Numerical Solution of Partial Differential Equations: Sheet 4 (of 4)
Section A [background material]

1. Consider the second-order linear hyperbolic equation, the linear wave equation

8t2 c 6.1‘2 :f(x7t)ﬂ
where ¢ > 0 is the wave speed and f is a given continuous function on R x [0, 00).
(a) Consider the function u defined by d’Alembert’s formula:

1

1 z+ct
u(z,t) = 3 [uo(z — ct) + uo(z + ct)] + % /_ t u1(€) d€.

We begin by checking the initial conditions:

x+0
u(z,0) = %[uo(x) ()] + 2% /0 iy (€) di = () + 0 = ug(x).

Next, we compute % by using the chain rule and by differentiating the integral with respect to
t appearing in x — ¢t and x + ct:

O 1) = gl — et)(—e) (o + ) (+)] + o ua (o + ) () (@ — et) ().
Hence, 5
O (.0) = %o + %[cul(as) +eun(@)] = 0+ w(z) = ua (2).

To verify that u satisfies the PDE, consider

@( t)—l
ozt T g

On the other hand,

[ug (x — ct)(—c)? + uf(z + ct)(+c)?] + %c[u’l(x + ct)(+¢)? — ui(z — ct)(—c)?).

ou 1 1

i 5[%(:5 —ct) +ug(x + ct)] + 2—c[u1(x + ct) —up(x — ct)],
and therefore

Pu 1 1

a—;; = §[u8(a: —ct) +uj(z +ct)] + %[u’l(zv +ct) — u(x — ct)].

Clearly,

0%u B 5 0%u

9z~ © oa2’
as is required.
That u € C%(R x [0,00)) follows from the assumptions that ug € C?(R), u; € C*(R); indeed,
d’Alembert’s formula implies that u € C(R x [0,00)), and the expressions for %, %, %, and
% computed above imply that these partial derivatives also belong to C(R x [0, 00)).
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(b)

Suppose that ug and u; are identically equal to zero outside an interval [—A, A] of R, where
A > 0. Let t > 0; d’Alembert’s formula implies that u(-,t) is identically equal to zero outside
the interval [-A — ct, A + ct]. Therefore A; = A + ct.

To show that the function u defined by d’Alembert’s formula is the only solution in the class of
functions contained in C?(R x [0, 00)) such that u(z,t) = 0 for all z € [~ A — ct, A+ ct], suppose
that w1 and us are two such functions; then v = w1 — ug is in the same class of functions and

satisfies
%u  ,0%u

— — "= =0,

ot? Ox?
with identically zero initial data. By multiplying the equation with 2 i » integrating the resulting
expression from x = —oo to £ = +00, and performing partial integration with respect to x in

the second integral, it follows that

1d [T /0u 2 d ou\ 2

—— — a:tda:Jr——/ — x,t)dx = 0.

i | (G) o g [T (5 e
Note that the integrals are finite since u and its partial derivatives vanish outside the bounded
interval [—A — ct, A + ct]; in particular the terms that arise in the course of partial integration

with respect to z vanish. Integration of the above equality with respect to t then yields (recall
that the initial data are identically zero:

+00 2 2 p+oo 2
%/ (%) (;th)d;g+%/ (%) (z,t)dz =0, t>0.

Hence, u is a constant function; the requirement that u(x,t) = 0 for all z outside the interval
[—A — ct, A + ct] then implies that w is in fact identically zero, thus completing the proof of
uniqueness of the solution.

To verify that the function u defined by

1 1 [rtet zte(t—)
u(z,t) = = [up(z — ct) + up(z + ct)] + —/ &) dé+ — / / (s,7)dsdr.
2 2c J, 2c o

—ct c(t—r)

is a solution to the initial-value problem in the case when f # 0, all that needs to be done is to
show that the function F' defined by

T+c(t—T)
(z,t) / / s, 7)dsdr
20 xz—c(t—T) ( )

satisfies the nonhomogeneous equation, with f # 0, but with zero initial data (because the sum
of the first two terms in the expression for u(x,t) above was already shown in part (a) of the
question to satisfy the homogeneous equation, with f = 0, and nonzero initial data).

