Numerical Solution of Partial Differential Equations: Sheet 2 (of 4)
Section A [background material]

1. Consider the nonempty bounded closed interval [a,b] of the real line, and consider set of all mesh
functions V' defined on the uniform mesh {z; : ¢ = 0,...,N}, with z; := a +ih, ¢ = 0,..., N,
h:=(b—a)/N,and N > 2, such that Vj = 0.

(a) By writing
k
Vi=Y hD,Vi, 1<k<N,

=1

and squaring, and then applying the Cauchy—Schwarz inequality on the right-hand side, we have

that i i
Vil? < (Zh12> (Zth;wF) < kh|D; V][3.
=1

i=1

Multiplying this by A, summing over k = 1,..., N, using that E,]gvzl k= %(N + 1)N and that
Nh =b— a, we deduce that

IVl < 50— a)(b—a+)ID;V]]j.

N

As N > 2, h < (b — a), and therefore the constant appearing on the right-hand side can be
further bounded from above, resulting in

VIl < (b= a)* I V]I

>~ w

(b) By writing

e Evit
2 _ 2 it Vie1 o
Vil = 3o 0s 1 —221h(—2 )va;, L <k<N,
1= 1=

and applying the Cauchy—Schwarz inequality on the right-hand side, we have that

oo B (o)

=1

k h 5 k 5
<2 (Z F(Vil* + |v;_1|2>> (Z h|D;vz-|2>
=1

<2Vl Dy Vln, 1<k <N,

where we have used that, for any real numbers, «, 3 one has (o + 3)% < 2(a? + 5?). By taking
the maximum over all k = 1,..., N we arrive at the following (discrete Agmon’s) inequality:

max |Vil* < 2[[V][a ]| Dy V|

2. Let Q = (a,b)?, where a < b, and consider the mesh function V' defined on a uniform mesh of spacing
h = (b—a)/N on , such that V' = 0 at all mesh points that (z;,y0), ¢ =0,...,N — 1 and (xo,y;),
j=0,...,N—1 Here x; =a+ih,i=0,...,N,y; =a+jh, j=0,...,N.



By writing

and, analogously,

J
Vij=Y hD;Vis, 1<rj<N,
s=1

it follows that o
i
V= S DD,
r=1 s=1

By squaring both sides of the equality and then applying the Cauchy—Schwarz inequality on the
right—hand side, we have that

(2

i J J
Vig? <D D >N WD, D, Vil

r=1 s=1 r=1 s=1

Therefore, as ih < Nh = (b—a) and jh < Nh = (b — a), it follows that

i g
Vig* < (0—a)?> ) B*D,; Dy Vio|* < (b—a)?|D; D, V]|

r=1 s=1

Hence,

2 — = 2
1§?§N|Vw| < C|D; Dy V|,

where C' = (b — a)?.
Section C [optional]

8. Consider the Neumann problem for Laplace’s equation

0
—Au=0 in Q:=(0,1)% Y0 on 9.
on
(a) Trivially, u(z,y) = C, where C' € R is a constant, is a solution to this boundary-value problem
for any value of the constant C' € R. We shall show that if, in addition, it is required that
fQ u(x,y)dzdy = 0, then C' = 0 is the unique solution to the problem.

Indeed, if u is a solution to the above problem, then by multiplying the PDE by u, integrating
over ) and performing partial integration, it follows that

0
Oz—/Auudxdy:/VU-Vdedy—/ —uuds=/|Vu|2dxdy.
Q Q aq On Q

Thus, if u is a solution to the boundary-value problem then Vu = 0 on Q. Hence, u is identically
equal to a constant on ). The only constant function that satisfies f&z u(x,y)drdy = 0 is the
identically zero function u(z,y) = 0 on . Thus we have shown that there is a unique solution
u to the boundary-value problem such that fQ u(x,y) drdy = 0, — and that this unique solution
is the identically zero function.



(b) If the boundary condition is approximated by central differences, e.g. % = 0 on the left

face of 2 and correspondingly on the other three faces, and the fictitious values (e.g. U_1 )
are eliminated from the standard five-point finite difference stencil, which is used in the interior
and up to the boundary, we end up with an (N + 1)2 x (N + 1) matrix, A, under the usual
lexicographical ordering, whose form we shall now identify.

