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−∆u + cu = f , with f ∈ L2(Ω)

We use the same finite difference mesh as in the case when f ∈ C (Ω), but
we shall modify the right-hand side in the finite difference scheme to cater
for the fact that f need not be a continuous function on Ω.

The idea is to replace f (xi , yj) by a ‘cell-average’ of f :

Tfi ,j :=
1

h2

∫
Ki,j

f (x , y)dx dy ,

where

Ki ,j =

[
xi −

h

2
, xi +

h

2

]
×
[
yj −

h

2
, yj +

h

2

]
.
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Figure: The cell Ki,j surrounding the internal mesh point (xi , yj)
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Existence and uniqueness of a solution

We define our finite difference approximation of the PDE by

−(D+
x D−x Ui ,j + D+

y D−y Ui ,j) + c(xi , yj)Ui ,j = Tfi ,j , for (xi , yj) ∈ Ωh,

U = 0, on Γh.

(1)

As we have not changed the difference operator on the left-hand side, the
argument from Lecture 4 concerning the existence and uniqueness of a
solution still applies, and therefore (1) has a unique solution, U.
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Stability of the finite difference scheme

Theorem

The scheme (1) is stable in the sense that

‖U‖1,h ≤
1

c0
‖Tf ‖h. (2)

Proof. As in the proof of stability in Lecture 4:

c0‖U‖2
1,h ≤ (AU,U)h = (Tf ,U)h

≤ ‖Tf ‖h‖U‖h
≤ ‖Tf ‖h‖U‖1,h,

where the second inequality follows from the Cauchy–Schwarz inequality,
and the third inequality is the consequence of the definition of the discrete
Sobolev norm ‖ · ‖1,h. Hence (2). �
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Convergence

Having established the stability of the scheme (1), we consider the
question of its accuracy.

Let us define the global error, e, as before,

ei ,j = u(xi , yj)− Ui ,j , 0 ≤ i , j ≤ N.

Clearly,

Aei ,j = Au(xi , yj)− AUi ,j

= Au(xi , yj)− Tfi ,j

= −(D+
x D−x u(xi , yj) + D+

y D−y u(xi , yj)) + c(xi , yj)u(xi , yj)

+

(
T

(
∂2u

∂x2

)
(xi , yj) + T

(
∂2u

∂y2

)
(xi , yj)− T (cu)(xi , yj)

)
. (3)
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By noting that

T

(
∂2u

∂x2

)
(xi , yj) =

1

h

∫ yj+h/2

yj−h/2

∂u
∂x (xi + h/2, y)− ∂u

∂x (xi − h/2, y)

h
dy

=
1

h

∫ yj+h/2

yj−h/2
D+
x

∂u

∂x
(xi − h/2, y) dy

= D+
x

[
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y)dy

]
,

and similarly,

T

(
∂2u

∂y2

)
(xi , yj) = D+

y

[
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x , yj − h/2)dx

]
,

the equality (3) can be rewritten as

Ae = D+
x ϕ1 + D+

y ϕ2 + ψ,

where ϕ1, ϕ2 and ψ are defined on the next slide.
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ϕ1(xi , yj) :=
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y) dy − D−x u(xi , yj),

ϕ2(xi , yj) :=
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x , yj − h/2)dx − D−y u(xi , yj),

ψ(xi , yj) := (cu)(xi , yj)− T (cu)(xi , yj).

Thus,

Ae = D+
x ϕ1 + D+

y ϕ2 + ψ in Ωh,

e = 0 on Γh.
(4)

The stability inequality (1) would only imply the (crude) bound

‖e‖1,h ≤
1

c0
‖D+

x ϕ1 + D+
y ϕ2 + ψ‖h,

which makes no use of the special form of the consistency error

ϕ := D+
x ϕ1 + D+

y ϕ2 + ψ.

