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Elliptic boundary-value problems
A second-order linear PDE for a function u = u(x , y):

a(x , y)
∂2u

∂x2
+ 2b(x , y)

∂2u

∂x∂y
+ c(x , y)

∂2u

∂y2

+ d(x , y)
∂u

∂x
+ e(x , y)

∂u

∂y
= f (x , y) is

ELLIPTIC if b2 − ac < 0;

PARABOLIC if b2 − ac = 0;

HYPERBOLIC if b2 − ac > 0.

Ellipticity amounts to requiring that a and c are of the same sign, say
a > 0 and c > 0 (or a < 0 and c < 0), and ac − b2 > 0, which is
equivalent (by Sylvester’s criterion) to demanding that

A =

(
a b
b c

)
is a positive definite matrix, i.e. ξTAξ > 0 for all ξ ∈ R2 \ {0}.
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Example (Elliptic equations)

(a) Laplace’s equation: ∆u = 0;
(b) Poisson’s equation −∆u = f ;
(c) More generally, let Ω be a bounded open set in Rn, and consider the
(linear) second-order partial differential equation

−
n∑

i ,j=1

∂

∂xj

(
ai ,j(x)

∂u

∂xi

)
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x), x ∈ Ω,

where the coefficients ai ,j , bi , c and f are such that

ai ,j ∈ C 1(Ω), i , j = 1, . . . , n;

bi ∈ C (Ω), i = 1, . . . , n;

c ∈ C (Ω), f ∈ C (Ω), and
n∑

i ,j=1

ai ,j(x)ξiξj ≥ c̃
n∑

i=1

ξ2
i , ∀ ξ = (ξ1, . . . , ξn) ∈ Rn, ∀ x ∈ Ω;

here c̃ is a positive constant independent of x and ξ.
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An elliptic equation is usually supplemented with one of the following
boundary conditions:

(a) u = g on ∂Ω (Dirichlet boundary condition);

(b) ∂u
∂ν = g on ∂Ω, where ν denotes the unit outward normal vector to
∂Ω (Neumann boundary condition);

(c) ∂u
∂ν + σu = g on ∂Ω, where σ(x) ≥ 0 on ∂Ω (Robin b. cond.);

(d) A more general version of (b) and (c) is

n∑
i ,j=1

ai ,j
∂u

∂xi
cosαj + σ(x)u = g on ∂Ω,

where αj is the angle between the unit outward normal vector ν to
∂Ω and the Oxj axis (oblique derivative boundary cond.).
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Classical solutions

Consider the homogeneous Dirichlet boundary-value problem:

−
n∑

i,j=1

∂

∂xj

(
ai,j(x)

∂u

∂xi

)
+

n∑
i=1

bi (x)
∂u

∂xi
+ c(x)u = f (x) for x ∈ Ω, (1)

u = 0 on ∂Ω, (2)

where ai,j , bi , c and f are as stated earlier.

A function u ∈ C 2(Ω) ∩ C (Ω) satisfying (1) and (2) is called a classical solution
of this problem. The theory of partial differential equations tells us that (1), (2)
has a unique classical solution, provided that ai,j , bi , c , f and ∂Ω are sufficiently
smooth.
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Weak solutions

In many applications these smoothness requirements on the coefficients
are violated, and for such problems the classical
theory of partial differential equations is inappropriate.

Example

Take, for example, Poisson’s equation on the cube Ω = (−1, 1)n in Rn,
subject to a zero Dirichlet boundary condition:

−∆u = sgn
(

1
2 −|x |

)
, x ∈ Ω,

u = 0, x ∈ ∂Ω.

 (∗)

This problem has no classical solution, u ∈ C 2(Ω) ∩ C (Ω), for otherwise
∆u would be a continuous function on Ω, which is not possible because
sgn(1/2−|x |) is not a continuous function on Ω.
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Definition

Let ai ,j ∈ C (Ω), i , j = 1, . . . , n, bi ∈ C (Ω), i = 1, . . . , n, c ∈ C (Ω), and let
f ∈ L2(Ω). A function u ∈ H1

0 (Ω) satisfying

n∑
i ,j=1

∫
Ω
ai ,j(x)

∂u

∂xi

∂v

∂xj
dx +

n∑
i=1

∫
Ω
bi (x)

∂u

∂xi
v dx +

∫
Ω
c(x)uv dx

=

∫
Ω
f (x)v(x)dx ∀ v ∈ H1

0 (Ω)

is called a weak solution of (1), (2).
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Example

Suppose that Ω = (a, b)× (c , d) ⊂ R2 and let f ∈ L2(Ω). We wish to
state the weak formulation of the elliptic boundary-value problem

−∆u + u = f in Ω,

u = 0 on ∂Ω.
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Introduction to the theory of finite difference schemes
Let Ω be a bounded open set in Rn and suppose that we wish to solve the
boundary-value problem

Lu = f in Ω,

Bu = g on Γ := ∂Ω,
(3)

where L is a linear partial differential operator, and B is a linear operator
which specifies the boundary condition. For example,

Lu ≡ −
n∑

i ,j=1

∂

∂xj

(
ai ,j(x)

∂u

∂xi

)
+

n∑
i=1

bi
∂u

∂xi
+ cu,

and

Bu ≡ u (Dirichlet boundary condition),

or

Bu ≡ ∂u

∂ν
(Neumann boundary condition),

or some other boundary condition.
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In general, it is impossible to determine the solution of the boundary-value
problem (3) in closed form.

We shall therefore develop a simple and general numerical technique for
the approximate solution of (3), called the finite difference method.

The construction of a finite difference scheme consists of two steps:

first, the approximation of the computational domain by a finite set of
points; and

second, the approximation of the derivatives appearing in the
differential equation and in the boundary condition by divided
differences (difference quotients).

10 / 14



The first step

Suppose that we have ‘approximated’ Ω = Ω ∪ Γ by a finite set of points

Ωh = Ωh ∪ Γh,

where Ωh ⊂ Ω and Γh ⊂ Γ.

Ωh is called a mesh;

Ωh is the set of interior mesh-points; and

Γh the set boundary mesh-points.

The parameter h = (h1, . . . , hn) measures the ‘fineness’ of the mesh (here
hi denotes the mesh-size in the coordinate direction Oxi ): the smaller
max1≤i≤n hi is, the finer the mesh.
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The second step

Having constructed the mesh, we replace the derivatives in L by divided
differences, and we approximate the boundary condition in a similar
fashion. This yields the finite difference scheme

LhU(x) = fh(x), x ∈ Ωh,

lhU(x) = gh(x), x ∈ Γh,
(4)

where fh and gh are suitable approximations of f and g .
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Now (4) is a system of linear algebraic equations involving the values of U
at the mesh-points, and can be solved by Gaussian elimination or an
iterative method, provided that it has a unique solution.

The sequence
{U(x) : x ∈ Ωh}

is an approximation to
{u(x) : x ∈ Ωh},

the values of the exact solution at the mesh-points.
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There are two fundamental problems to be considered:

the first, and most basic, is the problem of approximation, that is,
whether (4) approximates the boundary-value problem (3) in some
sense, and whether its solution {U(x) : x ∈ Ωh} approximates
{u(x) : x ∈ Ωh}, the values of the exact solution at the mesh-points.

the second oncerns the effective solution of the discrete problem (4)
using techniques from Numerical Linear Algebra.

Here we shall be primarily concerned with the first of these two problems
— the question of approximation — although we shall also briefly consider
the question of iterative solution of systems of linear algebraic equations
by a simple iterative method.
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