First note that the five-point finite difference stencil for —Au =0 in (0,1) x (0,1) =Q is

AU —Ujpr ke —Uj—1p — Uj g1 — Ujp—1
2

=0, jk=0,...,N+1, (3)

where h = % The Neumann boundary condition on the left face of ) is approximated by

Uik — Utk _ 0
2h ’

that is,
U—l,k:UlJm k=0,...,N. (4)

Similarly, by approximating the Neumann boundary conditions on the other sides we obtain

UN+1,k = UN—l,kv k= 07 cee 7N7 (5)
Uj,—lej,la jZO,...,N, (6>
Uj,N+1:Uj,N—17 jZO,,N (7>

For j=0,k=1,...,N — 1, substituting (4) into (3) gives

4Up . — 2U1x — U py1 — Ug -1

e =0.

When j =0 and k = 0, substituting (4) and (6) into (3) gives
4Up0 — 2U1,0 — 2Up 1

> ~0.
When j =0 and kK = n + 1, we obtain
4Uop Ny —2U1 N —2Ug N1 0
h? -
Similarly,
AUNnk —2UN-1k —UNng+1 — UNng—1
- —0, k=1,...,N—1,
4Ujo — Ujr10 — Uj—1,0 — 2U; .
% =0, j=1,...,N—1,
AU; N —Ujja,Nn —Uj1 N —2Uj N1
% =0, j=1,...,N—1,
and
4Uno —2UNn-10 — 2UN;1 —0
2h2 ’
AUn N —2Un—1,n —2UNn N1 ~0
2h2 '



Hence, the coeflicient matrix, A, takes the form

B C
) C B C
_ . . . N+1)2x(N+1)2
¢ B C
C B
where
4 =2
-1 4 -1
B — e e RVHDX(N+1),
-1 4 -1
-2 4

C=_-J¢ RWHDX(N+1) and C = C=-2¢ RO+ x(N+1)

A is singular. Indeed, let e = (1,1,...,1)T; then Ae = 0. Therefore e # 0 is in the kernel
of A. We note in passing that the original homogeneous Neumann boundary-value problem,
in the absence of the additional integral constraint [, u(z,y)dzdy = 0 has u = constant as a
non-trivial solution.

For every ‘internal’ mesh point, i.e., j,k=1,..., N — 1, we have
1
(Av")jk = 73 [407% = vjta e = 021 = Vs — V] (8)
and ) ) )
(j+ Drm jrm re . jrm . rmw
€OS ~———— = €08 —— €0s — F sin — sin —.
N N PN IRy
Hence,
cos ks 2 cos Jrm coS rr
—v; —Vj_1k = —COS —— “—cos—| .
j+1,k j—1.k N N N
Similarly,
j ; = —COoS Jrm 2 cos hsm cos sl
Vg, k+1 Vjk—1 = N N N |
So (8) is equivalent to
(A0™) 1 jrm ksm [4 9c0s " _ 9 377} 0.1 N
V") g = —5 €08 ——cos — |4 — 2cos — — 2cos — r,Ss =
T RTEN TN N A

and \"® = h% [4 —2cos 7 — 2cos SW”] is a candidate to be an eigenvalue so long as the ‘boundary
equations’ are satisfied, i.e., for j =0, k =1,..., N — 1 and correspondingly on the top, bottom
and right faces of the domain Q. Now,

1 .
(A" = 7 [41);72 — 2v§i17k — v;SkH — v;ﬁc_l] , j=0
= icosw—ﬂcosks—ﬂ 4cos0r—7rcosks—7T — 2coszcosks—7r
- h2 N N N N N N
Orm 9 kst ST
—co8 — | 2co8 —— cos —
N N N
1 0 k
= —cosﬂcosﬂ [4— 2008E —2cosﬂ] ,
h?2 N N N N



: Orm __
since cos 7 = 1.

For j =0, k =0, (and correspondingly at the other corners)

1 0 0
(Av™)g0 = 73 €08 %COS% 4 — 2cos% — 2cos % :

Note that, for j = N for example,

—20%° j—1
U = 00U N)T7T
cos RF
nrw
= —2 _—
cos N
9 Nrm  rm
= —2cos - —
N N

rT . .orm
= —2|cosrmcos — + sinrwsin —
N N

rT rm
COS I"Tr COS N + Usin

N
jrm [ 9 T?T}
= cos—— |—2cos —| .
N N
(e) v?’,? = cos jOT” cos 7’%”1 = 1 for all j, k is the vector in the kernel of A. The corresponding eigenvalue

is 73 [4 —2cos0 — 2cos 0] = 0.

(f) By fixing any Uj; to be o on 00 the matrix A becomes irreducibly diagonally dominant.
This implies that the eigenvalues of A are all nonzero (by an extension to Gershgorin’s The-
orem); hence, A is nonsingular, which means that the finite difference solution is unique. (cf.
https://en.wikipedia.org/wiki/Weakly_chained_diagonally_dominant_matrix)
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