theorem 17 with Um replaced by em, U0 replaced by e0 and f(xj, tk)

replaced by T k
j for j = 1, . . . , J − 1 and k = 1, . . . ,M − 1, that

N 2(em) ≤ e4 N 2(e0) + e4 T 2 max
1≤k≤m

∣∣∣∣∣

[(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

T k

]∣∣∣∣∣

2

, for m = 1, . . . ,M − 1. (140)

It remains to bound the two terms on the right-hand side of this inequality. We note that

N 2(e0) :=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
e1 − e0

∆t
,
e1 − e0

∆t

)
+ c2

∥∥∥∥D−
x

e1 + e0

2

]∣∣∣∣
2

=

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
T 0, T 0

)
+

1

4
c2 (∆t)2

∥∥D−
x T

0
]∣∣2 .

By expanding the first term on the right-hand side and then performing summation by parts in the middle
term among the three resulting terms, we have

((
I +

1

4
c2(∆t)2D+

xD
−
x

)
T 0, T 0

)
+

1

4
c2 (∆t)2

∥∥D−
x T

0
]∣∣2

= ‖T 0‖2 + 1

4
c2(∆t)2(D+

x D
−
x T

0, T 0) +
1

4
c2 (∆t)2‖D−

x T
0]|2

= ‖T 0‖2 − 1

4
c2(∆t)2‖D−

x T
0]|2 + 1

4
c2 (∆t)2‖D−

x T
0]|2

= ‖T 0‖2.

By Taylor series expansion with a remainder term we have that

T 0
j =

u1j − u0j
∆t

− ∂u

∂t
(xj , 0) =

1

2
∆t

∂2u

∂t2
(xj , τ0),

where τ0 ∈ [0,∆t]; it therefore follows that

|T 0
j | ≤

1

2
∆tM2t,

with

M2t := max
(x,t)∈[a,b]×[0,T ]

∣∣∣∣
∂2u

∂t2
(x, t)

∣∣∣∣ .

Hence,

‖T 0‖2 = ∆t
J−1∑

j=1

|T 0
j |2 ≤

1

4
(∆t)2M2

2t.

and therefore
((

I +
1

4
c2(∆t)2D+

xD
−
x

)
T 0, T 0

)
+

1

4
c2 (∆t)2‖D−

x T
0]|2 = ‖T0‖2 ≤

1

4
(∆t)2M2

2t = O((∆t)2).
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Thus we have shown that
N 2(e0) = O((∆t)2).

Having bounded the first term on the right-hand side of the inequality (140), we proceed to bound
the second term on the right-hand side of (140):

e4 T 2 max
1≤k≤m

∣∣∣∣∣

[(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

T k

]∣∣∣∣∣

2

.

Letting

V k :=

(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

T k,

it follows that (
I +

1

4
c2(∆t)2D+

xD
−
x

)
V k
j = T k

j for j = 1, . . . , J − 1,

and V k
0 = V k

J = 0. Taking the (·, ·) inner product of both sides of the inequality, using the Cauchy–
Schwarz inequality on the right-hand side and the inequality (127) in conjunction with the CFL condition
(132), we deduce that

(1− c20)‖V k‖2 ≤
((

I +
1

4
c2(∆t)2D+

xD
−
x

)
V k, V k

)
= |[V k]|2 = (T k, V k) ≤ ‖T k‖ ‖V k‖, (141)

and therefore
‖V k‖ ≤ (1− c20)

−1‖T k‖.
This and the last inequality in (141) imply that

|[V k]|2 ≤ (1− c20)
−1‖T k‖2.

Hence, thanks to the definition of V k above and (139), we have that

e4 T 2 max
1≤k≤m

∣∣∣∣∣

[(
I +

1

4
c2(∆t)2D+

xD
−
x

)−1

T k

]∣∣∣∣∣

2

= e4 T 2 |[V k]|2 ≤ e4 T 2 (1− c20)
−1 max

1≤k≤m
‖T k‖2

= O(((∆x)2 + (∆t)2)2).

Thus we have also bounded the second term on the right-hand side of the inequality (140); consequently,

N 2(em) = O((∆t)2) +O(((∆x)2 + (∆t)2)2).

It is worth emphasizing here that the first term on the right-hand side comes from the approximation
of the second initial condition, stated in (122)3. If instead of (122)3 one uses the more accurate initial
condition (123), then

N 2(e0) = O(((∆t)2 +∆t (∆x)2)2),

and therefore in that case

N 2(em) = O(((∆t)2 +∆t (∆x)2)2) +O(((∆x)2 + (∆t)2)2) = O(((∆x)2 + (∆t)2)2).

In summary then, in the first case,

max
1≤m≤M−1

[N 2(um − Um)]1/2 = O((∆x)2 +∆t),
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while in the second case, when the more accurate approximation (123) of the second initial condition
(109)3 is used, then

max
1≤m≤M−1

[N 2(um − Um)]1/2 = O((∆x)2 + (∆t)2).

This completes the convergence analysis of the explicit scheme (122). We have thus shown that the explicit
scheme exhibits second order convergence with respect to the spatial discretization step ∆x and first-order
convergence with respect to the temporal discretization step ∆t in the norm maxm∈{1,...,M−1}[N 2(·)] 12 if
the second initial condition (109)3 is approximated by (122)3, but if one uses the more accurate approx-
imation (123) of the second initial condition, then the explicit scheme exhibits second-order convergence

with respect to both ∆x and ∆t in the norm maxm∈{1,...,M−1}[N 2(·)] 12 . Both of these convergence results
are conditional, in the sense that they hold in the limit of ∆x and ∆t tending to zero provided the CFL
condition c∆t/∆x ≤ c0 holds, where c0 ∈ (0, 1) is a constant, independent of ∆x and ∆t.

6.4 Fourier analysis of the implicit and explicit finite difference schemes for the pure

initial-value problem

Consider the second-order wave equation

utt = c2uxx, x ∈ R, t > 0,

subject to the initial conditions u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ R. We shall assume that
u0, u1 ∈ C(R) and that both u0 and u1 have compact support in R (and therefore, trivially ‖u0‖ℓ2 < ∞
and ‖u1‖ℓ2 <∞ as well as ‖u0‖L2((−∞,∞)) <∞ and ‖u1‖L2((−∞,∞)) <∞).

