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Nonaxiparallel domains and nonuniform meshes

When Ω has a curved boundary, a non-uniform mesh has to be used near
∂Ω to avoid loss of accuracy.

To be more precise, let us introduce the
following notation: let hi+1 := xi+1 − xi , hi := xi − xi−1, and let

~i :=
1

2
(hi+1 + hi ).

We define

D+
x Ui : =

Ui+1 − Ui

~i
, D−x Ui :=

Ui − Ui−1

hi
,

D+
x D−x Ui :=

1

~i

(
Ui+1 − Ui

hi+1
− Ui − Ui−1

hi

)
.

Similarly, let kj+1 := yj+1 − yj , kj := yj − yj−1, and let

kj :=
1

2
(kj+1 + kj).
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Let

D+
y Uj :=

Uj+1 − Uj

kj
, D−y Uj :=

Uj − Uj−1

kj
,

D+
y D−y Uj :=

1

kj

(
Uj+1 − Uj

kj+1
−

Uj − Uj−1

kj

)
.

So on a general non-uniform mesh

Ωh := {(xi , yj) : xi+1 − xi = hi , yj+1 − yj = kj},

the Laplace operator, ∆, can be approximated by D+
x D−x + D+

y D−y , with
the difference operators D+

x D−x , D+
y D−y defined above.

Consider, for example, the Dirichlet problem

−∆u = f (x , y) in Ω,

u = 0 on ∂Ω,

where Ω and the non-uniform mesh Ωh are depicted in the next figure.
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• Ωh; � Γh, Ωh = Ωh ∩ Γh.

Non-uniform mesh Ωh.
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The finite difference approximation of this problem is

−(D+
x D−x Ui ,j + D+

y D−y Ui ,j) = f (xi , yj) in Ωh,

Ui ,j = 0 on Γh.

Equivalently,

− 1

~i

(
Ui+1,j − Ui ,j

hi+1
−

Ui ,j − Ui−1,j

hi

)
− 1

kj

(
Ui ,j+1 − Ui ,j

kj+1
−

Ui ,j − Ui ,j−1

kj

)
= f (xi , yj) in Ωh,

Ui ,j = 0 on Γh.
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A typical difference stencil is shown below; clearly we still have a five-point
difference scheme.

u
uu

u

u
(xi , yj−1)

(xi−1, yj) (xi+1, yj)

(xi , yj+1)

(xi , yj)

hi hi+1

kj

kj+1

Figure: Five-point stencil on a non-uniform mesh.

6 / 20



The discrete maximum principle

The maximum principle is a key property of elliptic equations. Under
suitable sign-conditions imposed on the source term and the coefficients of
the differential operator, it (roughly speaking) ensures that the maximum
value of the solution is attained at the boundary of the domain rather than
at an interior point, and if the maximum value of the solution is attained
at an interior point, then the solution must be constant.
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Our objective is to construct a finite difference approximation of the
elliptic boundary-value problem −∆u = f , u|∂Ω = g , and show that a
discrete counterpart of the maximum principle satisfied by the function u
holds for its finite difference approximation U.

For simplicity we shall confine ourselves to the case of two space
dimensions and consider a general nonaxiparallel domain, such as the one
in the figure from slide 4, and a general nonuniform mesh

Ωh := {(xi , yj) : xi+1 − xi = hi , yj+1 − yj = kj}.
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The Laplace operator, ∆, is approximated by D+
x D−x + D+

y D−y , with the
difference operators D+

x D−x , D+
y D−y on a nonuninform mesh.

The
approximation of the Dirichlet problem

−∆u = f in Ω,

u = g on ∂Ω

is then given by

−(D+
x D−x Ui ,j + D+

y D−y Ui ,j) = f (xi , yj) in Ωh,

Ui ,j = g(xi , yj) on Γh.
(1)

Equivalently,

− 1

~i

(
Ui+1,j − Ui,j

hi+1
− Ui,j − Ui−1,j

hi

)
− 1

kj

(
Ui,j+1 − Ui,j

kj+1
− Ui,j − Ui,j−1

kj

)
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Suppose (for contradiction) that f (xi , yj) < 0 for all (xi , yj) ∈ Ωh and that
the maximum value of U is attained at a point (xi0 , yj0) ∈ Ωh.

