Numerical Solution of Partial Differential Equations: Sheet 1 (of 4)
Section A [background material]

1. We have ¢(z) = (1 — |z|)+ for z € [—2,2]; hence,

0 —2<z< -1,
_ 142 —1<z<0,
) = Y9, o<az<1
0 1<z <2,
as shown in Figure 1.
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Figure 1: Graph of ¢(z) = (1 — |z|)+.

The gradient of ¢ has a discontinuity at x = 0, hence ¢ ¢ C([—2,2]) N C1((—2,2)). (A function f is
in C* if D’f is continuous for £ =0,...,k.)

D¢ is the first weak derivative of ¢ on the interval [—2,2] if

) o)
/ ' dz = —/ vD¢dx Yo e C5°((—2,2)).
-2 2

We have, for any such v,

/_quv/da: = /2(1—|;U|)+1/d33

-2

= /0 (1 +:c)v’d:c+/01(1—:c)v’d:v

-1

0 1
= —/ vda:—i—/ vdx
-1 0

2
= —/ vD¢dx,

-2
where
0 —2<zx< -1,
1 -1<x2<0,
-1 0<x<1,
0 1<x<2.

D¢ =

Next, ¢ € L,y((—2,2)) if f_22 |¢(2)]P do < oo for 1 < p < 0co. Now,

2 0 1
[ para = [ arordes [(a-ore = =5 <.

-1

2 0 1
/ (@) Pde = / |1|pd3:—|—/ |~ 1Pds = 2 < oo
-2 -1 0

Hence we have ¢, ¢’ € L,((—2,2)) for all p € [1,00) and so ¢ € Wpl((—2, 2)) for all p € [1, 00).
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2. If u(z) = z“ for x € [0,1] where 0 < o < 1 we have
Dfu = a(a—1)---(a—k+1)z**  EkeN.
Hence DFu € C((0,1)) for all k € N, i.e., u € C*((0,1)).

Consider

b ! 1 oP (a=1)+111
P _ a—1yp _ pla—
/O /(@) P da /0 (@ P de = e eV

which is only finite if p(a« — 1) +1 > 0. Thus v’ ¢ L,((0,1)) and u ¢ Wpl((O, 1)) for p > (1 —a)~ L.

Let Q = {(z,y) € R : 22 + y?> < 1} and let w(z,y) = log|log /22 + y2|. Then w(x,y) has a singu-
larity at the point (0,0) and so w ¢ C(£2). To show w € W3 (£2) consider

1/2 p2r 1/2
/|w($,y)|2dxdy = / / |log|log7|[*rdf dr = 271'/ r|log | log||* dr
Q 0 0 0

which is finite if the integrand is continuous. In particular we must consider the value as r — 0:

lim 7|log |logr||> = lim e |log|t|]|> (r=e7")
r—0 t—o0
log t|? 2logt 2
_ o JBI o 2lst g 2
t—oco et tooo  tet t—00 t(et + tet)

(using L’Hopital’s rule). Hence w € Ly(€2). Now we consider

owl®  |owl|? /2 p2m
/sz o + oy dedy = / / E rdﬁdr
1/2 1/2
:271'/ —dr:27r—1 :2—7T,
o r(logr)? logr |, log 2
and since this is finite we see that w € W. (Q) HY(Q), but w ¢ C(Q).
3. (a) Let v € Hp, ((a,b)). Then since v(x) = [ v'(£) d§ we have

2
dx

ol oy = / o) dz =

/a ( / 1d§) ( / |2d€) dz  (Cauchy-Schwarz ineq.)

- /C;b(:v—a>'/a| '(6)[? d¢ da

b b
(z — a)da / W (©) de

IN

IN
\

a

(b= a)* (0[5 (ap))-

N

(b) We have

p@)? = 2 / " o(E)/(6) de

2 (/: lv(€)[? d§> v </j [v'(€)]? d§> v (Cauchy—Schwarz ineq.)
2 , 1/2
2 ([ora) ([ wora)

= 2||vl| Ly ((ap)) V] H ((0,8))
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IN



for all z € (a,b). Hence taking the maximum of the left-hand-side we have
||U||%oo((a,b)) < 20l Ly(@p) vl E (0,8))-

The Lax—Milgram theorem states: Suppose V' is a real Hilbert space equipped with a norm || - ||y
Let a(-,-) be a bilinear form on V' x V' such that

(i) 3ep > 0 such that Yo € V a(v,v) > collv||3;
(ii) Jep > 0 such that Yo,w € V |a(v,w)| < cr]|v||v||w]lv;

and let ¢(-) be a linear functional on V' such that
(iii) e > 0 such that Yo € V' [£(v)| < ealjv]|y.

Then, there exists a unique u € V such that a(u,v) = £(v) Yv € V.
(a) Let v € Hj((0,1)) = {v:v € H'((0,1)) and v(0) = v(1) = 0}; then

1 1
/ (—"v+uwv)dz = / fodez.
0 0

Integrating the first term by parts gives

1 1
/ (v +ww)de — [uv]f = / fodaz.
0 0

Noting that v(0) = v(1) = 0 we have the weak formulation of the problem: find u € H}((0,1)) such
that

1 1
/O(U’v’—i-uv)dx = /Ofvd:z: Yo € H(0,1).

We define V' to be the space Hg((0,1)),

1
a(u,v) = /(u'v’Jruv)d;v
0

which is a bilinear form on V x V and

l(v) = /Olfvdx

which is a linear functional on V. Now check conditions (i)—(iii) of the Lax—Milgram theorem.