The implicit scheme. The implicit finite difference approximation of this initial-value problem is

Um+1
j − 2Um

j + Um−1
j

(∆t)2
= c2

Um+1
j+1 − 2Um+1

j + Um+1
j−1

(∆x)2
, j ∈ Z, m = 1, 2, . . . ,

subject to the initial conditions

U0
j := u0(xj),

U1
j − U0

j

∆t
:= u1(xj), j ∈ Z.

Define the CFL number µ := c∆t/∆x, and seek Um
j in the form (cf. the definition of the inverse

semidiscrete Fourier transform on p.56):

Um
j =

1

2π

∫ π/∆x

−π/∆x
Ûm(k) eıkxjdk, j ∈ Z, m ≥ 0.

After inserting this into the finite difference scheme and noting that the semidiscrete Fourier transform
and its inverse are one-to-one mappings, we deduce that, for all k ∈ [−π/∆x, π/∆x],

Ûm+1(k) − 2Ûm(k) + Ûm−1(k) = µ2(eık∆x − 2 + e−ık∆x) Ûm+1(k), m ≥ 1.

Therefore (by Euler’s formula and simple trigonometry) we have that, for all k ∈ [−π/∆x, π/∆x],
(
1 + 4µ2 sin2

k∆x

2

)
Ûm+1(k)− 2Ûm(k) + Ûm−1(k) = 0, m ≥ 1.

For each fixed k ∈ [−π/∆x, π/∆x], this is a second-order difference equation of the form

αzm+1 + βzm + γzm−1 = 0, m ≥ 1, (142)
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where α = 1+4µ2 sin2 k∆x
2 , β = −2, γ = 1, and zm = Ûm(k). We seek a (nontrivial) solution to (142) in

the form zm = λm, with λ 6= 0 to be found. By plugging zm = λm into (142) we obtain:

λm−1(αλ2 + βλ+ γ) = 0, m ≥ 1.

As λ 6= 0, it follows that αλ2 + βλ+ γ = 0. If λ1,2 are the roots of this quadratic equation and λ1 6= λ2,
then the general solution of (142) is of the form

zm = Aλm1 +Bλm2 , m ≥ 0,

where A and B are independent of m and are to be found from z0 and z1 (by setting m = 0 and m = 1
and solving a system of linear algebraic equations for A and B). If on the other hand λ1 = λ2 = λ
(repeated root), then the general solution of (142) is of the form

zm = Aλm +Bmλm,

with A and B independent of m, to be determined from z0 and z1 (again, by setting m = 0 and m = 1
and solving a system of linear algebraic equation for A and B).

In our case, because the roots of the quadratic depend on the wave number k ∈ [−π/∆x, π/∆x] we
shall write λ1,2(k) instead of λ1,2 to emphasize this fact. The roots are then as follows:

λ1,2(k) =
1± ıµ

∣∣sin k∆x
2

∣∣
1 + 4µ2 sin2 k∆x

2

for all k ∈ [−π/∆x, π/∆x].

Obviously |λ1,2(k)| ≤ 1; also, λ1(k) = λ2(k) = 1 if, and only if, k = 0.
We note in passing that the definition of practical stability of finite difference approximations of

the pure initial-value problem for the second-order wave equation is precisely that |λ1,2(k)| ≤ 1 for all
k ∈ [−π/∆x, π/∆x]. Thus we have shown that the implicit scheme under consideration is unconditionally
practically stable.

As things stand, it is unclear however what, in anything, the requirement that |λ1,2(k)| ≤ 1 for all
k ∈ [−π/∆x, π/∆x] has to do with “stability” of the finite difference scheme. The aim of the discussion
that will now follow is therefore to explain the kind of bound on the ℓ2 norm ‖Um‖ℓ2 of the sequence of
numerical approximations Um, m = 2, 3, . . ., where tm = m∆t, generated by the finite difference scheme,
in terms of the ℓ2 norms of the initial data u0 and u1, that practical stability thus defined then implies.
Incidentally, by applying a similar technique to the initial-value problem under consideration we shall
derive an analogous bound on of the L2((−∞,∞)) norm ‖u(·, t)‖L2((−∞,∞)) of the exact solution u. This
analogy of the bound on ‖Um‖ℓ2 with the bound on ‖u(·, t)‖L2((−∞,∞)) then serves as a justification (as
was the case for the initial-value problem for the heat equation) for the use of the terminology “practical
stability”.

We start with the derivation of the bound on ‖Um‖ℓ2 . It follows from the discussion above concerning
the form of the general solution to a second-order difference equation that

Ûm(k) = A(λ1(k))
m +B(λ2(k))

m for k 6= 0 and all m ≥ 0,

with A and B to be determined. On the other hand, when k = 0 (in which case λ1(0) = λ2(0) = λ = 1),
we have that

Ûm(0) = A 1m +Bm 1m,

with A and B (possibly different from the A and B above) to be determined.
Next, we determine A and B by using the prescribed initial conditions for the finite difference scheme,

first in the case of k 6= 0 and then in the case of k = 0.
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(1) First consider the case when k 6= 0. Then, with m = 0 and m = 1, respectively, we have that (for
the sake of simplicity of the notation we shall now write λ1, λ2 instead of λ1(k), λ2(k), respectively):

Û0(k) = A+B, Û1(k) = λ1A+ λ2B.

We solve this linear system for A and B and obtain

A =
λ2Û

0(k)− Û1(k)

λ2 − λ1
and B =

Û1(k)− λ1Û
0(k)

λ2 − λ1
.

Recalling that U1
j = U0

j +∆t u1(xj) it follows that Û
1(k) = Û0(k) + ∆t û1(k). Thus,

A =
λ2 − 1

λ2 − λ1
Û0(k)− ∆t û1(k)

λ2 − λ1
and B =

1− λ1
λ2 − λ1

Û0(k) +
∆t û1(k)

λ2 − λ1
.