Clearly,(
1

~i

(
1

hi+1
+

1

hi

)
+

1

kj

(
1

kj+1
+

1

kj

))
Ui ,j

=
Ui+1,j

~i hi+1
+

Ui−1,j

~i hi
+

Ui ,j+1

kj kj+1
+

Ui ,j−1

kj kj
+ f (xi , yj)

for any (xi , yj) ∈ Ωh. Therefore, because Ui0±1,j0 ≤ Ui0,j0 and
Ui0,j0±1 ≤ Ui0,j0 , and f (xi0 , yj0) < 0, it follows that(

1

~i0

(
1

hi0+1
+

1

hi0

)
+

1

kj0

(
1

kj0+1
+

1

kj0

))
Ui0j0

<
Ui0j0

~i0 hi0+1
+

Ui0j0

~i0 hi0
+

Ui0j0

kj0 kj0+1
+

Ui0j0

kj0 kj0
.
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Note, however, that the expressions on the two sides of this (strict!)
inequality are equal, which means that we have run into a contradiction.

Thus we have shown that if f (xi , yj) < 0 for all (xi , yj) ∈ Ωh then the
maximum value of U is attained on the boundary Γh of Ωh, which
completes the proof of the discrete maximum principle in this case:

max(xi ,yj )∈Γh
Ui ,j = max(xi ,yj )∈Ωh

Ui ,j .
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Now suppose that f (xi , yj) ≤ 0 for all (xi , yj) ∈ Ωh.

Let ε > 0 and define

Vi ,j := Ui ,j +
ε

4
(x2

i + y2
j ) for (xi , yj) ∈ Ωh.

Hence,

−(D+
x D−x Vi ,j + D+

y D−y Vi ,j) = −(D+
x D−x Ui ,j + D+

y D−y Ui ,j)− ε

= f (xi , yj)− ε < 0 in Ωh,

which implies that the maximum of V is attained on Γh. Thus,

max
(xi ,yj )∈Γh

Ui ,j = max
(xi ,yj )∈Γh

[
Vi ,j −

ε

4
(x2

i + y2
j )
]

≥ max
(x ,y)∈Γh

Vi ,j −
ε

4
max

(xi ,yj )∈Γh

(x2
i + y2

j )

= max
(xi ,yj )∈Ωh

Vi ,j −
ε

4
max

(xi ,yj )∈Γh

(x2
i + y2

j ).
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As, by definition, Vi ,j ≥ Ui ,j for (xi , yj) ∈ Ωh, it follows that

max
(xi ,yj )∈Γh

Ui ,j ≥ max
(xi ,yj )∈Ωh

Ui ,j −
ε

4
max

(xi ,yj )∈Γh

(x2
i + y2

j ) ∀ ε > 0.

By passing to the limit ε→ 0+ it then follows that

max
(xi ,yj )∈Γh

Ui ,j ≥ max
(xi ,yj )∈Ωh

Ui ,j .

As Γh ⊂ Ωh, trivially max(xi ,yj )∈Ωh
Ui ,j ≥ max(xi ,yj )∈Γh

Ui ,j , and therefore

we have shown that if f (xi , yj) ≤ 0 for all (xi , yj) ∈ Ωh, then the discrete
maximum principle holds:

max(xi ,yj )∈Γh
Ui ,j = max(xi ,yj )∈Ωh

Ui ,j .
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Analogously, if f (xi , yj) ≥ 0 for all (xi , yj) ∈ Ωh, then a discrete minimum
principle holds:

min(xi ,yj )∈Γh
Ui ,j = min(xi ,yj )∈Ωh

Ui ,j .

Our objective is now to use the discrete maximum/minimum principle to
prove the stability of the finite difference scheme (1) with respect to
perturbations in the boundary data.
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Stability in the discrete maximum norm

We shall first prove the existence and uniqueness of a solution to (1).

Lemma

The finite difference scheme (1) has a unique solution.

Proof. The finite difference scheme (1) has a unique solution if, and
only if, its homogeneous counterpart (i.e. when we have a zero right-hand
side and zero boundary datum) has the trivial solution as its unique
solution. Let us therefore consider

−(D+
x D−x Ui ,j + D+

y D−y Ui ,j) = 0 in Ωh,

Ui ,j = 0 on Γh.
(2)
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The existence of a solution to (2) is obvious: the mesh-function U, with
Ui ,j = 0 for all (xi , yj) ∈ Ωh is clearly a solution. We shall now show that
this is the only solution to (2).