Clearly, F'(x,0) = 0. Let
z4c(t—7)

Gz, t,T) := / f(s,7)dsdr.

—c(t—T)

1 t
= t
t) 20/0 G(z,t,7)dr

t
9G 1) TZ%/O Flatolt—r)7) 4+ fla— (t— 1), 7)dr,

Note that G(zx,t,t) = 0. Then,



whereby %—f(m, 0) = 0. Thus we have shown that F satisfies the zero initial data, as required.
Differentiating again with respect to ¢, we have that

2
) = 57w+ elt — 1),0) + (o — elt — 1), 1)
+g/0 [%($+C(t—7‘),7’)—%(m—c(t—7)77):| dr
_ c taf B _g B B
_f<g;,t>+§./0 [%(x—i—c(t 1) = @ e T),T)] dr.
Analogously,
oF 1

%(z,t) = 2_0/0 [fx+ce(t—7),7)— flx —c(t —7),7)]dT
and therefore

2 t
%(m,t):%c/o [g—i(l'JrC(t—T),T)—g(w—c(t—T),T)] dr.

xT

Hence,
0*F 5 O°F
W(l‘at) —C W(l‘at) - f(xat)a

as required. The rest of the argument to complete part (c) proceeds in exactly the same way as
in part (b).
Section C [optional]
. For the first-order hyperbolic equation
ur + au, =0,

with (z,t) € R x [0,00), subject to the initial condition u(z,0) = ug(z), the Lax—Wendroff finite
difference scheme is defined by

Uj =0 - §M(Uj - Uj%) + 5#2( 12U + Uf),
for m =0,1,... and j € Z, with U]Q := wuo(z;), where p = aAt/Ax is the CFL number, z; = jAxz,
tm = mAt.
(a) The Lax—Wendroff scheme can be rewritten as follows:

urtt —um +aU;11 ~Ur At UL, - 20+ + U
At 2Ax 2 (Ax)?

Therefore, the consistency error of the scheme is

umtt —ym

T .— J J +

auj”}rl —ujty  a?Atully —2u™ 4 j+ulty
J At 2Ax 2 (Az)2 ’

where ugn = U(fﬂj,tm), Uﬁ:l = u(a:'j:tlatm), U;n+1

about the point (z;,t,,), we have that

U 2u u
" = (g—t(a:j,tm) + %g?(l’jatm) + (9((At)2)> +a <%(l'jvtm> + (9((A$>2))

a2 2U
L (St +0((201)

ou ou At [ 9%u 282u 9 9
= (E + a%) (2 tm) + (ﬁ —a @> () tm) + O((Az)” + (A)7).

= u(xj,tms1). By Taylor series expansion
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(b) By inserting the Fourier mode

U]m, — )\meuﬁAz

into the scheme (written in the form as in the statement of the question), where A = A(k) € C
is the amplification factor and k € [—7/Ax,7/Ax] is the wave number, we have that

1 s
)\(H) —1— E(emh _ e—mh) + 7(emh — 24 e—mh)
=1 —usinkh + p?(cos kh — 1)
h
=1 —usinkh — 242 sin® %

Hence,

h\> h h
IA(K)|]? = <1 — 242 sin? %) + 4p? sin® % (1 — sin? %)

h
=1 —44%(1 — p?)sin? %

Clearly, |A(k)|?> < 1 (for practical stability) if, and only if, |u| < 1, which is the required
restriction on the CFL number to ensure that the Lax—Wendroff scheme is practically stable in
the 5 norm.

8. We shall derive the first order upwind scheme for the initial value problem

ou [5 —6]6u_

E—’— 3 _4 % =0, u(a:,O) :uO(:U)v

for (z,t) € R x [0,00). and identify the CFL stability condition for the scheme.

5 61 ., 1 [21][2 o 1 -1
[3 —4]‘A_XAX _[1 1_[0 —1“—1 2]

is the diagonalisation, so let

and
_ 2 1 0 O 1 -1
e I
1 =2
1 =2 |’
and the first order upwind scheme as described in lectures is given by

n n A _ n n n n
Uy =U) - - [AT (U - U) + AN (UY 07 )], Uf = ().

Since the largest eigenvalue in absolute value is 2, the CFL limit is QA—A; <1
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