Hence, for m ≥ 2, we have that

Ûm(k) =
λ2 − 1

λ2 − λ1
Û0(k)λm1 +

1− λ1
λ2 − λ1

Û0(k)λm2 +
∆t û1(k)

λ2 − λ1
(λm2 − λm1 ). (143)

Note that, for all m ≥ 4 and all k ∈ [−π/∆x, π/∆x] \ {0},
∣∣∣∣
λ2 − 1

λ2 − λ1

∣∣∣∣ |λ1|m =

∣∣∣∣
1− λ1
λ2 − λ1

∣∣∣∣ |λ2|m =
1

2

(
1 + 16µ2 sin2

k∆x

2

) 1
2

[
1 + µ2 sin2 k∆x

2

(1 + 4µ2 sin2 k∆x
2 )2

]m
2

≤ 1

2

(
1 + 16µ2 sin2

k∆x

2

) 1
2

[
1

1 + 4µ2 sin2 k∆x
2

]m
2

=
1

2

[
1 + 16µ2 sin2 k∆x

2

(1 + 4µ2 sin2 k∆x
2 )m

] 1
2

≤ 1

2
.

Concerning the excluded values m = 2, 3, by plotting the function

x ∈ R 7→ 1

2
(1 + 16x2)

1
2

[
1 + x2

(1 + 4x2)2

]m
2

we see that this is, for both m = 2 and m = 3, again, bounded by 1/2. Thus, for all m ≥ 2,
∣∣∣∣
λ2 − 1

λ2 − λ1

∣∣∣∣ |λ1|m =

∣∣∣∣
1− λ1
λ2 − λ1

∣∣∣∣ |λ2|m ≤ 1

2
.

Hence, and because for |λ1,2| ≤ 1 we have that

∣∣∣∣
λm2 − λm1
λ2 − λ1

∣∣∣∣ = |λm−1
2 + λm−2

2 λ1 + · · ·+ λ2λ
m−2
1 + λm−1

1 | ≤ m,

it follows that

|Ûm(k)| ≤ 1

2
|Û0(k)| + 1

2
|Û0(k)|+m∆t |û1(k)|.

Since Û0(k) = û0(k), this then implies that

|Ûm(k)| ≤ |û0(k)|+m∆t |û1(k)| for all k ∈ [−π/∆x, π/∆x] \ {0} and all m ≥ 2.

(2) Now consider the case when k = 0 (in which case λ1 = λ2 = λ = 1). Then,

Û0(0) = A+B · 0, Û1(0) = A+B.
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Thus, A = Û0(k) and B = Û1(0) − Û0(0) = ∆t Û0(0). Consequently,

Ûm(0) = Aλm +Bmλm = Û0(0) + (Û1(0)− Û0(0))m = û0(0) +m∆t û1(0).

Hence,
|Ûm(0)| ≤ |û0(0)| +m∆t |û1(0)| for k = 0 and all m ≥ 2.

Combining the bounds on |Ûm(k)| for the cases k 6= 0 and k = 0 thus obtained we therefore have that

|Ûm(k)| ≤ |û0(k)|+m∆t |û1(k)| for all k ∈ [−π/∆x, π/∆x] and all m ≥ 2.

By the triangle inequality we then deduce that

‖Ûm‖L2((−π/∆x,π/∆x)) ≤ ‖û0‖L2((−π/∆x,π/∆x)) + tm ‖û1‖L2((−π/∆x,π/∆x))

for all m ≥ 2, where tm := m∆t. Multiplying this inequality by 1/
√
2π and using the (discrete) Parseval

identity (cf. Lemma 12 on p.56) it follows that

‖Um‖ℓ2 ≤ ‖u0‖ℓ2 + tm‖u1‖ℓ2 for all m ≥ 2. (144)

Remark: We note in passing that if the precise forms of λ1,2(k) are not taken into account, and we only
use that |λ1,2(k)| ≤ 1 for all k ∈ [−π/∆x, π/∆x] and λ1(0) = λ2(0) = 1, then we obtain a cruder stability
inequality because, instead of being bounded by 1/2, we can then only deduce that

∣∣∣∣
λ2 − 1

λ2 − λ1

∣∣∣∣ |λ1|m =

∣∣∣∣
1− λ1
λ2 − λ1

∣∣∣∣ |λ2|m ≤ 1

2

(
1 + 16µ2 sin2

k∆x

2

) 1
2

≤ 1

2
(1 + 16µ2)

1
2 .

Thus, instead of (144) we then end up with the bound

‖Um‖ℓ2 ≤ (1 + 16µ2)
1
2 ‖u0‖ℓ2 + tm‖u1‖ℓ2 for all m ≥ 2. (145)

For comparison, we Fourier transform the wave equation with respect to x (we shall abuse the no-
tation used above and will write ·̂ in this calculation to denote the Fourier transform rather than the
semidiscrete Fourier transform denoted by ·̂ above) and solve the resulting ordinary differential equation

ûtt(ξ, t) + c2ξ2û(ξ, t) = 0 with the initial conditions û(ξ, 0) = û0(ξ) and ût(ξ, 0) = û1(ξ),

with ξ ∈ R treated as a parameter, to find that

û(ξ, t) = cos(cξt) û0(ξ) +
sin(cξt)

cξt
tû1(ξ).

Hence, and because | sin(s)/s| ≤ 1 for all s ∈ R \ {0} and lims→0 sin(s)/s = 1, it follows that

|û(ξ, t)| ≤ |û0(ξ)|+ t|û1(ξ)|.

This then implies by the triangle inequality that

‖û(·, t)‖L2((−∞,∞)) ≤ ‖û0(·)‖L2((−∞,∞)) + t‖û1(·)‖L2((−∞,∞)).

Multiplying by 1/
√
2π and using Parseval’s identity for the Fourier transform on R it follows that

‖u(·, t)‖L2((−∞,∞)) ≤ ‖u0(·)‖L2((−∞,∞)) + t‖u1(·)‖L2((−∞,∞)), t > 0. (146)
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It is instructive to compare this with the inequality (144) obtained for the numerical method. Clearly, the
form of the stability inequality (144) is the same as the stability inequality (146) for the exact solution
of the initial-value problem. This then justifies the use of the terminology “practical stability”.

The explicit scheme. Next we shall perform a similar analysis for the explicit scheme:

Um+1
j − 2Um

j + Um−1
j

(∆t)2
= c2

Um
j+1 − 2Um

j + Um
j−1

(∆x)2
, j ∈ Z, m = 1, 2, . . . ,

subject to the initial conditions

U0
j := u0(xj),

U1
j − U0

j

∆t
:= u1(xj), j ∈ Z.