According to the discrete maximum principle, for any solution U of the
finite difference scheme (2),

0 = max
(xi ,yj )∈Ωh

Ui ,j ,

while according to the discrete minimum principle

0 = min
(xi ,yj )∈Ωh

Ui ,j .

Therefore the only solution is the trivial solution. This then implies the
existence of a unique solution to (1). �

16 / 20



The existence of a solution to (2) is obvious: the mesh-function U, with
Ui ,j = 0 for all (xi , yj) ∈ Ωh is clearly a solution. We shall now show that
this is the only solution to (2).

According to the discrete maximum principle, for any solution U of the
finite difference scheme (2),

0 = max
(xi ,yj )∈Ωh

Ui ,j ,

while according to the discrete minimum principle

0 = min
(xi ,yj )∈Ωh

Ui ,j .

Therefore the only solution is the trivial solution. This then implies the
existence of a unique solution to (1). �

16 / 20



The existence of a solution to (2) is obvious: the mesh-function U, with
Ui ,j = 0 for all (xi , yj) ∈ Ωh is clearly a solution. We shall now show that
this is the only solution to (2).

According to the discrete maximum principle, for any solution U of the
finite difference scheme (2),

0 = max
(xi ,yj )∈Ωh

Ui ,j ,

while according to the discrete minimum principle

0 = min
(xi ,yj )∈Ωh

Ui ,j .

Therefore the only solution is the trivial solution. This then implies the
existence of a unique solution to (1). �

16 / 20



We are now ready to embark on the analysis of the stability of the scheme
(1) with respect to perturbations in the boundary data.

Consider the mesh functions U(1) and U(2), which satisfy, respectively:

−(D+
x D−x U

(1)
i ,j + D+

y D−y U
(1)
i ,j ) = f (xi , yj) in Ωh,

U
(1)
i ,j = g (1)(xi , yj) on Γh

(3)

and

−(D+
x D−x U

(2)
i ,j + D+

y D−y U
(2)
i ,j ) = f (xi , yj) in Ωh,

U
(2)
i ,j = g (2)(xi , yj) on Γh

(4)

for given boundary data g (1) and g (2).

Let
U := U(1) − U(2) and g := g (1) − g (2).
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Then, by subtracting (4) from (3) we find that U solves

−(D+
x D−x Ui ,j + D+

y D−y Ui ,j) = 0 in Ωh,

Ui ,j = g(xi , yj) on Γh.
(5)

By the discrete maximum principle we have from (5) that

max
(xi ,yj )∈Ωh

Ui ,j = max
(xi ,yj )∈Γh

Ui ,j = max
(xi ,yj )∈Γh

g(xi , yj) ≤ max
(xi ,yj )∈Γh

|g(xi , yj)|.

In other words, for all (xi , yj) ∈ Ωh,

Ui ,j ≤ max
(xi ,yj )∈Γh

|g(xi , yj)|. (6)
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It follows from (5) that −U solves

−(D+
x D−x (−U)i ,j + D+

y D−y (−U)i ,j) = 0 in Ωh,

(−U)i ,j = −g(xi , yj) on Γh,
(7)

where (−U)i ,j := −Ui ,j .

Hence, also,

− Ui ,j = (−U)i ,j ≤ max
(xi ,yj )∈Γh

| − g(xi , yj)| = max
(xi ,yj )∈Γh

|g(xi , yj)| (8)

for all (xi , yj) ∈ Ωh. By combining (6) and (8) we have the inequality

|Ui ,j | ≤ max
(xi ,yj )∈Γh

|g(xi , yj)|

for all (xi , yj) ∈ Ωh. Hence,

max
(xi ,yj )∈Ωh

|Ui ,j | ≤ max
(xi ,yj )∈Γh

|g(xi , yj)|.
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By recalling the definitions of U and g , we have thereby shown that

max
(xi ,yj )∈Ωh

|U(1)
i ,j − U

(2)
i ,j | ≤ max

(xi ,yj )∈Γh

|g (1)(xi , yj)− g (2)(xi , yj)|. (9)

The inequality (9) expresses continuous dependence of the solution U to
the finite difference scheme with respect to the boundary data g : it
ensures that small perturbations in the boundary data result in small
perturbations in the associated solution, a property that is referred to as
stability of the solution with respect to perturbations in the boundary data
(in the discrete maximum norm, in this case).
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