Numerical Solution of Partial Differential Equations

Endre Süli

Mathematical Institute
University of Oxford 2022

Lecture 7

Iterative solution of linear systems

We shall develop a simple iterative method for the approximate solution of systems of linear algebraic equations of the form

$$
A U=F
$$

where $A \in \mathbb{R}^{M \times M}$ is a symmetric matrix with positive eigenvalues, which are contained in a nonempty closed interval $[\alpha, \beta]$, with $0<\alpha<\beta$, $U \in \mathbb{R}^{M}$ is the vector of unknowns and $F \in \mathbb{R}^{M}$ is a given vector.

To this end, we consider the following iteration for the approximate solution of the linear system $A U=F$:

$$
\begin{equation*}
U^{(j+1)}:=U^{(j)}-\tau\left(A U^{(j)}-F\right), \quad j=0,1, \ldots \tag{1}
\end{equation*}
$$

where $U^{(0)} \in \mathbb{R}^{M}$ is a given initial guess, and $\tau>0$ is a parameter to be chosen so as to ensure that the sequence of iterates $\left\{U^{(j)}\right\}_{j=0}^{\infty} \subset \mathbb{R}^{M}$ converges to $U \in \mathbb{R}^{M}$ as $j \rightarrow \infty$.

We shall explore the speed of convergence of this 'linear stationary iterative method', called the Richardson iteration ${ }^{1}$.

[^0]We begin by observing that $U=U-\tau(A U-F)$. Therefore, upon subtraction of (1) from this equality we find that, for $j=0,1, \ldots$,

$$
\begin{equation*}
U-U^{(j+1)}=U-U^{(j)}-\tau A\left(U-U^{(j)}\right)=(I-\tau A)\left(U-U^{(j)}\right) \tag{2}
\end{equation*}
$$

where $I \in \mathbb{R}^{M \times M}$ is the identity matrix. Consequently,

$$
U-U^{(j)}=(I-\tau A)^{j}\left(U-U^{(0)}\right), \quad j=1,2, \ldots
$$

Recall that if $\|\cdot\|$ is a(ny) norm on \mathbb{R}^{M}, then the induced matrix norm is defined, for a matrix $B \in \mathbb{R}^{M \times M}$, by

$$
\|B\|:=\sup _{V \in \mathbb{R}^{M} \backslash\{0\}} \frac{\|B V\|}{\|V\|} .
$$

Thanks to this definition, $\|B V\| \leq\|B\|\|V\|$ for all $V \in \mathbb{R}^{M}$, and hence, by induction $\left\|B^{j} V\right\| \leq\|B\|^{j}\|V\|$ for all $j=1,2 \ldots$, and all $V \in \mathbb{R}^{M}$.

Therefore, with $B:=I-\tau A$ and $V:=U-U^{(0)}$, we have that

$$
\begin{equation*}
\left\|U-U^{(j)}\right\|=\left\|(I-\tau A)^{j}\left(U-U^{(0)}\right)\right\| \leq\|I-\tau A\|^{j}\left\|U-U^{(0)}\right\| \tag{3}
\end{equation*}
$$

To bound $\|I-\tau A\|$, we need a few tools from linear algebra.
(1) First, note that \mathbb{R}^{M} is a finite-dimensional linear space, and in a finitedimensional linear spaces all norms are equivalent. ${ }^{2}$ Thus, if the sequence $\left\{U^{(j)}\right\}_{j=0}^{\infty}$ converges to U in one particular norm on \mathbb{R}^{M}, it will also converge to U in any other norm on \mathbb{R}^{M}. For simplicity, we shall therefore assume that the norm $\|\cdot\|$ on \mathbb{R}^{M} is the Euclidean norm:

$$
\|V\|:=\left(\sum_{i=1}^{M} V_{i}^{2}\right)^{1 / 2}, \quad V=\left(V_{1}, \ldots, V_{M}\right)^{\mathrm{T}} \in \mathbb{R}^{M}
$$

[^1](2) A symmetric matrix $B \in \mathbb{R}^{M \times M}$ has real eigenvalues, and the associated set of orthonormal eigenvectors spans the whole of \mathbb{R}^{M}.
Denoting by $\left\{e_{i}\right\}_{i=1}^{M}$ the (orthonormal) eigenvectors of B and by λ_{i}, $i=1, \ldots, M$, the corresponding eigenvalues, for any vector
$$
V=\alpha_{1} e_{1}+\cdots+\alpha_{M} e_{M},
$$
expanded in terms of the eigenvectors of B, thanks to orthonormality, the Euclidean norms of V and $B V$ can be expressed, respectively, as follows:
$$
\|V\|=\left(\sum_{i=1}^{M} \alpha_{i}^{2}\right)^{1 / 2} \quad \text { and } \quad\|B V\|=\left(\sum_{i=1}^{M} \alpha_{i}^{2} \lambda_{i}^{2}\right)^{1 / 2}
$$