We shall suppose in what follows that |µ| < 1. The corresponding expression in Fourier space is therefore

Ûm+1(k)− 2Ûm(k) + Ûm−1(k) = µ2(eık∆x − 2 + e−ık∆x) Ûm(k), m ≥ 1.

Equivalently,

Ûm+1(k)− 2

(
1− 2µ2 sin2

k∆x

2

)
Ûm(k) + Ûm−1(k) = 0, m ≥ 1.

The corresponding quadratic characteristic equation is

λ2 − 2

(
1− 2µ2 sin2

k∆x

2

)
λ+ 1 = 0.

When k = 0 this has the repeated root λ1(0) = λ2(0) = λ = 1. If on the other hand k 6= 0, then

λ1,2(k) =
2
(
1− 2µ2 sin2 k∆x

2

)
±
√

4
(
1− 2µ2 sin2 k∆x

2

)2 − 4

2

=

(
1− 2µ2 sin2

k∆x

2

)
± ı

√
1−

(
1− 2µ2 sin2

k∆x

2

)2

Clearly, |λ1(k)| = |λ2(k)| = 1 for all k ∈ [−π/∆x, π/∆x].
(1) First consider the case when k 6= 0. Then the roots are distinct and therefore, as in the case of

the implicit scheme studied above,

Ûm(k) =
λ2 − 1

λ2 − λ1
Û0(k)λm1 +

1− λ1
λ2 − λ1

Û0(k)λm2 +
∆t û1(k)

λ2 − λ1
(λm2 − λm1 ). (147)

Let as write, for the sake of brevity, S := µ2 sin2 k∆x
2 . Hence,

λ2 − 1

λ2 − λ1
=

−2S − ı
√

1− (1− 2S)2

−2ı
√

1− (1− 2S)2
=

−S − ı
√
S(1− S)

−2ı
√
S(1− S)

.

Because S ≤ µ2 < 1 for all k ∈ [−π/∆x, π/∆x], this then implies that

∣∣∣∣
λ2 − 1

λ2 − λ1

∣∣∣∣
2

=
S2 + S(1− S)

4S(1 − S)
=

1

4(1 − S)
≤ 1

4(1− µ2)
.

Therefore, ∣∣∣∣
λ2 − 1

λ2 − λ1

∣∣∣∣ ≤
1

2
√

1− µ2
.
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Analogously, ∣∣∣∣
1− λ1
λ2 − λ1

∣∣∣∣ ≤
1

2
√

1− µ2
.

It then follows from (147) that for all k ∈ [−π/∆x, π/∆x] \ {0} we have that

|Ûm(k)| ≤ 1√
1− µ2

|û0(k)| +m∆t |û1(k)| for all m ≥ 2. (148)

(2) When k = 0, we have a repeated root λ1(0) = λ2(0) = λ = 1 and therefore, in the same way as in
the case of the implicit scheme considered above,

|Ûm(0)| ≤ |û0(0)| +m∆t |û1(0)| for all m ≥ 2.

Therefore, by combining this with (148), analogously as in the case of the implicit scheme, we arrive
at the stability inequality

‖Um‖ℓ2 ≤ 1√
1− µ2

‖u0‖ℓ2 + tm‖u1‖ℓ2 for all m ≥ 2,

but, in contrast with the implicit scheme, now only under the assumed CFL condition |µ| < 1, where
µ := c∆t/∆x.

End of

optional

material
6.5 First-order hyperbolic equations: initial-boundary-value problem and energy

estimate

Lecture 15Let Ω be a bounded open set in R
n, n ≥ 1, with boundary Γ = ∂Ω, and let T > 0. In Q = Ω× (0, T ],

we consider the initial boundary-value problem

∂u

∂t
+

n∑

i=1

bi(x)
∂u

∂xi
+ c(x, t)u = f(x, t), x ∈ Ω, t ∈ (0, T ], (149)

u(x, t) = 0, x ∈ Γ−, t ∈ [0, T ], (150)

u(x, 0) = u0(x) x ∈ Ω̄, (151)

where
Γ− = {x ∈ Γ : b(x) · ν(x) < 0},

b = (b1, . . . , bn) and ν(x) denotes the unit outward normal to Γ at x ∈ Γ. Γ− will be called the inflow
boundary. Its complement, Γ+ = Γ\Γ−, will be referred to as the outflow boundary. It is important to
note that unlike elliptic equations where a boundary condition is prescribed on the whole of ∂Ω, and
parabolic equations and second-order hyperbolic equations, such as the wave equation considered in the
previous section, where a boundary condition is specified on the whole of Γ× [0, T ] = ∂Ω× [0, T ], in the
initial boundary-value problem for the first-order hyperbolic equation stated above, a boundary condition
is only imposed on part of the boundary, namely on Γ−×[0, T ]; — else, the problem may have no solution,
or if a solution exists continuous dependence of the solution on the data may fail to hold.

We shall assume that

bi ∈ C1(Ω), i = 1, . . . , n, (152)

c ∈ C(Q), f ∈ L2(Q), (153)

u0 ∈ L2(Ω). (154)
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Ω

b
x

ν(x)

Γ−

Γ+

T

t

Ω

Q

Γ−

In order to ensure consistency between the initial and the boundary condition, we shall suppose that
u0(x) = 0, x ∈ Γ−.

The existence of a unique solution (at least for c, f ∈ C1(Q), u0 ∈ C1(Ω)) can be shown using the
method of characteristics (see A1 Differential Equations). More generally, for bi, c, f , u0, obeying the
smoothness requirements of (152), a unique solution still exists, but the proof of this result is beyond
the scope of these notes. We shall therefore assume henceforth that the initial-boundary-value problem
(149)–(151) has a unique (‘sufficiently smooth’) solution, and consider the behaviour of the solution as it
evolves as a function of time, t, from the given initial datum u0.

