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Iterative solution of linear systems

We shall develop a simple iterative method for the approximate solution of
systems of linear algebraic equations of the form

AU = F ,

where A ∈ RM×M is a symmetric matrix with positive eigenvalues, which
are contained in a nonempty closed interval [α, β], with 0 < α < β,
U ∈ RM is the vector of unknowns and F ∈ RM is a given vector.
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To this end, we consider the following iteration for the approximate
solution of the linear system AU = F :

U(j+1) := U(j) − τ(AU(j) − F ), j = 0, 1, . . . , (1)

where U(0) ∈ RM is a given initial guess, and τ > 0 is a parameter to be
chosen so as to ensure that the sequence of iterates {U(j)}∞j=0 ⊂ RM

converges to U ∈ RM as j →∞.

We shall explore the speed of convergence of this ‘linear stationary
iterative method’, called the Richardson iteration1.

1Lewis Fry Richardson, FRS (11 October 1881 – 30 September 1953).
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We begin by observing that U = U − τ(AU − F ). Therefore, upon
subtraction of (1) from this equality we find that, for j = 0, 1, . . . ,

U − U(j+1) = U − U(j) − τA(U − U(j)) = (I − τA)(U − U(j)), (2)

where I ∈ RM×M is the identity matrix. Consequently,

U − U(j) = (I − τA)j(U − U(0)), j = 1, 2, . . . .
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Recall that if ‖ · ‖ is a(ny) norm on RM , then the induced matrix norm is
defined, for a matrix B ∈ RM×M , by

‖B‖ := sup
V∈RM\{0}

‖BV ‖
‖V ‖

.

Thanks to this definition, ‖BV ‖ ≤ ‖B‖‖V ‖ for all V ∈ RM , and hence, by
induction ‖B jV ‖ ≤ ‖B‖j‖V ‖ for all j = 1, 2 . . ., and all V ∈ RM .

Therefore, with B := I − τA and V := U − U(0), we have that

‖U − U(j)‖ = ‖(I − τA)j(U − U(0))‖ ≤ ‖I − τA‖j‖U − U(0)‖. (3)
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To bound ‖I − τA‖, we need a few tools from linear algebra.

(1) First, note that RM is a finite-dimensional linear space, and in a finite-
dimensional linear spaces all norms are equivalent.2 Thus, if the sequence
{U(j)}∞j=0 converges to U in one particular norm on RM , it will also

converge to U in any other norm on RM . For simplicity, we shall therefore
assume that the norm ‖ · ‖ on RM is the Euclidean norm:

‖V ‖ :=

(
M∑
i=1

V 2
i

)1/2

, V = (V1, . . . ,VM)T ∈ RM .

2Suppose that V is a linear space and ‖ · ‖1 and ‖ · ‖2 are two norms on V; then ‖ · ‖1

and ‖ · ‖2 are said to be equivalent if there exist positive constants C1 and C2 such that
C1‖V ‖1 ≤ ‖V ‖2 ≤ C2‖V ‖1 for all V ∈ V.
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(2) A symmetric matrix B ∈ RM×M has real eigenvalues, and the
associated set of orthonormal eigenvectors spans the whole of RM .

Denoting by {ei}Mi=1 the (orthonormal) eigenvectors of B and by λi ,
i = 1, . . . ,M, the corresponding eigenvalues, for any vector

V = α1e1 + · · ·+ αMeM ,

expanded in terms of the eigenvectors of B, thanks to orthonormality, the
Euclidean norms of V and BV can be expressed, respectively, as follows:

‖V ‖ =

(
M∑
i=1

α2
i

)1/2

and ‖BV ‖ =

(
M∑
i=1

α2
i λ

2
i

)1/2

.

Clearly, ‖BV ‖ ≤ maxi=1,...,M |λi | ‖V ‖ for all V ∈ RM , and the inequality
becomes an equality if V is the eigenvector of B associated with the
largest in absolute value eigenvalue of B. Therefore,

‖B‖ = max
i=1,...,M

|λi |,

where now ‖ · ‖ is the matrix norm induced by the Euclidean norm.
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We now return to (3) to find that ‖I − τA‖ on the r.h.s. of (3), where
‖ · ‖ denotes the matrix norm induced by the Euclidean norm, is equal to
the largest in absolute value eigenvalue of the symmetric matrix I − τA.