We shall therefore proceed in a different way.
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As in the proof of the stability inequality (1), we first note that

c0‖e‖2
1,h ≤ (Ae, e)h = (ϕ, e)h

= (D+
x ϕ1, e)h + (D+

y ϕ2, e)h + (ψ, e)h. (5)

But now, using summation by parts, we shall pass the difference operators
D+
x and D+

y from ϕ1 and ϕ2, respectively, onto e, using that e = 0 on Γh.
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Indeed, by recalling that e = 0 on Γh, we have that

(D+
x ϕ1, e)h =

N−1∑
j=1

h

(
N−1∑
i=1

h
ϕ1(xi+1, yj)− ϕ1(xi , yj)

h
ei ,j

)

= −
N−1∑
j=1

h

(
N∑
i=1

hϕ1(xi , yj)
ei ,j − ei−1,j

h

)

= −
N−1∑
j=1

h

(
N∑
i=1

hϕ1(xi , yj)D
−
x ei ,j

)

= −
N∑
i=1

N−1∑
j=1

h2ϕ1(xi , yj)D
−
x ei ,j

≤

 N∑
i=1

N−1∑
j=1

h2|ϕ1(xi , yj)|2
1/2 N∑

i=1

N−1∑
j=1

h2|D−x ei ,j |2
1/2

= ‖ϕ1]|x‖D−x e]|x .
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Thus,

(D+
x ϕ1, e)h ≤ ‖ϕ1]|x‖D−x e]|x . (6)

Similarly,

(D+
y ϕ2, e)h ≤ ‖ϕ2]|y‖D−y e]|y (7)

(see Lecture 3 for the definition of the mesh-dependent norms ‖·]|x , ‖·]|y ).
By the Cauchy–Schwarz inequality we also have that

(ψ, e)h ≤ ‖ψ‖h‖e‖h. (8)

Substitution of the inequalities (6)–(8) into the inequality (5) gives

c0‖e‖2
1,h ≤ ‖ϕ1]|x‖D−x e]|x + ‖ϕ2]|y‖D−y e]|y + ‖ψ‖h‖e‖h

≤
(
‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2

h

)1/2 (‖D−x e]|2x + ‖D−y e]|2y + ‖e‖2
h

)1/2

=
(
‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2

h

)1/2 ‖e‖1,h.

Dividing both sides by ‖e‖1,h yields the following result.
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Lemma

The global error, e, of the finite difference scheme (1) satisfies:

‖e‖1,h ≤
1

c0
(‖ϕ1]|2x + ‖ϕ2]|2y + ‖ψ‖2

h)1/2, (9)

where ϕ1, ϕ2, and ψ are defined by

ϕ1(xi , yj) :=
1

h

∫ yj+h/2

yj−h/2

∂u

∂x
(xi − h/2, y)dy − D−

x u(xi , yj), (10)

for i = 1, . . . ,N, j = 1, . . . ,N − 1;

ϕ2(xi , yj) :=
1

h

∫ xi+h/2

xi−h/2

∂u

∂y
(x , yj − h/2)dx − D−

y u(xi , yj), (11)

for i = 1, . . . ,N − 1, j = 1, . . . ,N; and

ψ(xi , yj) := (cu)(xi , yj)−
1

h2

∫ xi+h/2

xi−h/2

∫ yj+h/2

yj−h/2

(cu)(x , y)dx dy , (12)

for i , j = 1, . . . ,N − 1.
12 / 18



To complete the error analysis, it remains to bound ϕ1, ϕ2 and ψ.

Using Taylor series expansions it is easily seen that

|ϕ1(xi , yj)| ≤
h2

24

(∥∥∥∥ ∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+

∥∥∥∥∂3u

∂x3

∥∥∥∥
C(Ω)

)
, (13)

|ϕ2(xi , yj)| ≤
h2

24

(∥∥∥∥ ∂3u

∂x2∂y

∥∥∥∥
C(Ω)

+

∥∥∥∥∂3u

∂y3

∥∥∥∥
C(Ω)

