Numerical Solution of Partial Differential Equations: Sheet 3 (of 4)

Section A [background material]

1. Suppose that we have discrete data {U;} defined on an infinite mesh z; = jAz, j = 0,£1,£2,....
Let § and p be the discrete differentiation and smoothing operators defined by

(6U); = (Uj41 — Uj—1)/(2Ax), (wU)j = (Ujr1 +Uj-1)/2.

We need to determine the functions 6U, 6V, pU, pV for U = (...,1,—1,1,—1,1,—1,1,...) and
V=(..,1,0-1,01,0,-1,0,...).

Clearly, 6U =0, uU = —U, (0V); = Vj41/Ax, pV = 0.
2. We need to determine what effect § and g have on the function U defined by U; = ek j =
0,+1,%2,..., where k is a real constant (the wave number).

Applying 6 to U; = e**72% for a fixed wave number k gives

(0U); = kAT _ e_"kAzU' B zsin(kAa:)U‘
I 2Ax T Az I

Note that as Az — 0, the multiplying factor on the right converges to 1k, which is the multiplying
factor one would get by applying the differential operator d/dz to the function e***,

Now, applying p to the same function U gives

ezkAz + e—zkA:v

(pU); = 5 Uj = cos(kAzx)U; .

This time the multiplying factor converges to 1 as Az — 0.

3. By multiplying both sides of
o0
Uk) = Az Z e kT

j=—o00
by gze""A% and integrating over k € [~r/Aa, x/Ax], we deduce that
1 TAz R
2m w/Azx
as required.
Next,
SU = —ikx; Uj+1 - Uj—l X gTthzio1 _ gtkTip
V) = Ao 3 eI =M 3 U
j=—00 oo
1kAx —kAx o) .
¢ —° —oka; vsin(kAx) -
= —A wkrjpr, 2O\ .
2Ax x;me Uj Ay V)
Similarly,

(U (k) = cos(kAz)U (k) .
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Figure 2: Graphs of the Fourier multipliers corresponding to d and j, on the wave number interval k €
[—7/Az, 7 /Az] for Az =0.1.

Thus both § and p can be defined by the prescription: take the Fourier transform of U, multiply the

result pointwise (i.e., for each k independently) by a certain function, then inverse Fourier transform
back. This is why

SU (k in(kA U (k
- (k) = sin(kAz) and 'LLA—() = cos(kAx)
U(k) Az U(k)
are called Fourier multipliers. The graphs of these two Fourier multipliers are shown in the figures

below.

Applying p m times to U corresponds to multiplying the Fourier transform k — U (k) by (cos(kAx))™.
To see this, let x(k) = cos(kAx) and note that

HU (k) = x (k)T (k):
therefore, - -
12U (k) = p(pU) (k) = x (k) (k) = x(k)x (k)T (k) = (x(k))* U () .
Thus, by induction, o
U (k) = (x(k))™ U (k).
As can be seen in Figure 3, for large m the function (cos(kAx))™ will be approximately zero on the
interval [—7/Ax, n/Az] except for k ~ 0 and k ~ +7/Ax. Clearly, (x(0))" =1 for all m > 1 and

(x(£m/Az))™ = (—=1)™. This is precisely the behaviour we would expect for k ~ 0; however, it is
unfortunate that the wave numbers k ~ +7/Az are not eliminated as well.

This is due to the fact that when p is applied to the saw-tooth function W defined by W; = (—1)7,
it does not smooth it at all: it merely changes its sign. Therefore,

pmtWo=(=1)"W,
which is no smoother than W however large m is.

Note: In order to obtain an operator ji which has better smoothing properties than p, let us consider
x(k) := %(1 + x(k)). We define [;[\J(k) = Y(k)U(k). In other words, il is defined as the semidiscrete
inverse Fourier transform of (k)U (k). Figure 4 shows (Y(k))™ on the interval [—m/Az, w/A] with
Az = 0.1, for m = 155 and m = 156; clearly, the undesired lack of smoothing near k = £7/Az has
now been eliminated.
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Figure 3: Graphs of (cos(kAz))™ on the interval [—n/Az, 7/Az]| with Az = 0.1, for various values of m:
(a) m = 5; (b) m = 6; (c) m = 55; (d) m = 56; (e) m = 155; (f) m = 156.
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Figure 4: Graphs of (x(k))™ on the interval [—7/Ax,m/Ax] with Az = 0.1, for various values of m: (a)
m = 155; (b) m = 156.

4. The proof is simple: using the definition of the semidiscrete Fourier transform UofU ,

N w/Az m/Ax —
01 = [ jwPra= [ om0k
J—m/Ax J—m/Ax
7w/ Az o0 o
_ / Q) 3 e thnyy ST ke, di
—n/Az j=—00 l=—00
s BN
= Y ) (AUl / @) g
Jj=—0c0f=—00 —m/Az

SRS 2 0 ifl+#j
= 2 > (A UJU[{27T/A:U if 0= j

Jj=—00l=—00

= 2rAz Y (U =2x||UJI3,,

j=—o0

as required.