Clearly, $\|B V\| \leq \max _{i=1, \ldots, M}\left|\lambda_{i}\right|\|V\|$ for all $V \in \mathbb{R}^{M}$, and the inequality becomes an equality if V is the eigenvector of B associated with the largest in absolute value eigenvalue of B. Therefore,

$$
\|B\|=\max _{i=1, \ldots, M}\left|\lambda_{i}\right|
$$

where now $\|\cdot\|$ is the matrix norm induced by the Euclidean norm.

We now return to (3) to find that $\|I-\tau A\|$ on the r.h.s. of (3), where $\|\cdot\|$ denotes the matrix norm induced by the Euclidean norm, is equal to the largest in absolute value eigenvalue of the symmetric matrix $I-\tau A$.

As the eigenvalues of A are assumed to belong to the interval $[\alpha, \beta]$, where $0<\alpha<\beta$, and the parameter τ is by assumption positive, the eigenvalues of $I-\tau A$ are contained in the interval $[1-\tau \beta, 1-\tau \alpha$], whereby

$$
\|I-\tau A\| \leq \max \{|1-\tau \beta|,|1-\tau \alpha|\} .
$$

As $\tau>0$ is a free parameter, we need to choose it so that the iterative method (1) converges as fast as possible. We see from (3) that it is therefore desirable to choose τ so that $\|I-\tau A\|$ is as small as possible, and less than 1.

We shall therefore seek $\tau>0$ s.t.

$$
\min _{\tau>0} \max \{|1-\tau \beta|,|1-\tau \alpha|\}<1 . \quad \text { Thus: } \tau=\frac{2}{\alpha+\beta}
$$

In summary then, the iterative method proposed for the approximate solution of the linear system $A U=F$ is the one stated in (1), with $\tau:=\frac{2}{\alpha+\beta}$, and $[\alpha, \beta]$ being a closed subinterval of $(0, \infty)$ that contains all eigenvalues of the symmetric matrix $A \in \mathbb{R}^{M \times M}$.

Example 1

Consider the boundary-value problem

$$
\begin{array}{r}
-u^{\prime \prime}(x)+c u(x)=f(x), \quad x \in(0,1) \\
u(0)=0, \quad u(1)=0
\end{array}
$$

where $c \geq 0$ and $f \in C([0,1])$. The finite difference approximation of this boundary-value problem on the mesh $\left\{x_{i}: i=0, \ldots, N\right\}$ of uniform spacing $h=1 / N$, with $N \geq 2$, and $x_{i}=i h, i=0, \ldots, N$, is given by

$$
\begin{align*}
-\frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}+c U_{i}=f\left(x_{i}\right), \quad i & =1, \ldots, N-1 \tag{4}\\
U_{0} & =0, \quad U_{N}=0
\end{align*}
$$

In terms of matrix notation this can be rewritten as the linear system:

$$
\begin{equation*}
A U=F \tag{5}
\end{equation*}
$$

where A is an $(N-1) \times(N-1)$ symmetric tridiagonal matrix, $U=\left(U_{1}, \ldots, U_{N-1}\right)^{\mathrm{T}}$, and $F=\left(f\left(x_{1}\right), \ldots, f\left(x_{N-1}\right)\right)^{\mathrm{T}}$.

We need to explore the associated eigenvalue problem $A U=\Lambda U$:

$$
\left[\begin{array}{ccccc}
\frac{2}{h^{2}}+c & -\frac{1}{h^{2}} & & & 0 \\
-\frac{1}{h^{2}} & \frac{2}{h^{2}}+c & -\frac{1}{h^{2}} & & \\
& \ddots & \ddots & \ddots & \\
& & -\frac{1}{h^{2}} & \frac{2}{h^{2}}+c & -\frac{1}{h^{2}} \\
0 & & & -\frac{1}{h^{2}} & \frac{2}{h^{2}}+c
\end{array}\right]\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N-2} \\
U_{N-1}
\end{array}\right]=\Lambda\left[\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{N-2} \\
U_{N-1}
\end{array}\right]
$$

We will show that the eigenvalues of A are

$$
\Lambda_{k}=c+\frac{4}{h^{2}} \sin ^{2} \frac{k \pi h}{2}, \quad k=1,2, \ldots, N-1
$$

and the corresponding eigenvectors are, respectively,

$$
\left(U^{k}\left(x_{1}\right), \ldots, U^{k}\left(x_{N-1}\right)\right)^{\mathrm{T}}, \quad k=1, \ldots, N-1
$$

where

$$
U^{k}(x):=\sin (k \pi x), \quad x \in\left\{x_{0}, x_{1}, \ldots, x_{N}\right\}, \quad k=1,2, \ldots, N-1 .
$$

