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lterative solution of linear systems

We shall develop a simple iterative method for the approximate solution of
systems of linear algebraic equations of the form

AU = F,

where A € RMXM g 4 symmetric matrix with positive eigenvalues, which
are contained in a nonempty closed interval [, (], with 0 < a < 3,
U € RM is the vector of unknowns and F € RM is a given vector.



To this end, we consider the following iteration for the approximate
solution of the linear system AU = F:

it .= yb) — 7(AUY) — F),  j=0,1,..., (1)

where U(©) € RM is a given initial guess, and 7 > 0 is a parameter to be
chosen so as to ensure that the sequence of iterates {U(J)}fio C RM

converges to U € RM as j — oo.

We shall explore the speed of convergence of this ‘linear stationary
iterative method’, called the Richardson iteration?.

!Lewis Fry Richardson, FRS (11 October 1881 — 30 September 1953).



We begin by observing that U = U — 7(AU — F). Therefore, upon
subtraction of (1) from this equality we find that, for j =0,1,...,

U— UVt =y - uY) — AU — UV = (1 — 7A)(U — UV,

RI\/IXI\/I

where | € is the identity matrix. Consequently,

U—UYD = —7AY(U-UQ),  j=12....



Recall that if || - || is a(ny) norm on RM, then the induced matrix norm is
defined, for a matrix B € RM*xM by

BVl

1Bl = :
verm oy IV

Thanks to this definition, |[BV|| < ||B]|||V|| for all V € RM, and hence, by
induction ||B/V| < ||B|F||V]| for all j =1,2..., and all V € RM.
Therefore, with B:=/ —-7Aand V .= U — U(o), we have that

1U—= U9 = [(1 = 7AY(U = U < ||l = rAP U = U9 (3)



To bound ||/ — TA||, we need a few tools from linear algebra.

(1) First, note that RM is a finite-dimensional linear space, and in a finite-
dimensional linear spaces all norms are equivalent.? Thus, if the sequence
{U(f)}j’io converges to U in one particular norm on RM, it will also

converge to U in any other norm on RM. For simplicity, we shall therefore

assume that the norm || - || on RM is the Euclidean norm:
1/2
|V = Zv2 , V=(W,... vyt er"
?Suppose that V is a linear space and || - ||1 and || - ||> are two norms on V; then | - |1
and || - ||2 are said to be equivalent if there exist positive constants C; and G, such that

C1||VH1 < ||VH2 < C2||V||1 forall V € V.
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(2) A symmetric matrix B € RM*M has real eigenvalues, and the
associated set of orthonormal eigenvectors spans the whole of RM.

Denoting by {e;}, the (orthonormal) eigenvectors of B and by \;,
i=1,..., M, the corresponding eigenvalues, for any vector

V=a1e1+ -+ ayewm,

expanded in terms of the eigenvectors of B, thanks to orthonormality, the
Euclidean norms of V and BV can be expressed, respectively, as follows:

Iy 1/2 Iy 1/2
VI = (Z a?) and [[BV| = <Z 04%?) :
i=1

i=1

Clearly, |BV|| < maxj=1...m|\i| [|V] for all V € RM, and the inequality
becomes an equality if V' is the eigenvector of B associated with the
largest in absolute value eigenvalue of B. Therefore,

20ty

B| = Aj
18] = max [\

where now || - || is the matrix norm induced by the Euclidean norm.



We now return to (3) to find that ||/ — 7A|| on the r.h.s. of (3), where
|| - || denotes the matrix norm induced by the Euclidean norm, is equal to
the largest in absolute value eigenvalue of the symmetric matrix [ — TA.

As the eigenvalues of A are assumed to belong to the interval [« 5], where
0 < a < B, and the parameter 7 is by assumption positive, the eigenvalues
of | — TA are contained in the interval [1 — 73,1 — 7a|, whereby

Il — TA|| < max{|1 —74|,|1 — Tal}.

As 7 > 0 is a free parameter, we need to choose it so that the iterative
method (1) converges as fast as possible. We see from (3) that it is
therefore desirable to choose 7 so that ||/ — TA|| is as small as possible,
and less than 1.

We shall therefore seek 7 > 0 s.t.

2
a+ B

mig max{|l — 76|,|1 — Ta|} < 1. Thus: 7=
T>



In summary then, the iterative method proposed for the approximate
solution of the linear system AU = F is the one stated in (1), with

T = a+ﬂ and [a, ] being a closed subinterval of (0, c0) that contains all

eigenvalues of the symmetric matrix A € RM*M,



Example 1

Consider the boundary-value problem

—u"(x) + cu(x) = f(x), x € (0,1),
u(0)=0, wu(l)=0

9

where ¢ > 0 and f € C([0,1]). The finite difference approximation of this
boundary-value problem on the mesh {x; : i =0,..., N} of uniform
spacing h=1/N, with N > 2, and x; = ih, i =0,..., N, is given by

Uig1 —2U; + Uiq )
— 12 +clU="f(x), i=1,...,N—1, ()
Up=0, Uy=0.

In terms of matrix notation this can be rewritten as the linear system:
AU=F (5)

where A is an (N — 1) x (N — 1) symmetric tridiagonal matrix,
U= (Ul7 ey UNfl)T, and F = (f(Xl), ey f(XNfl))T.