)
, (14)

|ψ(xi , yj)| ≤
h2

24

(∥∥∥∥∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+

∥∥∥∥∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)
, (15)

and by using these to bound ‖ϕ1]|x , ‖ϕ2]|y and ‖ψ]|h on the right-hand
side of the ineq. (9) we arrive at the following theorem.
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Theorem

Let f ∈ L2(Ω), c ∈ C 2(Ω) with c(x , y) ≥ 0, (x , y) ∈ Ω, and suppose that
the corresponding weak solution of the boundary-value problem belongs to
C 3(Ω); then,

‖u − U‖1,h ≤
5

96
h2M3, (16)

where

M3 =

{(∥∥∥∥ ∂3u

∂x∂y2

∥∥∥∥
C(Ω)

+

∥∥∥∥∂3u

∂x3

∥∥∥∥
C(Ω)

)2

+

(∥∥∥∥ ∂3u

∂x2∂y

∥∥∥∥
C(Ω)

+

∥∥∥∥∂3u

∂y3

∥∥∥∥
C(Ω)

)2

+

(∥∥∥∥∂2(cu)

∂x2

∥∥∥∥
C(Ω)

+

∥∥∥∥∂2(cu)

∂y2

∥∥∥∥
C(Ω)

)2


1/2

.
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Proof. By recalling that 1/c0 = 5/4 and substituting the bounds
(13)–(15) into the right-hand side of the inequality (9), the inequality
(16) immediately follows. �

Comparing (16) with the error bound from Lecture 3, we see that while
the smoothness requirement on the solution has been relaxed from
u ∈ C 4(Ω) to u ∈ C 3(Ω), second-order convergence has been retained.
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Remark

The hypothesis u ∈ C 3(Ω) can be further relaxed by using integral
representations of ϕ1, ϕ2 and ψ instead of Taylor series expansions.

The key idea is to repeatedly use the Newton–Leibniz formula

w(b)− w(a) =

∫ b

a
w ′(x) dx

in conjunction with repeated partial integration. The details of the
calculation are contained in Section 4.1.2 of the Lecture Notes.
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Thus,

‖ϕ1]|2x ≤
h4

32

(∥∥∥∥∂3u

∂x3

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂3u

∂x∂y2

∥∥∥∥2

L2(Ω)

)
. (17)

Analogously,

‖ϕ2]|2y ≤
h4

32

(∥∥∥∥∂3u

∂y3

∥∥∥∥2

L2(Ω)

+

∥∥∥∥ ∂3u

∂x2∂y

∥∥∥∥2

L2(Ω)

)
(18)

and

‖ψ‖2
h ≤

3h4

64

(∥∥∥∥∂2w

∂x2

∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂2w

∂y2

∥∥∥∥2

L2(Ω)

+ 4

∥∥∥∥ ∂2w

∂x∂y

∥∥∥∥2

L2(Ω)

)
. (19)

By substituting the bounds (17)–(19) into the right-hand side of the
inequality (9), noting that 1/c0 = 4/5 and recalling the definition of the
Sobolev norm ‖ · ‖H3(Ω), we obtain the following result.
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and
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)
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By substituting the bounds (17)–(19) into the right-hand side of the
inequality (9), noting that 1/c0 = 4/5 and recalling the definition of the
Sobolev norm ‖ · ‖H3(Ω), we obtain the following result.
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Theorem

Let f ∈ L2(Ω), c ∈ C 2(Ω), with c(x , y) ≥ 0, (x , y) ∈ Ω, and suppose that
the corresponding weak solution of the boundary-value problem belongs to
H3(Ω); then,

‖u − U‖1,h ≤ Ch2‖u‖H3(Ω), (20)

where C is a positive constant (computable from (17)–(19)).

It can be shown that the error estimate (20) is best possible in the sense
that weakening of the assumption that u ∈ H3(Ω) leads to loss of
second-order convergence.

An error bound of this type, where the highest possible order of
convergence has been attained with the weakest assumption on the
smoothness of the solution u is called an optimal error bound.

Thus (20) is an optimal error bound for the difference scheme (1).
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