The algebraic eigenvalue problem $A U=\Lambda U$ is simply a restatement, on the mesh $\left\{x_{i}: i=0, \ldots, N\right\}$ of uniform spacing $h=1 / N$, with $N \geq 2$, and $x_{i}=i h, i=0, \ldots, N$, of the finite difference eigenvalue problem:

$$
\begin{aligned}
-\frac{U_{i+1}-2 U_{i}+U_{i-1}}{h^{2}}+c U_{i}=\wedge U_{i}, \quad i & =1, \ldots, N-1 \\
U_{0} & =0, \quad U_{N}=0
\end{aligned}
$$

A simple calculation yields the nontrivial solution: $U_{i}:=U^{k}\left(x_{i}\right)$, where

$$
U^{k}(x):=\sin (k \pi x), \quad x \in\left\{x_{0}, x_{1}, \ldots, x_{N}\right\} \quad \text { and } \quad \Lambda_{k}:=c+\frac{4}{h^{2}} \sin ^{2} \frac{k \pi h}{2}
$$

for $k=1,2, \ldots, N-1$.

This can be verified by inserting

$$
U_{i}=U^{k}\left(x_{i}\right)=\sin \left(k \pi x_{i}\right) \quad \text { and } \quad U_{i \pm 1}=U^{k}\left(x_{i \pm 1}\right)=\sin \left(k \pi x_{i \pm 1}\right)
$$

into the finite difference scheme and noting that

$$
\begin{aligned}
& \sin \left(k \pi x_{i \pm 1}\right)=\sin \left(k \pi\left(x_{i} \pm h\right)\right)=\sin \left(k \pi x_{i}\right) \cos (k \pi h) \pm \cos \left(k \pi x_{i}\right) \sin (k \pi h) \\
& \text { and } \\
& \qquad 1-\cos (k \pi h)=2 \sin ^{2} \frac{k \pi h}{2} \\
& \text { for } k=1,2, \ldots, N-1 \text { and } i=1,2, \ldots, N-1 .
\end{aligned}
$$

Clearly,

$$
c+8 \leq \Lambda_{k} \leq c+\frac{4}{h^{2}} \quad \text { for all } k=1,2, \ldots, N-1
$$

The first of these inequalities follows by noting that

$$
\Lambda_{k} \geq \Lambda_{1}=c+\frac{4}{h^{2}} \sin ^{2} \frac{\pi h}{2} \quad \text { for } k=1, \ldots, N-1
$$

and $\sin x \geq \frac{2 \sqrt{2}}{\pi} x$ for $x \in\left[0, \frac{\pi}{4}\right]$ (recall that $h \in\left[0, \frac{1}{2}\right]$ because $N \geq 2$, whereby $0<\frac{\pi h}{2} \leq \frac{\pi}{4}$).

The second inequality is the consequence of $0 \leq \sin ^{2} x \leq 1$ for all $x \in \mathbb{R}$.

Example 2

Now consider the elliptic boundary-value problem

$$
\begin{aligned}
-\Delta u+c u & =f(x, y) & & \text { in } \Omega \\
u & =0 & & \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

where $c \geq 0$ is a real number and $f \in C(\bar{\Omega})$, whose finite difference approximation posed on a uniform mesh $\left\{\left(x_{i}, y_{j}\right): i, j=0, \ldots, N\right\}$ of spacing $h=1 / N, N \geq 2$, in the x and y directions, is

$$
\begin{align*}
-\frac{U_{i+1, j}-2 U_{i, j}+U_{i-1, j}}{h^{2}}-\frac{U_{i, j+1}-2 U_{i, j}+U_{i, j-1}}{h^{2}}+c U_{i, j} & =f\left(x_{i}, y_{j}\right), & & i, j=1, \ldots, N-1 \\
U_{i, j} & =0 & & \text { for }\left(x_{i}, y_{j}\right) \in \Gamma_{h} \tag{6}
\end{align*}
$$

where, Γ_{h} is the set of all mesh-points on Γ. This, too, can be rewritten as a system of linear algebraic equations of the form $A U=F$, where now A is a symmetric $(N-1)^{2} \times(N-1)^{2}$ matrix with positive eigenvalues, $\Lambda_{k, m}$, $k, m=1, \ldots, N-1$.