We need to explore the associated eigenvalue problem AU = AU:

% +c —# O U1
wowte Uz
. . : = A
L 0 k Are] LU
We will show that the eigenvalues of A are
4 kmh
A :c+ﬁsin2%, k=1,2,...,N—1
and the corresponding eigenvectors are, respectively,
(UK(x1),..., UK(xn-1))E, k=1,...,N—1,
where
UK(x) :=sin(knx), x € {x0,x1,...,xn}, k=12,




The algebraic eigenvalue problem AU = AU is simply a restatement, on
the mesh {x; : i =0,..., N} of uniform spacing h=1/N, with N > 2,
and x; = ih, i =0,..., N, of the finite difference eigenvalue problem:

U =2Uit Ui g ap io1 N1

h2
Up=0, Uy=0.

A simple calculation yields the nontrivial solution: U; := Uk(x;), where

4 kmh
UK(x) :=sin(knx), x € {x0,x1,...,xy} and A, :=c+ ﬁsin2 %

for k=1,2,...,N —1.

12 / 19



This can be verified by inserting

U, = Uk(x,-) =sin(krx;) and Uiz = Uk(x,-il) = sin(kmxj+1)
into the finite difference scheme and noting that
sin(kmx;j+1) = sin(kmw(x; £ h)) = sin(kmx;) cos(kmh) 4 cos(kmx;) sin(kmh)

and K
1 — cos(kmh) = 2sin? %

fork=1,2,...,N—landi=12...,N—1.
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Clearly,

4
c—i—8§/\kgc+ﬁ forall k=1,2,...,N—1.

The first of these inequalities follows by noting that

4 h
/\k2/\1:c+ﬁsin2% fork=1,...,N—1

and sin x > %x for x € [0, 2] (recall that h € [0, 3] because N > 2,
whereby 0 < %h <)

The second inequality is the consequence of 0 < sin®x < 1 for all x € R.
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Example 2

Now consider the elliptic boundary-value problem

—Au+cu="f(x,y) in Q,
u=20 on [ :=0Q,

where ¢ > 0 is a real number and f € C(£), whose finite difference
approximation posed on a uniform mesh {(x;,y;) : i,j=0,..., N} of
spacing h=1/N, N > 2, in the x and y directions, is

Ui —2Uij+ Uiy Uijpr =20, + Ujja

h2 - h2 +CUf,j:f(Xf’yj)’ i7j:17"'7N717
U,=0 for (xi,y;) € Th,
(6)

where, [ is the set of all mesh-points on . This, too, can be rewritten as
a system of linear algebraic equations of the form AU = F, where now A is
a symmetric (N — 1)? x (N — 1)? matrix with positive eigenvalues, Ag m,
kkm=1,...,N—1.

15 / 19



The eigenvalue problem AU = AU is simply a restatement of the finite
difference eigenvalue problem:

Uiy —2Uij+ Uiz Uijyn —2Uij + Uij
h2 h?

+cUij =AU, ihj=1,...,N—1,

U,;=0 for (xi,y;) € T,

where, 'y, is the set of all mesh-points on I' = 0€2. Here, A is a symmetric
(N —1)? x (N — 1)? matrix with positive eigenvalues

4 kmh h
/\k,m:c+hz<sin2 72T + sin? m; ),

with ¢ +16 <Ay < c + %, and eigenvectors/(discrete) eigenfunctions

Uij = U™ (x;,y), fori,j=1,...,N—1and k,m=1,...,N — 1, where

Uk™(x,y) = sin(knx) sin(mxy).
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Note

In the case of the finite difference scheme (4), a = ¢ +8 and 8 = ¢ + 75,
while in the case of (6), « = c+ 16 and 8 = c + 2. In both cases

b —«

o 1 — Const. h* € (0, 1);

thus, while the sequence of iterates {U(f)}j’io defined by the iterative
method (1) is guaranteed to converge to the solution U of the linear
system AU = F for each fixed h > 0, the right-hand side in the inequality

ju- 00y < (422 ju - voy )

signals that deterioration of the speed of convergence may occur as h — 0.




An alternative, computable bound on the iteration error

By multiplying (2) by the matrix A and recalling that AU = F, one has
F — AUUHYD = (] — 7A)(F — AUY)),
and therefore, by proceeding as above,

08—«
B+«

) ) J
HF—AU(”Hsn/—rAufrF—Au(O)ng( )HF—Au“’)r. (8)

As « and 3 are available (in the case of the simple boundary-value
problems considered here, at least) as are F, A and the initial guess U(®),
it is possible to quantify the number of iterations required to ensure that
the Euclidean norm of the so-called residual F — AUY) of the j-th iterate
becomes smaller than a chosen tolerance TOL > 0.
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A sufficient condition for this is that the right-hand side of (8) is smaller
than TOL, which will hold as soon as

. |F — AUO)|| B+a\]t
log ——— || — .
J > log ——— 8 e (9)
In the case of the two boundary-value problems considered above,
f-a =1 — Const.h?
B+«

and therefore (because log(1 — Const.h?) ~ —Const.h? as h — 0) the
right-hand side of the inequality (9) is ~ Const. h~2log(1/TOL).

We see in particular that the smaller the value of the mesh-size h the
larger the number of iterations j will need to be to ensure that

|F — AUY)|| < TOL.