Section C [optional]

9. The consistency error of the scheme is

J At 2

tnat) —u(zg,ty) 1 Az)? 1
o = U tntt) = w(@, tn) (1—(Aa;) C) 6§u(:cj,tn+1)—§<1+ N C) dzul@;, tn).
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Upon Taylor series expansion,

| —

™ — T (A) g (2, thi1/2)

=~

’ n+1/2) 2

Ut Lj
<1 — (Ax) ¢ <um<3§j,tn+1) + 11—2(A5U>2umm<$jvtn+1))
(Aﬂf)2

<1 toR ¢
+O((At)? + (Az

[\>|>—l [\')I»—l —

<uxx<$jv tn) + %(A@QUﬂcwa/’x@jv tn))
)]
1

= w(wj, tyq1y2) + Q(At)Quttt(ina thi1/2)

A N N

1
C) <um(:cj, the1/2) + §Atumt($j, tni1/2)

1

+12

1
(A$>2uzxxz<£ja tn+1/2> + ﬁ(A$)2AtuszZzt(£]7 tn+1/2))

1 (Az)? 1
—3 <1 + C) <u1¢z<$jatn+1/2> - §Atumu(xj,tn+1/2)

1 1
+E(A$)2Umm($ja tny1/2) — ﬂ(Am)QAtUmmt(xja tn+1/2)>
+O((A1)? + (Ax)h)).

As (At)2 = O((Ax)*) and (Az)QAt = O((A )4), the last terms in lines 1, 3 and 5 on the right-hand
side can be absorbed into O((At)? 4 (Az)*). Further, tzzt = Ugzzz, S0 that

0 = wi(wj,thg1)2)
1 (Ax)? 1
_5 (1 - At () (uxz(xja tn+1/2) + §Atuzm:z(xja tn+1/2)

+ E(Ax) waxx(xj’tn+l/2))

1 (A:c)2 1
—5 (1 + Tt C) (um(:c], tn+1/2) — EAtuz:m:z(x]a tn+1/2)

- n+1/2>) FO((B1 + (20)")

= ut<$j7tn+1/2) _uxw<$j7tn+1/2) + - ( ) (C - )Ummx(l’]’ n+1/2>

= 580 (¢ §) el trraje) + O((80))

Hence, we have the two required forms of the consistency error depending on whether ¢ # 1/6 or
¢=1/6.

10. The standard Crank-Nicolson scheme for this initial-value problem, with yu, = At/(Az)? and p, =

At/(Ay)?, is
At 7 At
2 _ 2 n+1 2 2 n
<1— SO yéy 2>U+ <1+ -0z + 500, + )U

This can be rewritten as follows

(2 — At) <1 M 52 52> ULt = (24 A1) ( Po 52, M 52) UL

2—At”* 2—Aty 2+At 24+ At Y
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11.

We approximate the expressions in the brackets on the left- and right-hand sides by factorised ex-
pressions; thus, we arrive at

_ 52 My n+1
o0 (1o gy (1 g2 v
— 2 2 n
= (2+ At) (1 Sy At(sx) <1 + 31 Atéy) Uj;.
Let us introduce the intermediate level U™/ 2 and then rewrite the above as follows:
— 2 ??+1/2 — 2 n
(2 — At) ( 57— AtéﬂC) Ui (2+ At) (1 7T At(sy) Ujj

_ 2\ o+l _ 2\ ntl/2
(1 2—At5)U” <1+2+At5)UU :

[Note that the factors 2 — At and 2 + At can be inserted at various places, so if they appear at a
different place in your solution than in mine that does not imply that your answer is incorrect!]

For this scheme to be meaningful, we need to suppose that At # 2. In the stability analysis below,
we can assume without loss of generality that At <1 (to simplify the algebra).

The scheme is supplemented by the initial condition
U@% = UO(xiayj)a Z?] € ZQ'
Performing a Fourier analysis,

2 — At 2+ At — 4y, sin?(k, Az /2) 2+ At — 4y, sin?(rky, Az /2)
24+ At 2 — At + 4py sin®(k, Az /2) 2 — At + 4y sin?(ky, Az /2)

U™ (g, hiy) = U™ (g, Fiy)-

The first fraction is bounded in absolute value by 1. The second fraction is bounded in absolute value
by 1+ 2At for all k; € [—7/Az,7/Ax]; this can be seen by noting that the absolute value of the
second fraction achieves its maximum either at s, = 0 or k, = £7/Ax, and for these three values of
k. the absolute value of the second fraction is bounded by 1 4 2At. Similarly, the absolute value of
the third fraction is bounded by 1+ 2At. Therefore,

U™ (ks )| < (14 2882 |U" (5, 1),
for all (K, Ky), and therefore, by Parseval’s identity,
1T+ ey < (14 286U g,
As (14 2At)%2 =1+ 4At + 4(At)? < 1+ 8At, we have

< (1+8A)[U°|e,,

n
rgggllU Il

which means that the scheme is unconditionally von Neumann stable.