The eigenvalue problem $A U=\Lambda U$ is simply a restatement of the finite difference eigenvalue problem:

$$
\begin{aligned}
-\frac{U_{i+1, j}-2 U_{i, j}+U_{i-1, j}}{h^{2}}-\frac{U_{i, j+1}-2 U_{i, j}+U_{i, j-1}}{h^{2}}+c U_{i, j} & =\Lambda U_{i, j}, & & i, j=1, \ldots, N-1, \\
U_{i, j} & =0 & & \text { for }\left(x_{i}, y_{j}\right) \in \Gamma_{h},
\end{aligned}
$$

where, Γ_{h} is the set of all mesh-points on $\Gamma=\partial \Omega$. Here, A is a symmetric $(N-1)^{2} \times(N-1)^{2}$ matrix with positive eigenvalues

$$
\Lambda_{k, m}=c+\frac{4}{h^{2}}\left(\sin ^{2} \frac{k \pi h}{2}+\sin ^{2} \frac{m \pi h}{2}\right)
$$

with $c+16 \leq \Lambda_{k, m} \leq c+\frac{8}{h^{2}}$, and eigenvectors/(discrete) eigenfunctions $U_{i, j}=U^{k, m}\left(x_{i}, y_{j}\right)$, for $i, j=1, \ldots, N-1$ and $k, m=1, \ldots, N-1$, where

$$
U^{k, m}(x, y)=\sin (k \pi x) \sin (m \pi y) .
$$

Note

In the case of the finite difference scheme (4), $\alpha=c+8$ and $\beta=c+\frac{4}{h^{2}}$, while in the case of $(6), \alpha=c+16$ and $\beta=c+\frac{8}{h^{2}}$. In both cases

$$
\frac{\beta-\alpha}{\beta+\alpha}=1-\text { Const. } h^{2} \in(0,1)
$$

thus, while the sequence of iterates $\left\{U^{(j)}\right\}_{j=0}^{\infty}$ defined by the iterative method (1) is guaranteed to converge to the solution U of the linear system $A U=F$ for each fixed $h>0$, the right-hand side in the inequality

$$
\begin{equation*}
\left\|U-U^{(j)}\right\| \leq\left(\frac{\beta-\alpha}{\beta+\alpha}\right)^{j}\left\|U-U^{(0)}\right\| \tag{7}
\end{equation*}
$$

signals that deterioration of the speed of convergence may occur as $h \rightarrow 0$.

An alternative, computable bound on the iteration error

By multiplying (2) by the matrix A and recalling that $A U=F$, one has

$$
F-A U^{(j+1)}=(I-\tau A)\left(F-A U^{(j)}\right)
$$

and therefore, by proceeding as above,

$$
\begin{equation*}
\left\|F-A U^{(j)}\right\| \leq\|I-\tau A\|^{j}\left\|F-A U^{(0)}\right\| \leq\left(\frac{\beta-\alpha}{\beta+\alpha}\right)^{j}\left\|F-A U^{(0)}\right\| \tag{8}
\end{equation*}
$$

As α and β are available (in the case of the simple boundary-value problems considered here, at least) as are F, A and the initial guess $U^{(0)}$, it is possible to quantify the number of iterations required to ensure that the Euclidean norm of the so-called residual $F-A U^{(j)}$ of the j-th iterate becomes smaller than a chosen tolerance TOL >0.

A sufficient condition for this is that the right-hand side of (8) is smaller than TOL, which will hold as soon as

$$
\begin{equation*}
j>\log \frac{\left\|F-A U^{(0)}\right\|}{\mathrm{TOL}}\left[\log \left(\frac{\beta+\alpha}{\beta-\alpha}\right)\right]^{-1} \tag{9}
\end{equation*}
$$

In the case of the two boundary-value problems considered above,

$$
\frac{\beta-\alpha}{\beta+\alpha}=1-\text { Const. } h^{2}
$$

and therefore (because $\log \left(1-\right.$ Const. $\left.h^{2}\right) \sim-$ Const. h^{2} as $h \rightarrow 0$) the right-hand side of the inequality (9) is \sim Const. $h^{-2} \log (1 /$ TOL $)$.

We see in particular that the smaller the value of the mesh-size h the larger the number of iterations j will need to be to ensure that

$$
\left\|F-A U^{(j)}\right\|<\mathrm{TOL}
$$

[^0]: ${ }^{1}$ Lewis Fry Richardson, FRS (11 October 1881 - 30 September 1953).

[^1]: ${ }^{2}$ Suppose that \mathcal{V} is a linear space and $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are two norms on \mathcal{V}; then $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are said to be equivalent if there exist positive constants C_{1} and C_{2} such that $C_{1}\|V\|_{1} \leq\|V\|_{2} \leq C_{2}\|V\|_{1}$ for all $V \in \mathcal{V}$.