We make the additional hypothesis:

c(x, t)− 1

2

n∑

i=1

∂bi
∂xi

(x) ≥ 0, x ∈ Ω̄, t ∈ [0, T ]. (155)

By taking the inner product in L2(Ω) of the equation (149) with u(·, t), performing partial integration
and noting the boundary condition (150), we obtain:

(
∂u

∂t
(·, t), u(·, t)

)
+

(
c(·, t) − 1

2

n∑

i=1

∂bi
∂xi

(·), u2(·, t)
)

+
1

2

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, t) ds(x) = (f(·, t), u(·, t)), (156)

where ν(x) = (ν1(x), . . . , νn(x)) is the unit outward normal vector to Γ at x ∈ Γ. By virtue of (155) and
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noting that

(
∂u

∂t
, u

)
=

∫

Ω

∂u

∂t
(x, t)u(x, t) dx

=

∫

Ω

1

2

∂

∂t
u2(x, t) dx =

1

2

d

dt

∫

Ω
u2(x, t) dx

=
1

2

d

dt
‖u(·, t)‖2,

it follows from (156) that

1

2

d

dt
‖u(·, t)‖2 + 1

2

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, t) ds(x) ≤ (f(·, t), u(·, t)).

By the Cauchy–Schwarz inequality,

(f(·, t), u(·, t)) ≤ ‖f(·, t)‖ ‖u(·, t)‖

≤ 1

2
‖f(·, t)‖2 + 1

2
‖u(·, t)‖2,

and therefore,

d

dt
‖u(·, t)‖2 +

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, t) ds(x)− ‖u(·, t)‖2 ≤ ‖f(·, t)‖2, t ∈ [0, T ].

Multiplying both sides by e−t, this inequality can be rewritten as follows:

d

dt

(
e−t‖u(·, t)‖2

)
+ e−t

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, t) ds ≤ e−t‖f(·, t)‖2, t ∈ [0, T ].

By integrating this inequality with respect to t and noting the initial condition (151), we have that

e−t‖u(·, t)‖2 +
∫ t

0
e−τ

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, τ) ds(x) dτ

≤ ‖u0‖2 +
∫ t

0
e−τ‖f(·, τ)‖2 dτ, t ∈ [0, T ].

It therefore follows that

‖u(·, t)‖2 +
∫ t

0
et−τ

∫

Γ+

[
n∑

i=1

bi(x)νi(x)

]
u2(x, τ) ds(x) dτ

≤ et‖u0‖2 +
∫ t

0
et−τ‖f(·, τ)‖2 dτ, t ∈ [0, T ]. (157)

This, so called, energy inequality expresses the continuous dependence of the solution to (149)–(151) on
the data. In particular it can be used to prove the uniqueness of the solution. Indeed, if u1 and u2 are
solutions of (149)–(151), then u := u1 − u2 also solves (149)–(151), with f ≡ 0 and u0 ≡ 0. Thus, by
(157), ‖u(·, t)‖ = 0, t ∈ [0, T ] and therefore u ≡ 0, i.e., u1 ≡ u2. The inequality (157) also reveals the
importance of imposing a boundary condition on Γ− × [0, T ] only. On Γ+ × [0, T ], where Γ+ := Γ \ Γ−,
the outflow part of Γ = ∂Ω, the solution is ‘controlled’ by the data: the initial datum u0, the source
term f and the boundary condition on Γ− × [0, T ] (the latter does not appear explicitly in (157) because
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we assumed a zero boundary datum on Γ− × [0, T ]). Note that the integrand in the second term on the
left-hand side of (157) is nonnegative thanks to the definition of Γ+.

Let us consider a particularly important case when

c ≡ 0, f ≡ 0, and div b =

n∑

i=1

∂bi
∂xi

≡ 0,

where b(x) = (b1(x), . . . , bn(x)). Then, thanks to the identity (156), we have that

1

2

d

dt
‖u(·, t)‖2 + 1

2

∫

Γ+

[b(x) · ν(x)] u2(x, t) ds(x) = 0,

and therefore,

‖u(·, t)‖2 +
∫ t

0

∫

Γ+

[b(x) · ν(x)] u2(x, τ) ds(x) dτ = ‖u0‖2,

which can be viewed as an identity expressing ‘conservation of energy’ for the initial-boundary-value
problem (149)–(151).

6.6 Explicit finite difference approximation

In this section we focus on a special case of the problem stated in the previous section, and describe a
simple explicit finite difference scheme for the numerical solution of the constant-coefficient hyperbolic
equation in one space dimension:

∂u

∂t
+ b

∂u

∂x
= f(x, t), x ∈ (0, 1), t ∈ (0, T ], (158)

subject to the boundary and initial conditions

u(x, t) = 0, x ∈ Γ−, t ∈ [0, T ], (159)

u(x, 0) = u0(x), x ∈ [0, 1]. (160)

If b > 0 then Γ− = {0}, and if b < 0 then Γ− = {1}. Let us assume, for example, that b > 0. Then the
appropriate boundary condition is

u(0, t) = 0, t ∈ [0, T ]. (161)

To construct a finite difference approximation of (158)–(161) let ∆x := 1/J be the mesh-size in the
x-direction and ∆t := T/M the mesh-size in the time-direction, t. Let us also define

xj := j∆x, j = 0, . . . , J, tm := m∆t, m = 0, . . . ,M.

At the mesh-point (xj , tm), (158) is approximated by the explicit finite difference scheme

Um+1
j − Um

j

∆t
+ bD−

x U
m
j = f(xj, tm), j = 1, . . . , J, (162)

m = 0, . . . ,M − 1,

subject to the boundary and initial condition, respectively:

Um
0 := 0, m = 0, . . . ,M, (163)

U0
j := u0(xj), j = 0, . . . , J. (164)
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Equivalently, this can be written as follows:

Um+1
j = (1− µ)Um

j + µUm
j−1 +∆t f(xj, tm),

{
j = 1, . . . , J,
m = 0, . . . ,M − 1,

in conjunction with

Um
0 := 0, m = 0, . . . ,M,

U0
j := u0(xj), j = 0, . . . , J,

where

µ :=
b∆t

∆x
;

µ is called the CFL (or Courant–Friedrichs–Lewy) number. The explicit finite difference scheme (162) is
frequently called the first-order upwind scheme.