As the eigenvalues of A are assumed to belong to the interval [α, β], where
0 < α < β, and the parameter τ is by assumption positive, the eigenvalues
of I − τA are contained in the interval [1− τβ, 1− τα], whereby

‖I − τA‖ ≤ max{|1− τβ|, |1− τα|}.

As τ > 0 is a free parameter, we need to choose it so that the iterative
method (1) converges as fast as possible. We see from (3) that it is
therefore desirable to choose τ so that ‖I − τA‖ is as small as possible,
and less than 1.

We shall therefore seek τ > 0 s.t.

min
τ>0

max{|1− τβ|, |1− τα|} < 1. Thus: τ =
2

α + β
.
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In summary then, the iterative method proposed for the approximate
solution of the linear system AU = F is the one stated in (1), with
τ := 2

α+β , and [α, β] being a closed subinterval of (0,∞) that contains all

eigenvalues of the symmetric matrix A ∈ RM×M .
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Example 1
Consider the boundary-value problem

−u′′(x) + c u(x) = f (x), x ∈ (0, 1),

u(0) = 0, u(1) = 0,

where c ≥ 0 and f ∈ C ([0, 1]). The finite difference approximation of this
boundary-value problem on the mesh {xi : i = 0, . . . ,N} of uniform
spacing h = 1/N, with N ≥ 2, and xi = ih, i = 0, . . . ,N, is given by

−Ui+1 − 2Ui + Ui−1

h2
+ c Ui = f (xi ), i = 1, . . . ,N − 1,

U0 = 0, UN = 0.
(4)

In terms of matrix notation this can be rewritten as the linear system:

AU = F (5)

where A is an (N − 1)× (N − 1) symmetric tridiagonal matrix,
U = (U1, . . . ,UN−1)T, and F = (f (x1), . . . , f (xN−1))T.
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We need to explore the associated eigenvalue problem AU = ΛU:

2
h2 + c − 1

h2 0
− 1

h2
2
h2 + c − 1

h2

. . .
. . .

. . .

− 1
h2

2
h2 + c − 1

h2

0 − 1
h2

2
h2 + c




U1

U2
...

UN−2

UN−1

 = Λ


U1

U2
...

UN−2

UN−1

 .

We will show that the eigenvalues of A are

Λk = c +
4

h2
sin2 kπh

2
, k = 1, 2, . . . ,N − 1

and the corresponding eigenvectors are, respectively,

(Uk(x1), . . . ,Uk(xN−1))T, k = 1, . . . ,N − 1,

where

Uk(x) := sin(kπx), x ∈ {x0, x1, . . . , xN}, k = 1, 2, . . . ,N − 1.

11 / 19



The algebraic eigenvalue problem AU = ΛU is simply a restatement, on
the mesh {xi : i = 0, . . . ,N} of uniform spacing h = 1/N, with N ≥ 2,
and xi = ih, i = 0, . . . ,N, of the finite difference eigenvalue problem:

−Ui+1 − 2Ui + Ui−1

h2
+ c Ui = ΛUi , i = 1, . . . ,N − 1,

U0 = 0, UN = 0.

A simple calculation yields the nontrivial solution: Ui := Uk(xi ), where

Uk(x) := sin(kπx), x ∈ {x0, x1, . . . , xN} and Λk := c +
4

h2
sin2 kπh

2

for k = 1, 2, . . . ,N − 1.
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This can be verified by inserting

Ui = Uk(xi ) = sin(kπxi ) and Ui±1 = Uk(xi±1) = sin(kπxi±1)

into the finite difference scheme and noting that

sin(kπxi±1) = sin(kπ(xi ± h)) = sin(kπxi ) cos(kπh)± cos(kπxi ) sin(kπh)

and

1− cos(kπh) = 2 sin2 kπh

2

for k = 1, 2, . . . ,N − 1 and i = 1, 2, . . . ,N − 1.
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Clearly,

c + 8 ≤ Λk ≤ c +
4

h2
for all k = 1, 2, . . . ,N − 1.

The first of these inequalities follows by noting that

Λk ≥ Λ1 = c +
4

h2
sin2 πh

2
for k = 1, . . . ,N − 1

and sin x ≥ 2
√

2
π x for x ∈ [0, π4 ] (recall that h ∈ [0, 1

2 ] because N ≥ 2,

whereby 0 < πh
2 ≤

π
4 ).