1
o /2 2 _ 2
a(v,0) = / W2+ o) de = JolZn o,

and so (i) holds with ¢y = 1. Using the Cauchy-Schwarz inequality we have

la(v,w)] < ||| Ly 0, 1V | Lo (0,0)) + Wl a0, 101l Lo (0,1))
< (lwllzyo,1)) + 'l Lo 0,0) Ul Lo0,1)) + 101 s (0,1)))
(since ab+ cd < (a+ ¢)(b+ d) for all a,b,c,d > 0)
< 2(|[wllT, 0.1y + 10175 00) (1
(since (a + b)? < 2(a® + b?))

= 2[Jwll g1 o) llvlla (0,1)

/2

A

0112, 0.1y + 19112 001
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and so (ii) holds with ¢; = 2.
(Could also get ¢; = 1 by just using the Cauchy-Schwarz inequality with the H' inner product.)
Finally, using the Cauchy—Schwarz inequality we have

wi = ([ 1 P as) 1/2 (/ 1 i ar)
< </01 |f!2dx) - (/01 o + |1/|2dx>

= [[fllaco,n vl 2 (0,0))

1/2

1/2

and so (iii) holds with c2 = || f||z,((0,1))- Hence the Lax-Milgram theorem tells us that this problem
possesses a unique weak solution.

(b) Let v € H%;O((O, 1)) = {v:ve H'(0,1)) and v(0) = O}; then, as in part (a),

1 1
/ (u'v +uv)de — [uv]y = / foda.
0 0

Noting that v(0) = u/(1) = 0 we have the weak formulation of the problem: find u € H%;O ((0,1)) such
that

1 1
/ (u'v' +uwv)dz = / fodz Vv e Hg((0,1)).
0 0

The proof of existence of a unique weak solution is then as in part (a) but we use V = Hy, ((0,1))
(so the norm is unchanged).

(c) Asin (b) for v € H}JO((O, 1)) we have

1 1
/ (v +wv)dx — [u'v]y = / foda.
0 0

Now we use the fact that v(0) = 0 and that u/(1) = —u(1) to get the weak formulation of the problem:
find u € Hp, ((0,1)) such that

1 1
/ (u'v" + wv)dz +u(l)v(l) = / fodx Vv € Hy, ((0,1)).
0 0
Clearly,
1
a(u,v) = /0 (u'v" + uwv)dz + u(1)v(1)

defines a bilinear form on V' x V where V' = Hp, ((0,1)). We have

1
o) = [WE+ R ds+ ME = ol
so (i) holds with ¢y = 1. Using the Cauchy—Schwarz inequality we have

la(w,v)| < Jwlgroalvla 1) T 1wl Lol o,1)) + e [w(z) Jmax, lv(z)

< Jwlgio,lvlE(0,0)) T 1wl Loo,0) V] Lo ((0,10))

+2([wll £y 0, 1V 23 (0,0 W] B (0,0 0L 1 ((0,19)) 2

(using Agmon’s inequality from question 3b)

1/2 1/2 1/2 1/2 2
<|w|H1((071))|U H1((0,1)) + ||w||L2((0?1))||U||L2((0,1))>

IN

2(Jwl g 0,110l 0,1)) + 101 Lago,0) 10| 2 ((0,1))
(since (a +b)? < 2(a® + b%)).



9.

The analysis then follows as in part (a) to see that (ii) holds with ¢; = 4. Also (iii) holds as in part
(a) so this problem also has a unique weak solution.

(a)

Section C [optional]

Using Taylor series expansions,

4h? 16h* 4
u(x; £ 2h) = u(x;) £+ 2hu’ (x;) + %u”(zi) +...+ S—Zu””(:vi) +...+ %u(”l)(&),
SO
2.1 4h4 " 6
u(wivo) + u(xi—2) = 2u(x;) + 4h“u" (x;) + Tu (x;) + O(h°). (1)
Similarly,
2.1 h4 n 6
w(wiz1) + u(xi—1) = 2u(z;) + hu” (x;) + Ik (z;) + O(h°). (2)
So

1 4
)+ 5(2) = gum) b B2 (1) + 0 B (25) + O(RS).

Thus, the given finite difference approximation has consistency error T; = O(h%).

We have a total of N — 1 unknowns, Uj,...,Uxy_1 (note that Uy and Uy are known from the
boundary conditions: Uy = 0 and Uy = 0). Unfortunately, because now the finite difference
equations are valid for ¢ = 2,..., N — 2 only, providing a total of N — 3 equations, we are 2

equations short.

We circumvent the problem by noting that
u(zo) =u"(0) = f(0)  and  u'(zn)=1u"(1) = f(1),

which we can discretise, using the ‘ghost points’ x_; = —h and xy4+1 = 1 4 h, with associated
values U_; and Upn41, resulting in two additional difference equations

U_1—2Uy+ Uy
h2

As Uy =0 and Uy = 0 these can be simplified to

_ (0) and Unt1 _2}(LJQN+UN—1 ).

U_1+U;
2

Uni1+Un—1

= f(0) and 3

= f(1).

Thus we have created two further equations; however, we now also have two new unknowns,
U_1 and Upn41; so while the total number of equations has increased from N — 3 to N — 1, the
total number of unknowns has also increased: instead of N — 1 unknowns we now have N + 1
unknowns.

We rectify this by extending the range of the index ¢ for the difference equation stated in the
question from i =2,...,N —2toi=1,..., N — 1, — whereby the equations corresponding to
t=1and ¢ = N — 1 will also involve the ‘ghost values’ U_; and Un41. Thus, finally, we end up
with (N —1)+2 = N +1 equations for the N+ 1 unknowns: U_1,U;,Us, ..., Un—2,Un—-1,UN+1;
Uy =0 and Uy = 0 do not feature in the list of unknowns, of course.