We shall explore the stability of this scheme in the discrete maximum norm. Suppose that 0 ≤ µ ≤ 1;
then

∣∣∣Um+1
j

∣∣∣ ≤ (1− µ)
∣∣Um

j

∣∣+ µ
∣∣Um

j−1

∣∣+∆t |f(xj, tm)|
≤ (1− µ) max

0≤j≤J

∣∣Um
j

∣∣+ µ max
1≤j≤J+1

∣∣Um
j−1

∣∣+∆t max
0≤j≤J

|f(xj, tm)|

= max
0≤j≤J

∣∣Um
j

∣∣+∆t max
0≤j≤J

|f(xj , tm)| .

Thus we have that

max
0≤j≤J

∣∣∣Um+1
j

∣∣∣ ≤ max
0≤j≤J

∣∣Um
j

∣∣+∆t max
0≤j≤J

|f(xj , tm)| .

Let us define the mesh-dependent norm

‖U‖∞ := max
0≤j≤J

|Uj | ;

then

‖Um+1‖∞ ≤ ‖Um‖∞ +∆t‖f(·, tm)‖∞, m = 0, . . . ,M − 1.

Summing through m, we get

max
1≤k≤M

‖Uk‖∞ ≤ ‖U0‖∞ +

M−1∑

m=0

∆t‖f(·, tm)‖∞, (165)

which expresses the stability of the finite difference scheme (162)–(164) under the condition

0 ≤ µ =
b∆t

∆x
≤ 1. (166)

Thus we have proved that the finite difference scheme (162)–(164) is conditionally stable, the condition
being that the CFL number, µ, is in the interval [0, 1].

It is possible to show that the scheme (162)–(164) is also stable in the mesh-dependent L2-norm, ‖·]|,
defined by

‖V ]|2 =
J∑

i=1

∆xV 2
i .
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The associated inner product is

(V,W ] :=

J∑

i=1

∆xViWi.

Since

Um
j =

Um
j + Um

j−1

2
+
Um
j − Um

j−1

2
,

and Um
0 = 0, it follows that

(Um,D−
x U

m] =

J∑

j=1

∆xUm
j

Um
j − Um

j−1

∆x

=
1

2

J∑

j=1

{(Um
j )2 − (Um

j−1)
2}+ ∆x

2

J∑

j=1

∆x

(
Um
j − Um

j−1

∆x

)2

(167)

=
1

2
(Um

J )2 +
∆x

2
‖D−

x U
m]|2.

In addition, since

Um
j =

Um+1
j + Um

j

2
−
Um+1
j − Um

j

2
, m = 0, . . . ,M − 1,

we have that

(
Um+1 − Um

∆t
, Um

]
=

1

2∆t

(
‖Um+1]|2 − ‖Um]|2

)
− ∆t

2

∥∥∥∥
Um+1 − Um

∆t

]∣∣∣∣
2

, m = 0, . . . ,M − 1. (168)

Thus, by taking the (·, ·]-inner product of (162) with Um and using (167) and (168), we find that

‖Um+1]|2 +∆t b(Um
J )2 + b∆x∆t ‖D−

x U
m]|2 − ‖Um]|2

− (∆t)2
∥∥∥∥
Um+1 − Um

∆t

]∣∣∣∣
2

= 2∆t (fm, Um], m = 0, . . . ,M − 1. (169)

First suppose that f ≡ 0; then,

Um+1 − Um

∆t
= −bD−

x U
m,

and by substituting this into the last term on the left-hand side of the equality (169) we have that

‖Um+1]|2 +∆t b |Um
J |2 + b∆x∆t (1− µ)‖D−

x U
m]|2 = ‖Um]|2, m = 0, . . . ,M − 1.

Summing through m, we have that

‖Uk]|2 +
k−1∑

m=0

∆t b |Um
J |2 + b∆x (1− µ)

k−1∑

m=0

∆t ‖D−
x U

m]|2 = ‖U0]|2, k = 1, . . . ,M, (170)

which proves the stability of the scheme in the case when f ≡ 0 under the assumption that

0 ≤ µ =
b∆t

∆x
≤ 1.
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In particular, if µ = 1, we have that

‖Uk]|2 +
k−1∑

m=0

∆t b |Um
J |2 = ‖U0]|2, k = 1, . . . ,M,

which is the discrete version of the identity (157), and expresses ‘conservation of energy’ in the discrete
sense. More generally, for 0 ≤ µ ≤ 1, (170) implies

‖Uk]|2 +
k−1∑

m=0

∆t b |Um
J |2 ≤ ‖U0]|2, k = 1, . . . ,M.

Now let us consider the question of stability in the ‖·]|-norm in the general case of f 6≡ 0. Since

∥∥∥∥
Um+1 − Um

∆t

]∣∣∣∣
2

= ‖fm − bD−
x U

m]|2 ≤ {‖fm]|+ b‖D−
x U

m]|}2

≤
(
1 +

1

ǫ′

)
‖fm]|2 + (1 + ǫ′)b2‖D−

x U
m]|2, ǫ′ > 0,

and

(fm, Um] ≤ ‖fm]| ‖Um]| ≤ 1
2‖fm]|2 + 1

2‖Um]|2,

it follows from the equality (169) that

‖Um+1]|2 +∆t b |Um
n |2 + b∆x∆t

[
1− (1 + ǫ′)

b∆t

∆x

]
‖D−

x U
m]|2

≤ ∆t

[(
1 +

1

ǫ′

)
∆t+ 1

]
‖fm]|2 + (1 + ∆t)‖Um]|2.

Letting ǫ = 1− 1/(1 + ǫ′) ∈ (0, 1) and assuming that

0 ≤ µ =
b∆t

∆x
≤ 1− ǫ,

we have, for m = 0, . . . ,M − 1, that

‖Um+1]|2 +∆t b |Um
J |2 ≤ ‖Um]|2 +∆t

(
1 +

∆t

ǫ

)
‖fm]|2 +∆t‖Um]|2.

Upon summation of this inequality over m = 0, . . . , k − 1, we deduce that

‖Uk]|2 +
(

k−1∑

m=0

∆t b |Um
J |2
)

≤ ‖U0]|2 +
(
1 +

∆t

ǫ

) k−1∑

m=0

∆t ‖fm]|2 +
k−1∑

m=0

∆t ‖Um]|2 (171)

for k = 1, . . . ,M. To complete the proof of stability of the finite difference scheme we require the next
lemma, which is easily proved by induction.