The second inequality is the consequence of 0 ≤ sin2 x ≤ 1 for all x ∈ R.
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Example 2

Now consider the elliptic boundary-value problem

−∆u + cu = f (x , y) in Ω,

u = 0 on Γ := ∂Ω,

where c ≥ 0 is a real number and f ∈ C (Ω), whose finite difference
approximation posed on a uniform mesh {(xi , yj) : i , j = 0, . . . ,N} of
spacing h = 1/N, N ≥ 2, in the x and y directions, is

−
Ui+1,j − 2Ui,j + Ui−1,j

h2
−

Ui,j+1 − 2Ui,j + Ui,j−1

h2
+ c Ui,j = f (xi , yj ), i , j = 1, . . . ,N − 1,

Ui,j = 0 for (xi , yj ) ∈ Γh,

(6)

where, Γh is the set of all mesh-points on Γ. This, too, can be rewritten as
a system of linear algebraic equations of the form AU = F , where now A is
a symmetric (N − 1)2 × (N − 1)2 matrix with positive eigenvalues, Λk,m,
k ,m = 1, . . . ,N − 1.
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The eigenvalue problem AU = ΛU is simply a restatement of the finite
difference eigenvalue problem:

−Ui+1,j − 2Ui,j + Ui−1,j

h2
− Ui,j+1 − 2Ui,j + Ui,j−1

h2
+ c Ui,j = ΛUi,j , i , j = 1, . . . ,N − 1,

Ui,j = 0 for (xi , yj) ∈ Γh,

where, Γh is the set of all mesh-points on Γ = ∂Ω. Here, A is a symmetric
(N − 1)2 × (N − 1)2 matrix with positive eigenvalues

Λk,m = c +
4

h2

(
sin2 kπh

2
+ sin2 mπh

2

)
,

with c + 16 ≤ Λk,m ≤ c + 8
h2 , and eigenvectors/(discrete) eigenfunctions

Ui ,j = Uk,m(xi , yj), for i , j = 1, . . . ,N − 1 and k ,m = 1, . . . ,N − 1, where

Uk,m(x , y) = sin(kπx) sin(mπy).
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Note

In the case of the finite difference scheme (4), α = c + 8 and β = c + 4
h2 ,

while in the case of (6), α = c + 16 and β = c + 8
h2 . In both cases

β − α
β + α

= 1− Const. h2 ∈ (0, 1);

thus, while the sequence of iterates {U(j)}∞j=0 defined by the iterative
method (1) is guaranteed to converge to the solution U of the linear
system AU = F for each fixed h > 0, the right-hand side in the inequality

‖U − U(j)‖ ≤
(
β − α
β + α

)j

‖U − U(0)‖ (7)

signals that deterioration of the speed of convergence may occur as h→ 0.
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An alternative, computable bound on the iteration error

By multiplying (2) by the matrix A and recalling that AU = F , one has

F − AU(j+1) = (I − τA)(F − AU(j)),

and therefore, by proceeding as above,

‖F − AU(j)‖ ≤ ‖I − τA‖j‖F − AU(0)‖ ≤
(
β − α
β + α

)j

‖F − AU(0)‖. (8)

As α and β are available (in the case of the simple boundary-value
problems considered here, at least) as are F , A and the initial guess U(0),
it is possible to quantify the number of iterations required to ensure that
the Euclidean norm of the so-called residual F − AU(j) of the j-th iterate
becomes smaller than a chosen tolerance TOL > 0.
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A sufficient condition for this is that the right-hand side of (8) is smaller
than TOL, which will hold as soon as

j > log
‖F − AU(0)‖

TOL

[
log

(
β + α

β − α

)]−1

. (9)

In the case of the two boundary-value problems considered above,

β − α
β + α

= 1− Const.h2

and therefore (because log(1− Const.h2) ∼ −Const.h2 as h→ 0) the
right-hand side of the inequality (9) is ∼ Const. h−2 log(1/TOL).

We see in particular that the smaller the value of the mesh-size h the
larger the number of iterations j will need to be to ensure that

‖F − AU(j)‖ < TOL.

19 / 19