(a) To show the uniqueness of the solution to the initial-boundary-value problem, suppose that u;
and wg are both solutions to the problem, and both have a continuous first partial derivative w.r.t.
t and a continuous second partial derivative with respect to x. Then, u := u; — uo has the same
smoothness as u; and ue, it satisfies homogeneous boundary and initial conditions, and

Up — Uz = f(ur) — f(ug) on (0,1) x (0,T7.
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Multiplying this equality by u = u; — ug, integrating over z for any fixed ¢t € (0,7], and performing
partial integration in the second term on the left-hand side yields

- dt/ e t)|2da:+/ (2, 1) |2daz—/( (un (@, ) — Fus (1))@, ) — us(a, 8)) dz = 0,

By dropping the (nonnegative) second and third terms from the left-hand side (recall that f is
monotonic nonincreasing), we deduce that

2dx < T
2dt/|uxt)| dr<0  Vte (0,7,

and therefore, upon integration over ¢ from ¢t = 0 to t = s € (0, 7], we find the inequality
1 1
/ lu(z, s)|* dz < / lu(z,0)>dz =0 Vs e (0,T].
0 0
Therefore u = 0 on [0, 1] x [0, 7], meaning that u; = ug on [0, 1] x [0, T7.

(b) The implicit Euler finite difference approximation of the problem is:

ym_pym1
~——— -DiD,U"=fU") forj=1,...,N—landm=1,...,M,

At
Up'=0, Uy=0 form=1,..., M,
U}]zuo(ajj) forj=1,...,N —1.

Here, D} V; := (Vjy1 = V;)/Az, j=0,...N —1 and D;V; := (V; — V;_1)/Az, j =1,...N, for any
function V' defined at the mesh points z; = jAz, 5 =0,...,N.

(c)Let V:={(0,V1,...,VN_1,0)T € RN*L: (V,..., V1)t € RN71}. Clearly, V, equipped with the
Euclidean norm of RN+ is an (N — 1)—d1men51onal vector space, which is isometrically isomorphic
to RV~! equipped with the Euclidean norm of RV~!. Consider the mapping F: V — V, defined by
F(V)j=V;=U"' = AtDI D, V; — Atf(V;), forj=1,...,N—1;
F(V)y=0, F(V)y=0.

Our objective is to show the existence of a U™ = (0, U, ..., UM ;,0)T such that F(U™) = 0 € RN+,

Suppose that F(V) # 0 for all V € V with ||V < p and all g > 0, where || - || is the Euclidean norm
on RN¥*! induced by the inner product (-,-) defined by (V, W) := VITW. Let B(0, 1) denote the ball
of radius p in RN¥*1. Then, the mapping G defined by

FV)
MIEV)IT

, i) to B(0, u). Thus, by Brouwer’s fixed point theorem there exists
V', and therefore

GV):=— V e B(0, ),

is a continuous mapping from B 0
a V e B(0, i) such that G(V) =

. F(V)
V=— .
MIE@D)
Hence, ||V|| = y, and
- . F(V) |E (V)2
FW),V)=—pu|FV), —L | = —p 2L = 0.
(F(V),V) u( (V) IIF(V)H) F0) —ul|F(V)|| <
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However, by letting f(V) € RN*! be the vector whose j-th component is f(f/]), we have that
(F(V),V)=(V, V)= (U™, V)= A(DFD V., V) = At(f(V),V). (9)
By performing summation by parts in the third term on the right-hand side this implies that
N
(F(V),V)=(V,V)= (U™ V)+ At | Az > [D V)

j=1
— A(f(V) = f(0),V = 0) = At(f(0), V).

The third and the fourth term on the right-hand side are nonnegative. Therefore,
(F(V),V) > (V,V) = (U™, V) = At(f(0),V) = V| = (U™ + Atf(0), V)
. _ . . 1 _ 1, -
> [VIF = o™=+ At @) [V = VI = S IU™ ™ + Atf0)* = S [VII*

v

1 - 1 _ ~

SIVIP — S U™+ Atp (V)P

By fixing, in particular, g = [|[U™ '+ Atf (V)| and recalling that ||V|| = p, we have that (F(V),V) >
$p? — 342 = 0. But this contradicts (9).

Therefore our assumption that F'(V) # 0 for all V € V with ||V|| < p and all g > 0 is false, meaning
that there exists a p > 0 and V € V with ||V|| < p such that F(V) = 0.

Note further that there is a unique such V. Supposing otherwise that V1, V2 € V satisfy F(V1) =0
and F(V?) = 0, we have, by writing V := V! — V2 and performing summation by parts that

0= (F(VY) = F(V3), V! = V2) = |[V|]? = AU(DID; V,V) = A(F(VE) = (V) V! = V)
N

=|VIP+ At | Az > DLV | = A(F(VY) = f(V2), V= V2.
Jj=1

The second and the third term on the right-hand side are both nonnegative. By dropping them, we
deduce that 0 > ||[V||2. Therefore V = 0, meaning that V! = V2. Thus there exists one and only
one V € V such that F(V) = 0. We denote this V by U™+,
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