Lemma 16 Let (ak), (bk), (ck) and (dk) be four sequences of nonnegative real numbers such that the
sequence (ck) is nondecreasing and

ak + bk ≤ ck +

k−1∑

m=0

dmam, k ≥ 1; a0 + b0 ≤ c0.

Then

ak + bk ≤ ck exp

(
k−1∑

m=0

dm

)
, k ≥ 1.
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By applying this lemma to the inequality (171) with

ak := ‖Uk]|2, k ≥ 0,

bk :=
k−1∑

m=0

∆t b |Um
J |2 , k ≥ 1; b0 = 0,

ck := ‖U0]|2 +
(
1 +

∆t

ǫ

) k−1∑

m=0

∆t ‖fm]|2, k ≥ 1; c0 = ‖U0]|2,

dk := ∆t, k = 1, 2, . . . ,M,

we obtain,

‖Uk]|2 +
k−1∑

m=0

∆t b |Um
J |2 ≤ etk

(
‖U0]|2 +

(
1 +

∆t

ǫ

) k−1∑

m=0

∆t‖fm]|2
)
, k = 1, . . . ,M,

where tk := k∆t. Hence we deduce stability of the scheme, in the sense that

max
1≤k≤M

(
‖Uk]|2 +

k−1∑

m=0

∆t b |Um
J |2
)

≤ eT

(
‖U0]|2 +

(
1 +

∆t

ǫ

)M−1∑

m=0

∆t‖fm]|2
)
. (172)

An error bound for the difference scheme (162)–(164) is easily derived from its stability. For the sake
of simplicity we shall focus on the error analysis of the scheme in the ‖ · ‖∞ norm, which we shall deduce
from the stability of the scheme in the ‖ · ‖∞ norm for µ ∈ [0, 1].

We define the global error, emj , and the consistency error, Tm
j , of the scheme, respectively, by

emj := u(xj , tm)− Um
j ,

Tm
j :=

u(xj , tm+1)− u(xj , tm)

∆t
+ bD−

x u(xj , tm)− f(xj, tm).

It is easily seen that

em+1
j − emj

∆t
+ bD−

x e
m
j = Tm

j , j = 1, . . . , J, m = 0, . . . ,M − 1,

em0 = 0, m = 0, . . . ,M,

e0j = 0, j = 0, . . . , J.

By virtue of the stability inequality established in the first part of this section we have that, for µ ∈ [0, 1],

max
1≤m≤M

‖em‖∞ ≤
M−1∑

k=0

∆t‖Tm‖∞. (173)

By Taylor series expansion of Tm
j about the point (xj , tm) it follows that

Tm
j =

1

2
∆t

∂2u

∂t2
(xj , τ

m) +
1

2
b∆x

∂2u

∂x2
(ξj, tm), τm ∈ (tm, tm+1), ξj ∈ (xj−1, xj),

and therefore also

∣∣Tm
j

∣∣ ≤ 1

2
(∆tM2t + b∆xM2x),
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where

Mkxlt := max
(x,t)∈Q

∣∣∣∣
∂k+l

∂xk∂tl
(x, t)

∣∣∣∣ .

By defining M := max(M2t,M2x), we have that

∣∣Tm
j

∣∣ ≤ 1

2
M(∆t+ b∆x) (= O(∆x+∆t)). (174)

Thus, by (173), we arrive at the error bound

max
1≤m≤M

‖um − Um‖∞ ≤ 1

2
TM(∆t+ b∆x),

where um := u(·, tm) and umj := u(xj , tm). Therefore the scheme (162)–(164) is first-order convergent
with respect to both ∆x and ∆t.

Analogously, using the stability result (171) in the discrete L2-norm ‖·]|, (174) implies that

max
1≤m≤M

‖um − Um]| ≤ c⋆ǫ · (∆t+ b∆x),

where c⋆ǫ =
1
2e

T/2(1 + T/ǫ)1/2T 1/2M.

The analysis presented here can be extended to linear first-order hyperbolic equations with variable
coefficients and to hyperbolic problems in more than one space-dimension, as well as to finite difference
schemes on nonuniform meshes. We shall however continue to operate in the univariate setting and
discuss, instead, a different extension of the problem considered here: a scalar nonlinear first-order
hyperbolic partial differential equation in one space dimension.

6.7 Finite difference approximation of scalar nonlinear hyperbolic conservation laws

Lecture 16Nonlinear hyperbolic conservation laws and systems of nonlinear hyperbolic conservation laws arise
in numerous areas of application, fluid dynamics being one such field. Here, we shall confine ourselves to
the simplest possible case of an initial-value problem for the nonlinear partial differential equation

∂u

∂t
+

∂

∂x
f(u) = 0 for (x, t) ∈ R× (0,∞), (175)

where u = u(x, t), subject to the initial condition u(x, 0) = u0(x), where u0 ∈ C1(R) and has compact
support, i.e., u0 is identically zero outside a bounded closed interval of R. The real-valued function f
will be assumed to be twice continuously differentiable on R and we shall suppose that f(0) = f ′(0) = 0,
and f ′′(s) ≥ 0 for all s ∈ R. Under these hypotheses f ′ is a nondecreasing function, whereby f ′(s) ≥ 0
for all s ≥ 0. We shall assume further that |f ′(s)| ≤ f ′(|s|) for all s ∈ R. For example f(s) = 1

2s
2 and

f(s) = 1
4s

4 + 1
2s

2 satisfy these hypotheses.
Assuming that there is a T > 0 such that a solution u ∈ C1(R × [0, T ]) to the initial-value problem

exists, then thanks to the chain rule the equation (175) can be rewritten as

∂u

∂t
+ f ′(u)

∂u

∂x
= 0 for (x, t) ∈ R× (0, T ]. (176)

Motivated by the construction of the first-order upwind scheme in the previous section, we decompose
f ′(u) into its nonnegative and nonpositive parts, as follows:

f ′(u) = [f ′(u)]+ + [f ′(u)]−,
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where we have used the notation:

[x]+ :=
1

2
(x+ |x|) and [x]− :=

1

2
(x− |x|).

Clearly,

x = [x]+ + [x]−, |x| = [x]+ − [x]−, [x]+ ≥ 0 and [x]− ≤ 0 for all x ∈ R.

With this notation, we can rewrite (176) as follows:

∂u

∂t
+ [f ′(u)]+

∂u

∂x
+ [f ′(u)]−

∂u

∂x
= 0 for (x, t) ∈ R× (0, T ]. (177)

We approximate (177) by the following finite difference scheme

Um+1
j − Um

j

∆t
+ [f ′(Um

j )]+D
−
x U

m
j + [f ′(Um

j )]−D
+
x U

m
j = 0, j ∈ Z, m = 0, . . . ,M − 1,

U0
j := u0(xj), j ∈ Z,

(178)

where ∆t = T/M , M ≥ 1, and Z is the set of all integers.
We will show that, under a certain CFL condition, which we shall state below, the sequence of finite

difference approximations {Um
j }j∈Z, 0≤m≤M is bounded, similarly as in the case of (165) (but now in

terms of the norm of the initial datum only, as there is no source term on the right-hand of the equation
(176) under consideration), in the sense that

max
1≤k≤M

‖Uk‖∞ ≤ ‖U0‖∞, (179)

where now ‖V ‖∞ := maxj∈Z |Vj |.
To this end, we rewrite (178)1 as follows:

Um+1
j = Um

j −
[f ′(Um

j )]+ ∆t

∆x
(Um

j − Um
j−1)−

[f ′(Um
j )]− ∆t

∆x
(Um

j+1 − Um
j )

=

(
1− ∆t

∆x

(
[f ′(Um

j )]+ − [f ′(Um
j )]−

))
Um
j +

[f ′(Um
j )]+ ∆t

∆x
Um
j−1 +

−[f ′(Um
j )]−∆t

∆x
Um
j+1

=

(
1−

|f ′(Um
j )|∆t
∆x

)
Um
j +

[f ′(Um
j )]+ ∆t

∆x
Um
j−1 +

−[f ′(Um
j )]−∆t

∆x
Um
j+1

(180)

for all j ∈ Z and all m = 0, . . . ,M − 1. Suppose that the following CFL condition holds:

f ′(‖U0‖∞)∆t

∆x
≤ 1. (181)

Suppose further, as an inductive hypothesis, that, for some m ≥ 0,

f ′(‖Uk‖∞)∆t

∆x
≤ 1 for all k = 0, . . . ,m. (182)

Thanks to (181) this inductive hypothesis is satisfied for m = 0. Suppose, for the inductive step, that
(182) has already been shown to hold for some m ≥ 0. Because of the assumptions imposed on the
function f , we have that |f ′(Um

j )| ≤ f ′(|Um
j |) ≤ f ′(‖Um‖∞) for all j ∈ Z. It then follows from (182) with

k = m that
|f ′(Um

j )|∆t
∆x

≤ 1 for all j ∈ Z,
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and then (180) implies that

|Um+1
j | ≤

(
1−

|f ′(Um
j )|∆t
∆x

)
|Um

j |+
[f ′(Um

j )]+∆t

∆x
|Um

j−1|+
−[f ′(Um

j )]−∆t

∆x
|Um

j+1|

≤
(
1−

|f ′(Um
j )|∆t
∆x

)
‖Um‖∞ +

[f ′(Um
j )]+ ∆t

∆x
‖Um‖∞ +

−[f ′(Um
j )]− ∆t

∆x
‖Um‖∞

=

(
1−

|f ′(Um
j )|∆t
∆x

)
‖Um‖∞ +

|f ′(Um
j )|∆t
∆x

‖Um‖∞ = ‖Um‖∞

for all j ∈ Z. Therefore,

‖Um+1‖∞ ≤ ‖Um‖∞. (183)

To complete the inductive step it remains to show that (182) holds with m replaced by m+ 1. By (183)
and the fact that f ′ is nondecreasing imply that

f ′(‖Um+1‖∞)∆t

∆x
≤ f ′(‖Um‖∞)∆t

∆x
≤ 1. (184)

The inequality (184) shows that (182) holds withm replaced bym+1, which then completes the inductive
step. Thus we have shown that, under the CFL condition (181),

‖Um+1‖∞ ≤ ‖Um‖∞ ≤ · · · ≤ ‖U0‖∞ for all m = 0, 1, . . . ,M − 1, (185)

which completes the proof of the assertion that the sequence {Um
j }j∈Z, 0≤m≤M of finite difference approx-

imations generated by the scheme is bounded; in particular (179) has been shown to hold.
Assuming that u has continuous and bounded second partial derivatives with respect to x and t

defined on R× [0, T ], it can be shown that

max
1≤m≤M

‖um − Um‖∞ = O(∆x+∆t),

as in the case of the linear first-order hyperbolic equation considered in the previous section, but we shall
not include the proof of this result here. One of the main difficulties in proving such an error bound is
that now, unlike the linear first-order hyperbolic equation where a bound such as (185) would, thanks
to the linearity of the finite difference scheme, automatically imply the stability of the scheme, in the
case of the nonlinear partial differential equation considered here this is not the case: if {Um

j } and {V m
j }

are two sequences of numerical solutions generated by the scheme from initial data {U0
j } and {V 0

j } the
inequality (185) does not automatically imply that

‖Um+1 − V m+1‖∞ ≤ ‖Um − V m‖∞ ≤ · · · ≤ ‖U0 − V 0‖∞ for all m = 0, 1, . . . ,M − 1,

which then complicates the convergence analysis of the finite difference scheme. A further technical
complication is that, given a smooth initial function u0 it need not be true that the solution u remains
a smooth functions of x an t over the whole of R × [0, T ]; there may be a time t∗ ∈ (0, T ) at which the
function x ∈ R 7→ u(x, t∗) becomes discontinuous. Then the partial differential equation (175) no longer
makes sense in the form in which it is stated, and a suitable weak formulation of the problem needs
to be considered instead. The mathematical analysis of numerical approximations of weak solutions to
nonlinear hyperbolic conservation laws, such as (175), is beyond the scope of these lecture notes; for
further details in this direction we refer the reader to the book by R. LeVeque, Finite Difference Methods
for Ordinary and Partial Differential Equations, SIAM, 2007.
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